Python/C API Reference Manual
Release 2.2.1

Guido van Rossum
Fred L. Drake, Jr., editor

April 10, 2002

PythonLabs
Email: python-docs@python.org

Copyright(© 2001 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This manual documents the API used by C anid-@rogrammers who want to write extension modules or embed
Python. Itis a companion téxtending and Embedding the Python Interprewehnich describes the general principles
of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. | hope that it is nevertheless useful. | will continue to
work on it, and release new versions from time to time, independent from Python source code releases.

Introduction

1.1 Include Files. o e
1.2 Objects, Typesand Reference Counts o i i i i i i it e e e e
1.3 EXCEPLIONS. o e e e e e e
1.4 Embedding Python e

CONTENTS

The Very High Level Layer

Reference Counting

Exception Handling

4.1 Standard EXCeptions e e e
4.2 Deprecation of String EXCeptions
Utilities

5.1 Operating System Utilities o e
5.2 ProcessControl. e
5.3 Importing Modules e e e e
5.4 Datamarshalling support. e e e
5.5 Parsing arguments and buildingvalues.

Abstract Objects Layer

6.1 ObjectProtocol
6.2 Number Protocol e e e
6.3 Sequence Protocal L e e
6.4 Mapping Protocol e e
6.5 lterator Protocol. L e
6.6 Buffer Protocol
Concrete Objects Layer

7.1 Fundamental Objects.
7.2 Numeric ObJeCES. e e e e e
7.3 Sequence Objects. e e
7.4 Mapping Objects e e
7.5 OtherODbjJects e e
Initialization, Finalization, and Threads

8.1 Thread State and the Global InterpreterLack o Lo

8.2 Profilingand Tracing e e
8.3 Advanced Debugger SUpport e e e e

9 Memory Management 75
9.1 OVEIVIEW . . o o ot e e 75
9.2 Memorylnterface 76
9.3 Examples 76

10 Defining New Object Types 79
10.1 Allocating Objectsonthe Heap i 79
10.2 Common Object StruCtUres o o o e 80
10.3 Mapping Object Structures. o e e e e e 81
10.4 Number Object StruCtures o 0 e e e e e e e e 81
10.5 Sequence ObjeCt STruCtUres. v e e e e e e e 81
10.6 Buffer Object Structures e 82
10.7 Supporting the Iterator Protocol. e 83
10.8 Supporting Cyclic Garbarge Collection. 83

A Reporting Bugs 87

B History and License 89
B.1 Historyofthesoftware 89
B.2 Terms and conditions for accessing or otherwise using Python 89

Index 93

CHAPTER
ONE

Introduction

The Application Programmer’s Interface to Python gives C ahd frogrammers access to the Python interpreter at

a variety of levels. The API is equally usable fromt-€ but for brevity it is generally referred to as the Python/C

API. There are two fundamentally different reasons for using the Python/C API. The first reason is &Extetitgion
modulesfor specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to a@mbeddindPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it's probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headersstdio.h> , <string.h> , <errno.h> | <lim-
its.h> , and<stdlib.h> (if available). Since Python may define some pre-processor definitions which affect
the standard headers on some systems, you must indythen.h’ before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py’ or ' _Py’. Names beginning with_‘Py’ are for internal use by the Python implementation and should
not be used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin viAth or ‘ _Py’. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional names beginning
with one of these prefixes.

The header files are typically installed with Python. Omnil, these are located in the directories
“prefix/include/pythonversior’ and ‘exec_prefix/include/pythonversior’, where prefix and exeqrefix are defined by
the corresponding parameters to Pythardsfigure script andversionis sys.version|[:3] . On Windows, the
headers are installed iprefix/include’, where prefix is the installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includest e
the parent directories on the search path and thertiselude <python2.2/Python.h> ’; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers from

exec_prefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry
points to beextern "C" , so there is no need to do anything special to use the API frérn C

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value Bff9pgect* . This type is

a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of typyObject , only pointer variables of typByObject* can be declared. The

sole exception are the type objects; since these must never be deallocated, they are typicdfyTstpe©bject

objects.

All Python objects (even Python integers) hawg@eand areference countAn object’s type determines what kind of
objectitis (e.g., an integer, a list, or a user-defined function; there are many more as explainét/thdiheReference
Manual). For each of the well-known types there is a macro to check whether an object is of that type; for instance,
‘PyList _Check(a) 'is true if (and only if) the object pointed to kyis a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an
obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use thePya¢dNCREF() to increment

an object’s reference count by one, aRg_DECREF() to decrement it by one. They_DECREF() macro is
considerably more complex than the incref one, since it must check whether the reference count becomes zero and then
cause the object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure.
The type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object
if this is a compound object type, such as a list, as well as performing any additional finalization that's needed. There’s
no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there
are distinct memory locations in virtual memory (assumsiggof(long) >= sizeof(char*)). Thus, the

reference count increment is a simple operation.

Itis not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user RgnDECREF(),

so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name beginBy@itject _’,

2 Chapter 1. Introduction

‘PyNumber_’, ‘ PySequence _’ or ‘PyMapping _’). These operations always increment the reference count of
the object they return. This leaves the caller with the responsibility tdryalDECREF() when they are done with
the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in teowsefship of references

Note that we talk of owning references, never of owning objects; objects are always shared! When a function owns
a reference, it has to dispose of it properly — either by passing ownership on (usually to its caller) or by calling
Py_DECREF() or Py_XDECREF(). When a function passes ownership of a reference on to its caller, the caller is
said to receive aewreference. When no ownership is transferred, the caller is s&idrtow the reference. Nothing

needs to be done for a borrowed reference.

Conversely, when a calling function passes it a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not. Few functions steal references; the two notable exceptions are
PyList _Setltem() andPyTuple _Setltem() , which steal a reference to the item (but not to the tuple or

list into which the item is put!). These functions were designed to steal a reference because of a common idiom for
populating a tuple or list with newly created objects; for example, the code to create th€ltu@e "three")

could look like this (forgetting about error handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_Setltem(t, 0, PyInt_FromLong(1L));
PyTuple_Setitem(t, 1, PyInt_FromLong(2L));
PyTuple_Setitem(t, 2, PyString_FromString(“three"));

Incidentally, PyTuple _Setltem() is theonly way to set tuple itemsPySequence _Setltem() and Py-
Object _Setltem() refuse to do this since tuples are an immutable data type. You should onlyydse
ple _Setltem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written udiydrist _New() andPyList _Setltem() . Such code
can also us®ySequence _Setltem() ; this illustrates the difference between the two (the eRyaDECREF()
calls):

PyObject *I, *x;

| = PyList_New(3);

X = PyInt_FromLong(1L);
PySequence_Setltem(l, 0, x); Py_DECREF(x);
X = Pyint_FromLong(2L);
PySequence_Setltem(l, 1, x); Py_DECREF(x);
x = PyString_FromString("three");
PySequence_Setltem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice, you will rarely
use these ways of creating and populating a tuple or list. There’s a generic fulstidBuildValue() , that can

create most common objects from C values, directed foyraat string For example, the above two blocks of code
could be replaced by the following (which also takes care of the error checking):

PyObject *t, *l;

t
I

Py_Buildvalue(“(iis)", 1, 2, "three");
Py_BuildValue("fiis]", 1, 2, "three");

It is much more common to udeyObject _Setltem() and friends with items whose references you are only

1.2. Objects, Types and Reference Counts 3

borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all(PyObject *target, PyObject *item)
{ . .
int i, n;
n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
if (PyObject_Setltem(target, i, item) < 0)
return -1;
}
return O;
}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a referece to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject _Getltem() andPySequence _Getltem() , always return a new reference (the caller becomes the
owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you
call only —the plumagethe type of the type of the object passed as an argument to the fundtiesi't enter into

it! Thus, if you extract an item from a list usiiRyList _Getltem() , you don’t own the reference — but if you
obtain the same item from the same list usihgsequence _Getltem() (which happens to take exactly the same
arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
usingPyList _Getltem() , and once usin@ySequence _Getltem()

long
sum_list(PyObject *list)
{ . .

int i, n;

long total = O;

PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_Getltem(list, i); /* Can't fail */
if (!Pylnt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}

return total;

long
sum_sequence(PyObject *sequence)

{

4 Chapter 1. Introduction

int i, n;
long total = O;
PyObject *item;
n = PySequence_Length(sequence);
if (n <0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_Getltem(sequence, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py DECREF(item); /* Discard reference ownership */
}

return total;

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C typesrsuch as

long , double andchar* . A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator
— usuallyNULLor -1 . A few functions return a Boolean true/false result, with false indicating an error. Very few
functions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors
with PyErr _Occurred()

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The fiy&ron_Occurred()

can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, andNULL otherwise. There are a number of functions to set the exception Byder _SetString()

is the most common (though not the most general) function to set the exception stadyFand Clear() clears

the exception state.

The full exception state consists of three objects (all of which cahNbkL): the exception type, the correspond-

ing exception value, and the traceback. These have the same meanings as the Python sysbgacts _type

sys.exc _value , andsys.exc _traceback ; however, they are not the same: the Python objects represent the
last exception being handled by a Pythton ... except statement, while the C level exception state only exists
while an exception is being passed on between C functions until it reaches the Python bytecode interpreter's main
loop, which takes care of transferring itdgs.exc _type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the function sys.exc _info() , which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common

1.3. Exceptions 5

bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it shaubdset another exception — that would overwrite the exception

that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shownsorhesequence() example above.
It so happens that that example doesn'’t need to clean up any owned references when it detects an error. The following

example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dictlkey]
except KeyError:
item = 0
dictlkey] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py _XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_Getltem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if ('PyErr_ExceptionMatches(PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = Pyint_FromLong(OL);
if (item == NULL)
goto error;
}
const_one = Pyint_FromLong(1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_Setltem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py _XDECREF() to ignore NULL references */

6 Chapter 1. Introduction

Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, O for success */

}
This example represents an endorsed use of dgbo statement in C! It illustrates the use d?y-
Err _ExceptionMatches() and PyErr _Clear() to handle specific exceptions, and the use of

Py_XDECREF() to dispose of owned references that mayNidLL (note the X' in the name;Py_DECREF()
would crash when confronted withNULL reference). It is important that the variables used to hold owned references
are initialized toNULL for this to work; likewise, the proposed return value is initializedto(failure) and only set

to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function iBy _Initialize() . This initializes the table of loaded modules, and creates the
fundamental modules_builtin -~ __, __main __, sys, andexceptions . It also initializes the module search
path gys.path).

Py _Initialize() does not set the “script argument lissy6.argv). If this variable is needed by Python code
that will be executed later, it must be set explicitly with a calPyBSys _SetArgv(argc, argv) subsequent to the
call to Py _Initialize()

On most systems (in particular, on N,k and Windows, although the details are slightly different),

Py _lInitialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory nantieghython2.2’ relative to the parent directory where

the executable namegython’ is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found /msr/local/bin/python’, it will assume that the libraries are in
‘lusr/local/lib/python2.2’. (In fact, this particular path is also the “fallback” location, used when no executable file
named python’ is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calRygSetProgramName(file) before calling

Py _Initialize() . Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in
front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath() , Py_GetPrefix() , Py_GetExecPrefix() , andPy_GetProgramFullPath() (all de-

fined in ‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
call toPy_lInitialize()) or the application is simply done with its use of Python and wants to free all memory al-
located by Python. This can be accomplished by calggFinalize() . The functionPy _lIsInitialized()

returns true if Python is currently in the initialized state. More information about these functions is given in a later
chapter.

1.4. Embedding Python 7

CHAPTER
TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval _input , Py_file _input , andPy_single _input . These are described following the functions
which accept them as parameters.

Note also that several of these functions teffEE* parameters. On particular issue which needs to be handled
carefully is that theILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that the
Python runtime is using.

int Py_Main (int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
argc and argv parameters should be prepared exactly as those which are passed to a C prowent)’'s
function. It is important to note that the argument list may be modified (but the contents of the strings pointed to
by the argument list are not). The return value will be the integer passed $gdhexit() function,1 if the
interpreter exits due to an exception,if the parameter list does not represent a valid Python command line.

int PyRun_AnyFile (FILE *fp, char *filenam¢
If fp refers to a file associated with an interactive device (console or terminal inputior pseudo-terminal),
return the value odPyRun_InteractiveLoop() , otherwise return the result 8fyRun_SimpleFile()
If flenameis NULL, this function use&???" as the filename.

int PyRun_SimpleString (char *commangl
Executes the Python source code froommandn the __main __ module. If __main __ does not already
exist, it is created. Returrson success ofl if an exception was raised. If there was an error, there is no way
to get the exception information.

int PyRun_SimpleFile (FILE *fp, char *filenamé
Similar to PyRun_SimpleString() , but the Python source code is read frégrinstead of an in-memory
string. filenameshould be the name of the file.

int PyRun_lInteractiveOne (FILE *fp, char *filenamé
Read and execute a single statement from a file associated with an interactive deYilsmarfieis NULL,
"???" is used instead. The user will be prompted usigg.psl andsys.ps2 . ReturnsO) when the input
was executed successfully, if there was an exception, or an error code from taecode.h’ include file
distributed as part of Python if there was a parse error. (Note ¢habtle.h’ is not included by Python.h’, so
must be included specifically if needed.)

int PyRun_lInteractiveLoop (FILE *fp, char *filenamé
Read and execute statements from a file associated with an interactive deviegoaisilreached. Ifilename
is NULL, "???" is used instead. The user will be prompted usipg.psl andsys.ps2 . Return) ateOF.

struct _node* PyParser _SimpleParseString (char *str, int starf
Parse Python source code fraim using the start tokestart. The result can be used to create a code object
which can be evaluated efficiently. This is useful if a code fragment must be evaluated many times.

struct _node* PyParser _SimpleParseFile (FILE *fp, char *filename, int stait
Similar toPyParser _SimpleParseString() , but the Python source code is read fréprnstead of an
in-memory stringfilenameshould be the name of the file.

PyObject* PyRun_String (char *str, int start, PyObject *globals, PyObject *locals
Return valueNew reference
Execute Python source code fraatn in the context specified by the dictionarigiebalsandlocals The param-
eterstart specifies the start token that should be used to parse the source code.

Returns the result of executing the code as a Python objeisit bt if an exception was raised.

PyObject* PyRun_File (FILE *fp, char *filename, int start, PyObject *globals, PyObject *locals
Return valueNNew reference
Similar to PyRun_String() , but the Python source code is read fréprinstead of an in-memory string.
filenameshould be the name of the file.

PyObject* Py_CompileString (char *str, char *filename, int stajt
Return valueNew reference
Parse and compile the Python source codstinreturning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and shoitg leeal _input ,
Py_file _input , orPy_single _input . The filename specified dilenameis used to construct the code
object and may appear in tracebacksSyntaxError exception messages. This retuMBLL if the code
cannot be parsed or compiled.

int Py_eval _input
The start symbol from the Python grammar for isolated expressions; for us@yiompileString()

int Py_file _input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use withPy_CompileString() . This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single _input

The start symbol from the Python grammar for a single statement; for us@witGompileString() . This
is the symbol used for the interactive interpreter loop.

10 Chapter 2. The Very High Level Layer

CHAPTER
THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void

void

void

void

The

Py

Py_INCREH PyObject *g
Increment the reference count for objectThe object must not bHULL; if you aren’t sure that it isn'NULL,
usePy_XINCREF() .

Py_XINCREK PyObject *9
Increment the reference count for objecfThe object may b&lULL, in which case the macro has no effect.

Py_DECREF PyObject *9
Decrement the reference count for objecThe object must not bULL; if you aren’t sure that it isn'NULL,
usePy_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must
not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
with a __del __() method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state beRye DECREF() is invoked. For example, code to delete an object

from a list should copy a reference to the deleted object in a temporary variable, update the list data structure,
and then calPy_DECREF() for the temporary variable.

Py_XDECREFEPyObject *g
Decrement the reference count for objectThe object may b&ULL, in which case the macro has no effect;
otherwise the effect is the same asRyr_DECREF(), and the same warning applies.

following functions or macros are only for use within the interpreter corePy_Dealloc()
ForgetReference() , _Py_NewReference() , as well as the global variable®?y_RefTotal

11

12

CHAPTER
FOUR

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat likentive &frno variable: there is a global
indicator (per thread) of the last error that occurred. Most functions don't clear this on success, but will set it to indicate
the cause of the error on failure. Most functions also return an error indicator, ublidlly if they are supposed to

return a pointer, ofl if they return an integer (exception: tlyArg _*() functions returrl for success an@ for

failure).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); inshoafdinue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propogated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

The error indicator consists of three Python objects corresponding to the Python vasghlesc _type ,
sys.exc _value andsys.exc _traceback . API functions exist to interact with the error indicator in various
ways. There is a separate error indicator for each thread.

void PyErmr _Print ()
Print a standard tracebackdygs.stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr _Occurred ()
Return value Borrowed reference
Test whether the error indicator is set. If set, return the excepyipa(the first argument to the last call to
one of thePyErr _Set*() functions or toPyErr _Restore()). If not set, returrNULL You do not own a
reference to the return value, so you do not neeeiytoDECREF() it. Note: Do not compare the return value
to a specific exception; useyErr _ExceptionMatches() instead, shown below. (The comparison could
easily fail since the exception may be an instance instead of a class, in the case of a class exception, or it may
the a subclass of the expected exception.)

int PyErr _ExceptionMatches (PyObject *exg
Equivalent to PyErr _GivenExceptionMatches(PyErr _Occurred(), exq '. This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr _GivenExceptionMatches (PyObject *given, PyObject *eXc
Return true if thegivenexception matches the exceptiondrc If excis a class object, this also returns true
whengivenis an instance of a subclassekcis a tuple, all exceptions in the tuple (and recursively in subtuples)
are searched for a match.divenis NULL, a memory access violation will occur.

void PyErr _NormalizeException (PyObject**exc, PyObject**val, PyObject**{b
Under certain circumstances, the values returneeyirr _Fetch() below can be “unnormalized”, meaning
that* excis a class object butval is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is

13

implemented to improve performance.

void PyErr _Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErmr _Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables tblULL If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may B&LL even when the type object is ndiote: This function is normally
only used by code that needs to handle exceptions or by code that needs to save and restore the error indicator
temporarily.

void PyErr _Restore (PyObject *type, PyObject *value, PyObject *traceback
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
are NULL, the error indicator is cleared. Do not pasdldLL type and norNULL value or traceback. The
exception type should be a string or class; if it is a class, the value should be an instance of that class. Do not
pass an invalid exception type or value. (Violating these rules will cause subtle problems later.) This call takes
away a reference to each object: you must own a reference to each object before the call and after the call you
no longer own these references. (If you don’t understand this, don't use this function. | warned\poer.)
This function is normally only used by code that needs to save and restore the error indicator temporarily.

void PyErmr _SetString (PyObject *type, char *messape
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, €gExc _RuntimeError . You need not increment its reference
count. The second argument is an error message; it is converted to a string object.

void PyErr _SetObject (PyObject *type, PyObject *valje
This function is similar toPyErr _SetString() but lets you specify an arbitrary Python object for the
“value” of the exception. You need not increment its reference count.

PyObject* PyErr _Format (PyObject *exception, const char *format)...

Return value:AlwaysNULL
This function sets the error indicator and retuMidLL. exceptionshould be a Python exception (string or
class, not an instance)format should be a string, containing format codes, similaptmtf() . The
width.precision before a format code is parsed, but the width part is ignored.
Character | Meaning

‘c’ Character, as aint parameter

‘d’ Number in decimal, as ant parameter

‘x’ Number in hexadecimal, as arnt parameter

‘s’ A string, as a&char * parameter

‘P’ A hex pointer, as &oid * parameter

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

void PyErr _SetNone (PyObiject *typ¢
This is a shorthand folPyErr _SetObject(typg Py _None)'.

int PyErr _BadArgument ()
This is a shorthand folPyErr _SetString(PyExc _TypekError, message’, where messagéndicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr _NoMemory()
Return value AlwaysNULL
Thisis a shorthand foPyErr _SetNone(PyExc _MemoryError) ’;itreturnsNULLso an object allocation
function can write feturn PyErr _NoMemory(); ’'when it runs out of memory.

PyObject* PyErr _SetFromErmo (PyObject *typé
Return value:AlwaysNULL
This is a convenience function to raise an exception when a C library function has returned an error and set the C

14 Chapter 4. Exception Handling

variableerrno . It constructs a tuple object whose first item is the integgano value and whose second item

is the corresponding error message (gotten febrarror()), and then callsPyErr _SetObject(type

objec) . On UNIX, when theerrno value iSEINTR, indicating an interrupted system call, this cdfg-

Err _CheckSignals() , and if that set the error indicator, leaves it set to that. The function always returns
NULL, so a wrapper function around a system call can wrigturn PyErr _SetFromErrno(); "when

the system call returns an error.

PyObject* PyErr _SetFromErrnoWithFilename (PyObject *type, char *filename

void

int

int

int

void

Return value AlwaysNULL

Similar toPyErr _SetFromErrno() , with the additional behavior that filenameis notNULL, it is passed
to the constructor dfypeas a third parameter. In the case of exceptions sut@BEsgor andOSError |, this
is used to define thBlename attribute of the exception instance.

PyErr _BadInternalCall 0
This is a shorthand folPyErr _SetString(PyExc _TypekError, messagg’, where messagéndicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

PyErr _Warn(PyObject *category, char *message
Issue a warning message. Toategoryargument is a warning category (see belowNasLL; the message
argument is a message string.

This function normally prints a warning messageste.stdery however, it is also possible that the user has
specified that warnings are to be turned into errors, and in that case this will raise an exception. Itis also possible
that the function raises an exception because of a problem with the warning machinery (the implementation
imports thewarnings module to do the heavy lifting). The return valuelisf no exception is raised, ot

if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor
what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for examplPy _DECREF() owned references and return an error value).

Warning categories must be subclassesWidrning ; the default warning category iRuntimeWarn-
ing . The standard Python warning categories are available as global variables whose narRgExre
followed by the Python exception name. These have the ®p®bject* ; they are all class ob-
jects. Their names arByExc _Warning , PyExc _UserWarning , PyExc _DeprecationWarning
PyExc _SyntaxWarning , and PyExc _RuntimeWarning . PyExc_Warning is a subclass of
PyExc _Exception ; the other warning categories are subclassé®y@ixc _Warning .

For information about warning control, see the documentation fowraings module and theW option in
the command line documentation. There is no C API for warning control.

PyErr _WarnExplicit (PyObject *category, char *message, char *filename, int lineno, char *module, PyObject *rggis
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper

around the Python functiowarnings.warn _explicit() , see there for more information. Tineodule
andregistryarguments may be set MULLto get the default effect described there.

PyErr _CheckSignals ()

This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. Isigeal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effectSWBINT is to raise theKeyboardinterrupt

exception. If an exception is raised the error indicator is set and the function rétuotiserwise the function
returns0. The error indicator may or may not be cleared if it was previously set.

PyErr _Setinterrupt 0
This function is obsolete. It simulates the effect ofSUGINT signal arriving — the next timePy-
Err _CheckSignals() is called, Keyboardinterrupt will be raised. It may be called without holding
the interpreter lock.

PyObject* PyErr _NewException (char *name, PyObject *base, PyObject *dict

Return valueNNew reference
This utility function creates and returns a new exception object. nEmeargument must be the name of the

15

new exception, a C string of the formodule.class . Thebaseanddict arguments are normalULL This
creates a class object derived from the root for all exceptions, the built-in Baosgption (accessible in C as
PyExc _Exception). The__module __ attribute of the new class is set to the first part (up to the last dot)
of thenameargument, and the class name is set to the last part (after the last dotha3émrgument can be
used to specify an alternate base class. dibkargument can be used to specify a dictionary of class variables
and methods.

void PyErr _WriteUnraisable (PyObject *ob)
This utility function prints a warning messagedys.stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del __() method.

The function is called with a single argumeuibj that identifies where the context in which the unraisable
exception occurred. The repr obj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose nam@gtaxe *’ followed by the Python
exception name. These have the typgObject* ; they are all class objects. For completeness, here are all the

variables:

Notes:

(1) This is a base class for other standard exceptions.

C Name Python Name Notes
PyExc _Exception Exception Q)
PyExc _StandardError StandardError D
PyExc _ArithmeticError ArithmeticError Q)
PyExc _LookupError LookupError Q)
PyExc _AssertionError AssertionError

PyExc _AttributeError AttributeError

PyExc _EOFError EOFError

PyExc _EnvironmentError EnvironmentError D
PyExc _FloatingPointError FloatingPointError

PyExc _IOError IOError

PyExc _ImportError ImportError

PyExc _IndexError IndexError

PyExc _KeyError KeyError

PyExc _Keyboardinterrupt KeyboardInterrupt

PyExc _MemoryError MemoryError

PyExc _NameError NameError

PyExc _NotlmplementedError NotlmplementedError

PyExc _OSError OSError

PyExc _OverflowError OverflowError

PyExc _ReferenceError ReferenceError (2)
PyExc _RuntimeError RuntimeError

PyExc _SyntaxError SyntaxError

PyExc _SystemError SystemError

PyExc _SystemExit SystemEXxit

PyExc _TypeError TypeError

PyExc _ValueError ValueError

PyExc _WindowsError WindowsError 3)
PyExc _ZeroDivisionError ZeroDivisionError

16

Chapter 4. Exception Handling

(2) This is the same aseakref.ReferenceError

(3) Only defined on Windows; protect code that uses this by testing that the preprocessoMBadftiNDOW &
defined.

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived Erogption

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also
change in a future release.

4.2. Deprecation of String Exceptions 17

18

CHAPTER
FIVE

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Utilities

int Py_FdisInteractive (FILE *fp, char *filenamé
Return true (nonzero) if the standard I/O fipavith namefilenames deemed interactive. This is the case for files

for which ‘isatty(fileno(fp)) ’istrue. If the global flag?y _InteractiveFlag is true, this function
also returns true if théilenamepointer isNULL or if the name is equal to one of the stringstdin>’ or
2?7

long PyOS GetLastModificationTime (char *filenameg

Return the time of last modification of the fiilename The result is encoded in the same way as the timestamp
returned by the standard C library functitime()

void PyOS AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not
need to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available when
USE_STACKCHECIKs defined (currently on Windows using the Microsoft VisuattCcompiler and on the
Macintosh).USE_CHECKSTACHIll be defined automatically; you should never change the definition in your

own code.
PyOS_ sighandler _t PyOS getsig (inti)
Return the current signal handler for signalThis is a thin wrapper around eithgigaction() or sig-

nal() . Do notcallthose functions directhfPyOS _sighandler _t is atypedefalias fovoid (*)(int)

PyOS sighandler _t PyOS setsig (inti, PyOS sighandlert h)
Set the signal handler for signato beh; return the old signal handler. This is a thin wrapper around either
sigaction() or signal() . Do not call those functions directlyPyOS sighandler _t is a typedef
alias forvoid (*)(int)

5.2 Process Control

void Py_FatalError (char *message
Print a fatal error message and Kill the process. No cleanup is performed. This function should only be invoked

19

when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. @mxUthe standard C library functicabort() s called
which will attempt to produce abre’ file.

void Py_Exit (intstatug
Exit the current process. This calRy_Finalize() and then calls the standard C library function
exit(statug .

int Py_AtExit (void (*func) ()
Register a cleanup function to be called By_Finalize() . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successfulRy _AtExit() returns0; on failure, it returns1 . The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finallization will have completed
before the cleanup function, no Python APIs should be callefitgy

5.3 Importing Modules

PyObject* Pylmport _ImportModule (char *namg
Return valueNew reference
This is a simplified interface t®ylmport _ImportModuleEx() below, leaving theglobals and locals
arguments set tBlULL. When thenameargument contains a dot (when it specifies a submodule of a package),
thefromlistargument is set to the li§t’] so that the return value is the named module rather than the top-
level package containing it as would otherwise be the case. (Unfortunately, this has an additional side effect
whennamein fact specifies a subpackage instead of a submodule: the submodules specified in the package’s
__all __variable are loaded.) Return a new reference to the imported modiN&Jldrwith an exception set
on failure (the module may still be created in this case — exasysemodules to find out).

PyObject* Pylmport _ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject *fromlist
Return valueNew reference
Import a module. This is best described by referring to the built-in Python functiamport __() , as the
standard__import __() function calls this function directly.

The return value is a new reference to the imported module or top-level packageLarwith an exception
set on failure (the module may still be created in this case). Like famport __() , the return value when
a submodule of a package was requested is normally the top-level package, unless a ndmettigtyas
given.

PyObject* Pylmport _Import (PyObject *namg
Return valueNew reference
This is a higher-level interface that calls the current “import hook function”. It invokes theaport __()
function from the__builtins __ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment, e.gelgc orihooks .

PyObject* Pylmport _ReloadModule (PyObject*n)
Return valueNew reference
Reload a module. This is best described by referring to the built-in Python fumretmerd() |, as the standard
reload() function calls this function directly. Return a new reference to the reloaded modiN&Jldrwith
an exception set on failure (the module still exists in this case).

PyObject* Pylmport _AddModule (char *name
Return value Borrowed reference
Return the module object corresponding to a module name.n@ilreeargument may be of the foripack-
age.module). First check the modules dictionary if there’s one there, and if not, create a new one and insert in
in the modules dictionaryNote: This function does not load or import the module; if the module wasn’t already
loaded, you will get an empty module object. UBgimport _ImportModule() or one of its variants to
import a module. ReturNULL with an exception set on failure.

20 Chapter 5. Utilities

PyObject* Pylmport _ExecCodeModule (char *name, PyObject *cp
Return valueNew reference
Given a module name (possibly of the fopackage.module) and a code object read from a Python bytecode
file or obtained from the built-in functiooompile() , load the module. Return a new reference to the module
object, orNULL with an exception set if an error occurred (the module may still be created in this case). (This
function would reload the module if it was already imported.)

long Pylmport _GetMagicNumber ()
Return the magic number for Python bytecode files (a.kpgic*and ‘.pyo’ files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* Pylmport _GetModuleDict ()
Return valueBorrowed reference
Return the dictionary used for the module administration (agya.modules). Note that this is a per-
interpreter variable.

void _Pylmport _Init ()
Initialize the import mechanism. For internal use only.

void Pylmport _Cleanup ()
Empty the module table. For internal use only.

void _Pylmport _Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _Pylmport _FindExtension (char*, char *)
For internal use only.

PyObject* _Pylmport _FixupExtension (char*, char *)
For internal use only.

int Pylmport _ImportFrozenModule (char *namg
Load a frozen module namathme Returnl for success if the module is not found, anell with an
exception set if the initialization failed. To access the imported module on a successful lodeylose
port _ImportModule() . (Note the misnomer — this function would reload the module if it was already
imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generated Iyedhe utility (see
‘Tools/freeze/!’ in the Python source distribution). Its definition, found include/import.h’, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

h

struct _frozen* Pylmport _FrozenModules
This pointer is initialized to pointto an arraysfruct ~ _frozen records, terminated by one whose members
are allINULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.

int Pylmport _Appendlnittab (char *name, void (*initfunc)(void)
Add a single module to the existing table of built-in modules. This is a convenience wrapper &ylumd
port _ExtendInittab() , returning-1 if the table could not be extended. The new module can be imported
by the namename and uses the functionitfunc as the initialization function called on the first attempted im-
port. This should be called befoRy _Initialize()

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array of

5.3. Importing Modules 21

these structures in conjunction witylmport _ExtendInittab() to provide additional built-in modules.
The structure is defined imnclude/import.h’ as:

struct _inittab {
char *name;
void (*initfunc)(void);
h
int Pylmport _ExtendInittab ('struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. Heavtabarray must end with a sentinel entry
which containdNULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns0 on success ol if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called Pgfoheitialize()

5.4 Data marshalling support

These routines allow C code to work with serialized objects using the same data formansarshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

void PyMarshal _WriteLongToFile (long value, FILE *fil§
Marshal along integer,value tofile. This will only write the least-significant 32 bits ehlue regardless of
the size of the nativeong type.

void PyMarshal _WriteShortToFile (' short value, FILE *fil¢
Marshal ashort integer,valug tofile.

void PyMarshal _WriteObjectToFile (PyObject *value, FILE *fil¢
Marshal a Python objectalug to file. This will only write the least-significant 16 bits @hlue regardless of
the size of the nativehort type.

PyObject* PyMarshal _WriteObjectToString (PyObject *valug
Return valueNew reference
Return a string object containing the marshalled representatioal wd

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that's relevant), but it's not clear that negative values won't be handled properly when there’s no
error. What's the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal _ReadlLongFromFile (FILE *file)
Return a dong from the data stream inEILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native sizdarig .

int PyMarshal _ReadShortFromFile (FILE *file)
Return a Cshort from the data stream in BILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native sizéoofy .

PyObject* PyMarshal _ReadObjectFromFile (FILE *file)
Return valueNew reference
Return a Python object from the data stream iRlIBE* opened for reading. On error, sets the appropriate
exception EOFError or TypeError) and returndNULL

PyObject* PyMarshal _ReadlLastObjectFromFile (FILE *file)
Return valueNNew reference

22 Chapter 5. Utilities

Return a Python object from the data stream inFBLE* opened for reading. UnlikePyMar-

shal _ReadObjectFromFile() , this function assumes that no further objects will be read from the file,
allowing it to aggressively load file data into memory so that the de-serialization can operate from data in mem-
ory rather than reading a byte at a time from the file. Only use these variant if you are certain that you won't be
reading anything else from the file. On error, sets the appropriate exceptidfEror or TypeError) and
returnsNULL

PyObject* PyMarshal _ReadObjectFromString (char *string, int ler)

Return valueNNew reference
Return a Python object from the data stream in a character buffer contéenihgtes pointed to bgtring. On
error, sets the appropriate excepti®@OFError or TypeError) and returnsNULL

5.5 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available Extending and Embedding the Python Interpreter

int

int

int

int

PyArg _ParseTuple (PyObject *args, char *format,)).

Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exceptiozxt®eeding and Embedding the
Python Interpretefor more information.

PyArg _ParseTupleAndKeywords (PyObject *args, PyObject *kw, char *format, char *keywordsl]) ...

Parse the parameters of a function that takes both positional and keyword parameters into local variables. Re-
turns true on success; on failure, it returns false and raises the appropriate exceptiémieBdeng and Em-
bedding the Python Interpretéor more information.

PyArg _Parse (PyObject *args, char *format,).

Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the
METHOLDARGS$arameter parsing method. This is not recommended for use in parameter parsing in new
code, and most code in the standard interpreter has been modified to no longer use this for that purpose. It does
remain a convenient way to decompose other tuples, however, and may continue to be used for that purpose.

PyArg _UnpackTuple (PyObject *args, char *name, int min, int max,)...

A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declMETHS/ARARG$ function

or method tables. The tuple containing the actual parameters should be passgg #&smust actually be

a tuple. The length of the tuple must be at leash and no more thamax min and maxmay be equal.
Additional arguments must be passed to the function, each of which should be a pointBy@bgect*

variable; these will be filled in with the values fromngs they will contain borrowed references. The variables
which correspond to optional parameters not giveraigs will not be filled in; these should be initialized by

the caller. This function returns true on success and falsg#is not a tuple or contains the wrong number of
elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources farvileakref helper module for
weak references:

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref', 1, 2, &object, &callback)) {

5.5. Parsing arguments and building values 23

result = PyWeakref NewRef(object, callback);

}
return result;
}
The call to PyArg _UnpackTuple() in this example is entirely equivalent to this call to

PyArg _ParseTuple()

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)
New in version 2.2.

PyObject* Py_Buildvalue (char *format, ..)
Return valueNew reference
Create a new value based on a format string similar to those accepted ByAhg _Parse*() family of
functions and a sequence of values. Returns the valddUdil in the case of an error; an exception will be
raised ifNULL is returned. For more information on the format string and additional parametesxiserling
and Embedding the Python Interpreter

24 Chapter 5. Utilities

CHAPTER
SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

6.1 Object Protocol

int PyObject _Print (PyObject*o, FILE *fp, int flagk
Print an objecb, on filefp. Returns-1 on error. The flags argument is used to enable certain printing options.
The only option currently supported®y_PRINT_RAWiIf given, thestr() of the object is written instead of
therepr()

int PyObject _HasAttrString (PyObject *o, char *attr namé
Returnsl if o has the attributattr_name and 0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttrString (PyObject *o, char *attr nam¢
Return valueNew reference
Retrieve an attribute nameditr_namefrom objecto. Returns the attribute value on succes$\\Ot Lon failure.
This is the equivalent of the Python expressiondttr_name.

int PyObject _HasAttr (PyObject*o, PyObject *attrname¢
Returnsl if o has the attributeattr_name and 0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttr (PyObject *o, PyObject *attrnameg
Return valueNew reference
Retrieve an attribute namexditr_namefrom objecto. Returns the attribute value on succes$\\Ot Lon failure.
This is the equivalent of the Python expressiondttr_nameé.

int PyObject _SetAttrString (PyObject *o, char *attr_.name, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V.

int PyObject _SetAttr (PyObject*o, PyObject *attrname, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V.

int PyObject _DelAttrString (PyObject *o, char *attr namé
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statement:del o. attr_name.

int PyObject _DelAttr (PyObject*o, PyObject *attrnamg
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python

25

statementdel o. attr_namé.

int PyObject _Cmyf PyObject *01, PyObject *02, int *resylt
Compare the values ofl ando2 using a routine provided byl, if one exists, otherwise with a routine provided
by 02. The result of the comparison is returnedé@sult Returns-1 on failure. This is the equivalent of the
Python statementésult = cmp(01, 02"

int PyObject _Compare(PyObject *0l1, PyObject *oR
Compare the values afl ando2 using a routine provided bgl, if one exists, otherwise with a routine pro-
vided byo2. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr _Occurred() to detect an error. This is equivalent to the Python expressiop(01, 02) .

PyObject* PyObject _Repr (PyObject *g
Return valueNew reference
Compute a string representation of objecReturns the string representation on sucdski,L on failure. This
is the equivalent of the Python expressioepr(o) '. Called by therepr() built-in function and by reverse
guotes.

PyObject* PyObject _Str (PyObject *9
Return valueNew reference
Compute a string representation of objecReturns the string representation on sucadki,Lon failure. This
is the equivalent of the Python expressistr(0) '. Called by thestr() built-in function and by therint
statement.

PyObject* PyObject _Unicode (PyObject*g
Return valueNew reference
Compute a Unicode string representation of obf@cReturns the Unicode string representation on success,
NULL on failure. This is the equivalent of the Python expressiamstr(0)’. Called by theunistr()
built-in function.

int PyObject _Isinstance (PyObiject *inst, PyObject *cls
Returnl if instis an instance of the clasts or a subclass dfls. If clsis a type object rather than a class object,
PyObject _lsInstance() returnsl if instis of typecls. If instis not a class instance awts is neither a
type object or class objedhst must have a__class __ attribute — the class relationship of the value of that
attribute withcls will be used to determine the result of this function. New in version 2.1.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions
to the class system may want to be aware ofA HndB are class object8 is a subclass oA if it inherits from A

either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class
relationship of the two objects. When testindifs a subclass oA, if Ais B, PyObject _IsSubclass() returns

true. If A andB are different objectsB’s __bases __ attribute is searched in a depth-first fashion for— the
presence of the_bases __ attribute is considered sufficient for this determination.

int PyObject _IsSubclass (PyObject *derived, PyObject *cJs
Returnsl if the classderivedis identical to or derived from the clasts, otherwise return®. In case of an
error, returns1 . If eitherderivedor clsis not an actual class object, this function uses the generic algorithm
described above. New in version 2.1.

int PyCallable _Check(PyObject*g
Determine if the objeco is callable. Returr if the object is callable an@ otherwise. This function always
succeeds.

PyObject* PyObject _CallObject (PyObject *callable object, PyObject *args
Return valueNNew reference
Call a callable Python objedallable_object with arguments given by the tupkegs. If no arguments are
needed, themmrgs may beNULL Returns the result of the call on successNafLL on failure. This is the
equivalent of the Python expressiapply(callable_object args ' or ‘ callable_objec(* args) '.

PyObject* PyObject _CallFunction (PyObject *callable, char *format,).
Return valueNew reference

26 Chapter 6. Abstract Objects Layer

Call a callable Python objecallable, with a variable number of C arguments. The C arguments are described
using aPy_BuildValue() style format string. The format may B¢ULL, indicating that no arguments are
provided. Returns the result of the call on success\QLL on failure. This is the equivalent of the Python
expressionapply(callable, args) ’or ‘callable(* args) .

PyObject* PyObject _CallMethod (PyObiject *o, char *method, char *format,)...
Return valueNew reference
Call the method nameih of objecto with a variable number of C arguments. The C arguments are described
by aPy_BuildValue() format string. The format may BeULL, indicating that no arguments are provided.
Returns the result of the call on successNaiLL on failure. This is the equivalent of the Python expression
‘0. method arg9) .

PyObject* PyObject _CallFunctionObjArgs (PyObject *callable, ...NULLD
Return valueNNew reference
Call a callable Python objectllable, with a variable number dPyObject* arguments. The arguments are
provided as a variable number of parameters followedNb). L. Returns the result of the call on success, or
NULLon failure. New in version 2.2.

PyObject* PyObject _CallMethodObjArgs (PyObject *o, PyObject *name, .NULL)
Return valueNew reference
Calls a method of the object where the name of the method is given as a Python string objeetnre It is
called with a variable number &fyObject* arguments. The arguments are provided as a variable number of
parameters followed bNULL Returns the result of the call on successNbiL on failure. New in version
2.2.

int PyObject _Hash(PyObject*q
Compute and return the hash value of an obgedDn failure, return1 . This is the equivalent of the Python
expressionhash(o) .

int PyObject _IsTrue (PyObject*qd
Returnsl if the objecto is considered to be true, afdotherwise. This is equivalent to the Python expression
‘not not 0. This function always succeeds.

PyObject* PyObject _Type (PyObject *g
Return valueNew reference
Wheno is nonNULL, returns a type object corresponding to the object type of olgedDn failure, raises
SystemError and returndNULL This is equivalent to the Python expressigpe(0) .

int PyObject _TypeCheck (PyObject *o, PyTypeObject *type
Return true if the objeab is of typetypeor a subtype ofype Both parameters must be ndiJLL New in
version 2.2,

int PyObject _Length (PyObject*g
Return the length of object If the objecto provides both sequence and mapping protocols, the sequence length
is returned. On errorl is returned. This is the equivalent to the Python expressemg ‘ 0) °.

PyObject* PyObject _Getltem (PyObject *o, PyObject *key
Return valueNew reference
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressiond[key .

int PyObject _Setltem (PyObject*o, PyObject *key, PyObject}v
Map the objeckeyto the valuevs. Returns1 on failure. This is the equivalent of the Python statemepkéy]

= V.

int PyObject _Delltem (PyObject*o, PyObject *key
Delete the mapping fdkeyfrom o. Returns-1 on failure. This is the equivalent of the Python statemdat *
of key .

int PyObject _AsFileDescriptor (PyObject *9

6.1. Object Protocol 27

Derives a file-descriptor from a Python object. If the object is an integer or long integer, its value is returned.
If not, the object'sfileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Retufin®n failure.

PyObject* PyObject _Dir (PyObject *9
Return valueNew reference
This is equivalent to the Python expressidlir(0) ', returning a (possibly empty) list of strings appropriate
for the object argument, MULLif there was an error. If the argumentN&JLL, this is like the Pythondir() ’,
returning the names of the current locals; in this case, if no execution frame is activdltthéns returned but

PyErr _Occurred() will return false.

PyObject* PyObject _Getlter (PyObject*g
This is equivalent to the Python expressidgar(o) ". It returns a new iterator for the object argument, or the
object itself if the object is already an iterator. Rai3gpeError and returndNULL if the object cannot be
iterated.

6.2 Number Protocol

int PyNumber_Check (PyObject *g
Returnsl if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add(PyObject *o1, PyObject *oP
Return value:New reference
Returns the result of addimml ando2, or NULL on failure. This is the equivalent of the Python expressain
+ 02.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *oR
Return valueNew reference
Returns the result of subtracting from 01, or NULLon failure. This is the equivalent of the Python expression
‘ol - o2.

PyObject* PyNumber_Multiply (PyObject *o1, PyObject *oR
Return valueNew reference
Returns the result of multiplyingl ando2, or NULL on failure. This is the equivalent of the Python expression
‘ol * oZ.

PyObject* PyNumber_Divide (PyObject*ol, PyObject *oR
Return valueNNew reference
Returns the result of dividing1 by 02, or NULL on failure. This is the equivalent of the Python expressain
/ oZ2.

PyObject* PyNumber_FloorDivide (PyObject *01, PyObject *opR
Return valueNew reference
Return the floor ob1 divided byo2, or NULL on failure. This is equivalent to the “classic” division of integers.
New in version 2.2,

PyObject* PyNumber_TrueDivide (PyObject *o1, PyObject *oR
Return valueNew reference
Return a reasonable approximation for the mathematical valed divided byo2, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.
New in version 2.2.

PyObject* PyNumber_Remainder (PyObject *0l1, PyObject *oR
Return valueNew reference
Returns the remainder of dividirgl by 02, or NULL on failure. This is the equivalent of the Python expression
‘0l % 02.

28 Chapter 6. Abstract Objects Layer

PyObject* PyNumber_Divmod (PyObject *o1, PyObject *oR
Return valueNew reference
See the built-in functiomlivmod() . ReturnNULL on failure. This is the equivalent of the Python expression
‘divmod(01, 02)’.

PyObject* PyNumber_Power (PyObject *01, PyObject *02, PyObject *»3
Return valueNew reference
See the built-in functiorpow() . ReturnsNULL on failure. This is the equivalent of the Python expression
‘pow(0l, 02, 03)’, whereo3is optional. Ifo3is to be ignored, pafdy_None in its place (passinglULL
for o3would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *9
Return valueNew reference
Returns the negation afon success, ddULL on failure. This is the equivalent of the Python expressia.’

PyObject* PyNumber_Positive (PyObject *9
Return valueNew reference
Returnso on success, ddULLon failure. This is the equivalent of the Python expressia.*

PyObject* PyNumber_Absolute (PyObject *9
Return valueNew reference
Returns the absolute value@for NULL on failure. This is the equivalent of the Python expressais(o) .

PyObject* PyNumber_Invert (PyObject*g
Return valueNew reference
Returns the bitwise negation obn success, ddULLon failure. This is the equivalent of the Python expression

0.

PyObject* PyNumber_Lshift (PyObject *o1, PyObject *oR
Return valueNew reference
Returns the result of left shiftingl by 02 on success, dlULL on failure. This is the equivalent of the Python
expressionol << 02.

PyObject* PyNumber_Rshift (PyObject *o1, PyObject *op
Return valueNNew reference
Returns the result of right shiftingll by 02 on success, ddULLon failure. This is the equivalent of the Python
expressionol >> 02.

PyObject* PyNumber_And(PyObject *o1, PyObject *oP
Return valueNNew reference
Returns the “bitwise and” 062 ando2 on success andULL on failure. This is the equivalent of the Python
expressionol & oZ2.

PyObject* PyNumber_Xor (PyObject *01, PyObject *oR
Return valueNew reference
Returns the “bitwise exclusive or” afl by 02 on success, oNULL on failure. This is the equivalent of the
Python expressiorol ~ o02.

PyObject* PyNumber_Or(PyObject *o1, PyObject *oR
Return valueNew reference
Returns the “bitwise or” obl and o2 on success, oNULL on failure. This is the equivalent of the Python
expressionol | oZ2.

PyObject* PyNumber_InPlaceAdd (PyObiject *o1, PyObject *oR
Return valueNew reference
Returns the result of addirgl ando2, or NULLon failure. The operation is dore-placewhenol supports it.
This is the equivalent of the Python statemertt ‘+= 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *o1, PyObject *op
Return valueNew reference

6.2. Number Protocol 29

Returns the result of subtractim@® from o1, or NULL on failure. The operation is doria-place whenol
supports it. This is the equivalent of the Python statemght-= 02

PyObject* PyNumber_InPlaceMultiply (PyObject *01, PyObject *oR
Return valueNew reference
Returns the result of multiplyinglando2, or NULLon failure. The operation is doi@-placewhenol supports
it. This is the equivalent of the Python statemerit *= 02.

PyObject* PyNumber_InPlaceDivide (PyObject *ol, PyObject *oR
Return valueNew reference
Returns the result of dividingl by 02, or NULL on failure. The operation is dome-placewhenol supports it.
This is the equivalent of the Python statemertt /= 02.

PyObject* PyNumber _InPlaceFloorDivide (PyObject *o1, PyObject *opR
Return valueNew reference
Returns the mathematical of dividirad by 02, or NULL on failure. The operation is dorie-placewhenol
supports it. This is the equivalent of the Python statemght//= 02. New in version 2.2.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *o1, PyObject *op
Return valueNew reference
Return a reasonable approximation for the mathematical valed divided byo2, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.
The operation is donie-placewhenol supports it. New in version 2.2.

PyObject* PyNumber_InPlaceRemainder (PyObject *o1, PyObject *oR
Return valueNNew reference
Returns the remainder of dividingl by 02, or NULL on failure. The operation is doria-place when ol
supports it. This is the equivalent of the Python statemeht%= 02

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *»3
Return valueNew reference
See the built-in functiopow() . ReturnsNULL on failure. The operation is dorie-placewhenol supports
it. This is the equivalent of the Python statemestt “**= 02 when 03 isPy_None, or an in-place variant
of ‘pow(01, 02, 03)’ otherwise. Ifo3is to be ignored, paf8y_None in its place (passinglULL for 03
would cause an illegal memory access).

PyObject* PyNumber _InPlaceLshift (PyObject *o1, PyObject *op
Return valueNew reference
Returns the result of left shiftingl by 02 on success, diULL on failure. The operation is dome-placewhen
olsupports it. This is the equivalent of the Python statemeht<<= 02.

PyObject* PyNumber _InPlaceRshift (PyObiject *o1, PyObject *oR
Return valueNew reference
Returns the result of right shiftingll by 02 on success, ddULLon failure. The operation is domme-placewhen
ol supports it. This is the equivalent of the Python statemght>>= 02.

PyObject* PyNumber_InPlaceAnd (PyObiject *o01, PyObject *oR
Return valueNew reference
Returns the “bitwise and” a1 ando2 on success andULL on failure. The operation is done-placewhen
ol supports it. This is the equivalent of the Python statemght&= 02.

PyObject* PyNumber_InPlaceXor (PyObject *o01, PyObject *oR
Return valueNNew reference
Returns the “bitwise exclusive or” afl by 02 on success, dlULL on failure. The operation is dorne-place
whenolsupports it. This is the equivalent of the Python statemeht™= 02.

PyObject* PyNumber_InPlaceOr (PyObject *0l1, PyObject *oR
Return valueNew reference
Returns the “bitwise or” 0b1 ando2 on success, dlULL on failure. The operation is done-placewhenol

30 Chapter 6. Abstract Objects Layer

supports it. This is the equivalent of the Python statemght|= o02.

int PyNumber_Coerce (PyObject **p1, PyObject **p2
This function takes the addresses of two variables of Byp®bject* . If the objects pointed to bypl and
* p2 have the same type, increment their reference count and @t{success). If the objects can be converted
to a common numeric type, replatigl and*p2 by their converted value (with 'new’ reference counts), and
return0. If no conversion is possible, or if some other error occurs, retlr(failure) and don’t increment the
reference counts. The cé#llyNumber_Coerce(&0l1, &02) is equivalent to the Python statemeol,’ 02
= coerce(01, 02"

PyObject* PyNumber_Int (PyObject *9
Return valueNew reference
Returns the converted to an integer object on succes$\Ot L on failure. This is the equivalent of the Python
expressioniht(o).

PyObject* PyNumber_Long (PyObject *g
Return valueNew reference
Returns theo converted to a long integer object on succes\OLL on failure. This is the equivalent of the
Python expressioriong(o) .

PyObject* PyNumber_Float (PyObject *9
Return valueNNew reference
Returns theo converted to a float object on successNLL on failure. This is the equivalent of the Python

expressionfloat(o).

6.3 Sequence Protocol

int PySequence _Check (PyObject *g
Returnl if the object provides sequence protocol, &atherwise. This function always succeeds.

int PySequence _Size (PyObject *g
Returns the number of objects in sequenaen success, and on failure. For objects that do not provide
sequence protocol, this is equivalent to the Python expredsing ‘o) .

int PySequence _Length (PyObject *g
Alternate name foPySequence _Size()

PyObject* PySequence _Concat (PyObject *01, PyObject *op
Return valueNew reference
Return the concatenation ofl ando2 on success, andULL on failure. This is the equivalent of the Python
expressionol + oZ2.

PyObject* PySequence _Repeat (PyObject *o, int count
Return valueNew reference
Return the result of repeating sequence objecbunttimes, orNULL on failure. This is the equivalent of the
Python expressioro' * count.

PyObject* PySequence _InPlaceConcat (PyObject *o1, PyObject *op
Return valueNNew reference
Return the concatenation ofl ando2 on success, andULL on failure. The operation is done-placewhen
ol supports it. This is the equivalent of the Python expressidn+= 02

PyObject* PySequence _InPlaceRepeat (PyObject *o, int count
Return valueNew reference
Return the result of repeating sequence objamtunttimes, orNULLon failure. The operation is dorie-place
wheno supports it. This is the equivalent of the Python expressiofi= count.

6.3. Sequence Protocol 31

PyObject* PySequence _Getltem (PyObject *o, int)
Return valueNew reference
Return thdth element ob, or NULL on failure. This is the equivalent of the Python expressapn]'’.

PyObject* PySequence _GetSlice (PyObject*o, intil, intid
Return valueNew reference
Return the slice of sequence objedietweeril andi2, or NULLon failure. This is the equivalent of the Python
expressiond[il: i2] .

int PySequence _Setltem (PyObject *o, inti, PyObject *v
Assign objectv to theith element ofo. Returns-1 on failure. This is the equivalent of the Python statement
‘o[i] = V.

int PySequence _Delltem (PyObject *o, int)
Delete thdth element of objecd. Returns-1 on failure. This is the equivalent of the Python statemdat *
ofi]".

int PySequence _SetSlice (PyObject*o, intil, inti2, PyObject *
Assign the sequence objecto the slice in sequence objexfromil toi2. This is the equivalent of the Python

statemento[il: i2] = V.

int PySequence _DelSlice (PyObject*o,intil, intiJ
Delete the slice in sequence objedrom il toi2. Returns-1 on failure. This is the equivalent of the Python
statementdel of il:i2] .

PyObject* PySequence _Tuple (PyObject*q
Return valueNew reference
Returns theo as a tuple on success, aMULL on failure. This is equivalent to the Python expression
‘tuple(o).

int PySequence _Count (PyObject *o, PyObject *value
Return the number of occurrencesvaluein o, that is, return the number of keys for whiohkey] == value
On failure, returnl . This is equivalent to the Python expressiorcount(valug '.

int PySequence _Contains (PyObject *o, PyObject *value
Determine ifo containsvalue If an item ino is equal tovalug returnl, otherwise retur®. On error, return
-1 . This is equivalent to the Python expressigalte in 0.

int PySequence _Index (PyObject *o, PyObject *value
Return the first index for which o[i] == value On error, returnl . This is equivalent to the Python
expressiono.index(valug .

PyObject* PySequence _List (PyObject *g
Return valueNew reference
Return a list object with the same contents as the arbitrary seqoefibe returned list is guaranteed to be new.

PyObject* PySequence _Tuple (PyObject*q
Return valueNew reference
Return a tuple object with the same contents as the arbitrary seqoeliaeis a tuple, a new reference will be
returned, otherwise a tuple will be constructed with the appropriate contents.

PyObject* PySequence _Fast (PyObject *o, const char *mn
Return valueNew reference
Returns the sequenceas a tuple, unless it is already a tuple or list, in which aagereturned. UséySe-
quence _Fast _GET_ITEM() to access the members of the result. RetiNbié L on failure. If the object is
not a sequence, raisgégpeError with mas the message text.

PyObject* PySequence _Fast _GET_ITEM(PyObiject *o, int)
Return valueBorrowed reference
Return thdth element ob, assuming thab was returned byySequence _Fast() , ois notNULL, and that
i is within bounds.

32 Chapter 6. Abstract Objects Layer

int PySequence _Fast _GET_SIZE (PyObject *g
Returns the length af, assuming thad was returned byPySequence _Fast() and thaibis notNULL The
size can also be gotten by calliySequence _Size() ono, butPySequence _Fast _GET_SIZE() is
faster because it can assumis a list or tuple.

6.4 Mapping Protocol

int PyMapping _Check (PyObject *g
Returnl if the object provides mapping protocol, aBatherwise. This function always succeeds.

int PyMapping _Length (PyObject *9
Returns the number of keys in objexbn success, and on failure. For objects that do not provide mapping
protocol, this is equivalent to the Python expressien(o) .

int PyMapping _DelltemString (PyObject *o, char *key
Remove the mapping for objekeyfrom the objectb. Return-1 on failure. This is equivalent to the Python
statementdel of key] .

int PyMapping _Delltem (PyObject *o, PyObject *key
Remove the mapping for objekeyfrom the objectb. Return-1 on failure. This is equivalent to the Python
statementdel of key] .

int PyMapping _HasKeyString (PyObject *o, char *key
On success, returh if the mapping object has the ké&gyandO otherwise. This is equivalent to the Python
expressiond.has _key(key) . This function always succeeds.

int PyMapping _HasKey(PyObject *o, PyObject *key
Returnl if the mapping object has the kdégeyand0 otherwise. This is equivalent to the Python expression
‘o.has _key(key) . This function always succeeds.

PyObject* PyMapping _Keys (PyObject *9
Return valueNew reference
On success, return a list of the keys in objectOn failure, returnNULL This is equivalent to the Python
expressiono.keys() ’

PyObject* PyMapping _Values (PyObject *g
Return valueNew reference
On success, return a list of the values in objectOn failure, returnrNULL This is equivalent to the Python
expressiono.values() '

PyObject* PyMapping _Items (PyObject *9
Return valueNew reference
On success, return a list of the items in objectvhere each item is a tuple containing a key-value pair. On
failure, returnNULL This is equivalent to the Python expressioritems() .

PyObject* PyMapping _GetltemString (PyObject *o, char *key
Return valueNew reference
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressiond[key .

int PyMapping _SetltemString (PyObject *o, char *key, PyObiject jv
Map the objectkeyto the valuev in objecto. Returns-1 on failure. This is the equivalent of the Python

statementd[key] = V.

6.4. Mapping Protocol 33

6.5 Iterator Protocol

New in version 2.2.
There are only a couple of functions specifically for working with iterators.

int Pylter _Check(PyObject *g
Return true if the objeab supports the iterator protocol.

PyObject* Pylter _Next (PyObject *g
Return valueNew reference
Return the next value from the iteratian If the object is an iterator, this retrieves the next value from the
iteration, and returnslULL with no exception set if there are no remaining items. If the object is not an iterator,
TypeError s raised, or if there is an error in retrieving the item, retldii_ L and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_Getlter(obj);
PyObiject *item;

if (iterator == NULL) {
/* propagate error */

}

while (item = Pylter_Next(iterator)) {
/* do something with item */

/* release reference when done */
Py_DECREF(item);
}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

6.6 Buffer Protocol

int PyObject _AsCharBuffer (PyObject *obj, const char **buffer, int *buffeden)
Returns a pointer to a read-only memory location useable as character- based inpabj atgement must
support the single-segment character buffer interface. On success, ftaatsbufferto the memory location
andbuffer_lento the buffer length. Returnd and sets &ypeError on error. New in version 1.6.

int PyObject _AsReadBuffer (PyObject *obj, const char **buffer, int *buffeden)
Returns a pointer to a read-only memory location containing arbitrary data.ofjrergument must support
the single-segment readable buffer interface. On success, ré&usetsbuffer to the memory location and
buffer_lento the buffer length. Returnd and sets &ypeError on error. New in version 1.6.

int PyObject _CheckReadBuffer (PyObject*q
Returnsl if o supports the single-segment readable buffer interface. Otherwise rétuidew in version 2.2.

int PyObject _AsWriteBuffer (PyObject *obj, const char **buffer, int *buffeden)
Returns a pointer to a writeable memory location. ©hgargument must support the single-segment, character

34 Chapter 6. Abstract Objects Layer

buffer interface. On success, retufhssetsbufferto the memory location anbuffer_len to the buffer length.
Returns1 and sets &ypeError on error. New in version 1.6.

6.6. Buffer Protocol 35

36

CHAPTER
SEVEN

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; for example, to check that an object is a dictionafpylbset _Check() . The

chapter is structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed in,
many of them do not check flNULL being passed instead of a valid object. AllowgLLto be passed in can cause
memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton dijeet.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType _Type
This is the type object for type objects; it is the same objetypess. TypeType in the Python layer.

int PyType _Check (PyObject *9
Returns true is the objectis a type object.

int PyType _HasFeature (PyObject *o, int featurg
Returns true if the type objectsets the featurieature Type features are denoted by single bit flags.

int PyType _IsSubtype (PyTypeObject *a, PyTypeObject)b
Returns true ifnis a subtype ob. New in version 2.2.

PyObject* PyType _GenericAlloc (PyTypeObiject *type, int nites
Return valueNew reference
New in version 2.2.

PyObject* PyType _GenericNew (PyTypeObject *type, PyObject *args, PyObject *kjvds
Return valueNew reference
New in version 2.2.

int PyType _Ready(PyTypeObject *type
New in version 2.2,

37

7.1.2 The None Object

Note that thePyTypeObject for None is not directly exposed in the Python/C API. Sindene is a singleton,
testing for object identity (using=="in C) is sufficient. There is nd®yNone_Check() function for the same
reason.

PyObject* Py_None
The PythorNone object, denoting lack of value. This object has ho methods. It needs to be treated just like any
other object with respect to reference counts.

7.2 Numeric Objects

7.2.1 Plain Integer Objects

PyIntObject
This subtype oPyObject represents a Python integer object.

PyTypeObject Pyint _Type
This instance ofPyTypeObject represents the Python plain integer type. This is the same object as
types.IntType

int PyIint _Check (PyObject* 9
Returns true i is of typePyInt _Type or a subtype oPyInt _Type. Changed in version 2.2: Allowed
subtypes to be accepted.

int Pylnt _CheckExact (PyObject* 9
Returns true ib is of typePyInt _Type, but not a subtype dPyint _Type. New in version 2.2.

PyObject* PyiInt _FromLong (long ival)
Return valueNew reference
Creates a new integer object with a valuewval.

The current implementation keeps an array of integer objects for all integers betivessrd 100, when you

create an int in that range you actually just get back a reference to the existing object. So it should be possible
to change the value df. | suspect the behaviour of Python in this case is undefined. :-)

long Pyint _AsLong (PyObject *ig
Will first attempt to cast the object toRyIntObject , if it is not already one, and then return its value.

long PyInt _AS_LONG PyObject *ig
Returns the value of the objeict No error checking is performed.

long Pyint _GetMax()
Returns the system’s idea of the largest integer it can hah@IBlG MAX as defined in the system header files).

7.2.2 Long Integer Objects

PyLongObject
This subtype oPyObject represents a Python long integer object.

PyTypeObject PyLong _Type
This instance ofPyTypeObject represents the Python long integer type. This is the same object as
types.LongType

int PyLong _Check (PyObject *p
Returns true if its argument isRyLongObject or a subtype oPyLongObject . Changed in version 2.2:
Allowed subtypes to be accepted.

38 Chapter 7. Concrete Objects Layer

int PyLong _CheckExact (PyObject*p
Returns true if its argument isRyLongObject , but not a subtype d?yLongObject . New in version 2.2.

PyObject* PyLong _FromLong (long V)
Return valueNew reference
Returns a neWwPyLongObject object fromv, or NULL on failure.

PyObject* PyLong _FromUnsignedLong (unsigned long ¥
Return valueNew reference
Returns a neWwPyLongObject object from a Qunsigned long , or NULLon failure.

PyObject* PyLong _FromLongLong (long long V)
Return valueNNew reference
Returns a newPyLongObject object from a dong long , orNULLon failure.

PyObject* PyLong _FromUnsignedLongLong (unsigned long long)v
Return valueNNew reference
Returns a neWwPyLongObject object from a Qunsigned long long , or NULL on failure.

PyObject* PyLong _FromDouble (double y
Return valueNNew reference
Returns a neWwPyLongObject object from the integer part of or NULL on failure.

PyObject* PyLong _FromString (char *str, char **pend, int basge
Return valueNew reference
Return a newPyLongObject based on the string value gtr, which is interpreted according to the radix in
base If pendis nonNULL, * pendwill point to the first character istr which follows the representation of the
number. Ifbaseis 0, the radix will be determined base on the leading charactess:af str starts with’Ox’
or’'0X’ , radix 16 will be used; ifstr starts with’0’ , radix 8 will be used; otherwise radix 10 will be used.
If baseis not0, it must be betweef and36, inclusive. Leading spaces are ignored. If there are no digits,
ValueError will be raised.

PyObject* PyLong _FromUnicode (Py_UNICODE *u, intlength, int bage
Return valueNew reference
Convert a sequence of Unicode digits to a Python long integer value. The first parampt@nts to the first
character of the Unicode stringngthgives the number of characters, drakeis the radix for the conversion.
The radix must be in the range [2, 36]; if it is out of rany@JueError will be raised. New in version 1.6.

PyObject* PyLong _FromVoidPtr (void *p)
Return valueNNew reference
Create a Python integer or long integer from the poiptérhe pointer value can be retrieved from the resulting
value usingPyLong _AsVoidPtr() . New in version 1.5.2.

long PyLong _AsLong (PyObject *pylong
Returns a Qong representation of the contentsflong If pylongis greater tha ONG.MAX an Over-
flowError is raised.

unsigned long PyLong _AsUnsignedLong (PyObject *pylong
Returns a Qunsigned long representation of the contentspflong If pylongis greater thatULONGMAX
anOverflowError is raised.

long long PyLong _AsLonglLong (PyObject *pylong
Return a Clong long from a Python long integer. Ibylongcannot be represented asoag long , an
OverflowError will be raised. New in version 2.2.

unsigned long long PyLong _AsUnsignedLonglLong (PyObject *pylong
Return a Qunsigned long long from a Python long integer. [fylongcannot be represented aswam
signed long long , anOverflowError will be raised if the value is positive, orgypeError will be
raised if the value is negative. New in version 2.2.

double PyLong _AsDouble (PyObject *pylong

7.2. Numeric Objects 39

Returns a Glouble representation of the contentsmflong If pylongcannot be approximately represented
as adouble , anOverflowError exception is raised and.0 will be returned.

void* PyLong _AsVoidPtr (PyObiject *pylong
Convert a Python integer or long integafdongto a Cvoid pointer. Ifpylongcannot be converted, @wer-
flowError will be raised. This is only assured to produce a usabie pointer for values created with
PyLong _FromVoidPtr() . New in version 1.5.2.

7.2.3 Floating Point Objects

PyFloatObject
This subtype oPyObject represents a Python floating point object.

PyTypeObject PyFloat _Type
This instance ofPyTypeObject represents the Python floating point type. This is the same object as
types.FloatType

int PyFloat _Check (PyObject *p
Returns true if its argument isRyFloatObject or a subtype oPyFloatObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyFloat _CheckExact (PyObject*p
Returns true if its argument isRyFloatObject , but not a subtype dPyFloatObject . New in version
2.2.

PyObject* PyFloat _FromDouble (doubley
Return valueNNew reference
Creates @#yFloatObject object fromv, or NULL on failure.

double PyFloat _AsDouble (PyObject *pyfloat
Returns a Qlouble representation of the contentsmffloat

double PyFloat _AS_DOUBLIEPyObject *pyfloa}
Returns a @ouble representation of the contentsmffloat but without error checking.

7.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as resblgsvdtusmther
than dereferencing them through pointers. This is consistent throughout the API.

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;
} Py_complex;

40 Chapter 7. Concrete Objects Layer

Py_complex _Py_c_sum(Py_complex left, Pycomplex righ}
Return the sum of two complex numbers, using theyC complex representation.

Py_complex _Py_c_diff (Py_complex left, Pycomplex righ}
Return the difference between two complex numbers, using thg_ Complex representation.

Py_complex _Py_c_neg(Py_complex complgx
Return the negation of the complex numbemplexusing the (Py_complex representation.

Py_complex _Py_c_prod (Py_complex left, Pycomplex righ}
Return the product of two complex numbers, using theyCcomplex representation.

Py_complex _Py_c_quot (Py_complex dividend, Pycomplex divisor
Return the quotient of two complex numbers, using tHeyCcomplex representation.

Py_complex _Py_c_pow(Py_complex num, Pycomplex exp
Return the exponentiation alimby exp using the CPy_complex representation.

Complex Numbers as Python Objects

PyComplexObiject
This subtype oPyObject represents a Python complex number object.

PyTypeObject PyComplex _Type
This instance oPyTypeObject represents the Python complex number type.

int PyComplex _Check (PyObject *p
Returns true if its argument isRyComplexObject or a subtype oPyComplexObject . Changed in
version 2.2: Allowed subtypes to be accepted.

int PyComplex _CheckExact (PyObject*p
Returns true if its argument isRyComplexObject , but not a subtype dPyComplexObject . New in
version 2.2,

PyObject* PyComplex _FromCComplex (Py_complex ¥
Return valueNew reference
Create a new Python complex number object fromRyCcomplex value.

PyObject* PyComplex _FromDoubles (double real, double imgg
Return valueNew reference
Returns a neWlPyComplexObject object fromreal andimag

double PyComplex _RealAsDouble (PyObject *op
Returns the real part @jp as a Cdouble .

double PyComplex _ImagAsDouble (PyObject *op
Returns the imaginary part op as a Cdouble .

Py_complex PyComplex _AsCComplex (PyObject *op
Returns thPy_complex value of the c