
Gcc Compile Server

Per Bothner
Apple Computer

pbothner@apple.com

The way thegcc user-level program invokes
other programs (such ascc1 , as , andld) to
compile programs has changed little over the
years. Except for the recent integration of the
C pre-processorcpp with the compiler proper
cc1 , it works very much like the original Bell
Labs K+R C compiler: Thegcc driver runs
a freshcc1 /cc1plus /... executable for each
source C/C++/... program that needs to be
compiled, reading a single input source file,
and writing a single assembler output file.

This model has (at least) two big disadvan-
tages:

• Compiling or re-compiling many files is
slow. Most obviously there is the the over-
head of repeatedly creating a fresh exe-
cutable. Even more significant is that each
included header file has to be re-read from
scratch for each main file. This is a big
problem especially for C++, and has lead
to work-arounds like pre-compiled header
files.

• When compiling a source file the com-
piler has no knowledge of what is in other
source files. This limits the opportunities
for “cross-module” (or “whole-program”)
optimization, such as inter-module inlin-
ing.

The compile server project improves on these
problems as follows:

• The can be more than one input files to
a compilation, and they are compiled to-
gether to a single output file. It can create
tree representation for all the input files,
and delay code generation and optimiza-
tions such as inlining until it has read all
the input files.

• The compiler can be invoked inserver
mode, in which case it enters a loop, wait-
ing for compilation requests. Each re-
quest specifies the name of one or more
input files to compile, and the name of
a requested output assembler file. When
the compiler is done with one file, it does
some cleaning up, and then waits for the
next compilation request.

We will primarily discuss the latter server
mode, but multiple-file-compilation is relevant
to this discussion because both mechanisms re-
quire changing the logic and control flow in the
compiler proper.

The compile server compiles multiple source
files, without any extrafork ing or exec ing.
This provides some speedup, and so does hav-
ing to only once initialize tables and built-in
declarations. However, the substantial speed-
up comes from processing each header file only
once. The current work concentrates on front-
ends that make use ofcpplib , i.e. the C fam-
ily of languages. The goal is to achieve per-
formance comparable or better than with pre-
compiled headers, but without having to create
or manage PCHs. You are also a lot more flex-

22 • GCC Developers Summit

ible in terms of order of reading header files.
Specifically, the goal is to avoid re-parsing the
same header files many time, by re-using the
tree nodes over multiple compilations. Similar
ideas can benefit other languages (such as Java)
that import declarations from external modules
(or classes).

This paper describes highly experimental
work-in-progress. The current prototype han-
dles C tolerably well, and handles some non-
trivial C++ packages.

The compile server (as currently implemented)
uses the same working directory and command
line flags (such as-I and-D) for all compila-
tion requests.

1 Invoking the compiler

The gcc user-level driver takes a command
line with some number of flags, one or more
input file names, and optionally an output file
name. It uses a fairly complex set of rules to
select which other applications it needs to run.
One of these is the compiler “proper”, which
for C is thecc1 program. The driver executes
cc1 once for each C input file name, creating
an assembler file each time. The driver may
then invoke the assembler once for each assem-
bly file, creating relocatable binary files, which
may then be linked together forming an exe-
cutable or a shared library.

One part of this project is to change thegcc
driver so that when it is asked to compile multi-
ple C source files it just callcc1 once, passing
all the input files names tocc1 . The latter also
had to be changed so it could handle multiple
input file names, compile them all, and create
a single output file. This potentially speeds up
compilation time, but more importantly it en-
ables cross-module optimizations such as inter-
module inlining.

Handling multiple input files is valuable, but
doesn’t help much with interactive develop-
ment, where there are typically many frequent
debug-edit-compile cycles. It would speed
things up if the compiler could remember state
from previous compiles between compilations.
Another issue concerns existingMakefile
scripts, which often use a separategcc com-
mand for each source files. Therefore we need
an actualserver, which sits around in the back-
ground waiting for compilation requests. We
want to use the existinggcc command-line in-
terface so we don’t have to re-write existing
Makefile s, except that an environment vari-
able or a single flag will request thatgcc use a
compile server. Then you can just do:

make CC=’gcc --server’

2 Server protocol

The server uses Unix domain sockets to com-
municate with its clients. Using TCP/IP would
be more general, and would be needed for a
project where compilations are distributed to
different machines. However, there are a num-
ber of existing projects and products that do
distributed builds, and that is not the focus or
goal of this project, so far. (Distributed com-
pilation based on the compile server code may
be an interesting future project.)

Unix domain sockets are more efficient that
TCP/IP sockets, and are a good match for a
non-distributed compile server. Domain sock-
ets are bound to file names in the local file
system. Each compilation uses the current
working directory to resolve file names, so it
makes sense for the server to bind itself to a
socket in the current directory. (A future ver-
sion might be able to change working directo-
ries for different compilations.) For thecc1
compiler, the server listens on a socket bound
to ./.cc1-server .

GCC Developers Summit 2003 • 23

The server is started by adding-fserver to
thecc1 /cc1plus /... command line. All op-
tions are otherwise as normal, except you leave
out the names of the input and output files. The
server does alisten , and enters a loop us-
ing accept to wait for connections. For each
connection, it enters another loop, waiting for
server commands. Each command is a single
line, starting with acommand letter. Follow-
ing the command is a sequence of zero or more
quoted string arguments. The quote character
can be any byte: using a single quote"’" is
human readable, but thegcc driver uses nul
bytes’\000’ since they cannot appear in ar-
guments. Following the arguments is a newline
character that terminates the command.

The following server commands are or will be
supported:

F (“flags”) Set or reset the command-line
flags. (This is not implemented at the time
of writing.) It is followed by zero or more
nul-terminated flag values, terminated by
a newline. Do not use this to set input or
output file names. For example:

F\0-I/usr/include\0\0-DDEBUG=1\0\0-O2\0\n

T (“timeout”) Followed by an integer in mil-
liseconds. Sets the time-out duration. If
no requests come in during that time, the
server exits. If the timeout is 0, the server
exits immediately.

I (“invalidate”) Followed by a list of nul-
terminated filenames. Any cached data
for the named files are invalidated. Can be
used by an IDE when an include file has
been edited. (The server can alsostat
the files, but it may be more efficient to
avoid that.)

S (“source”) Followed by a file name argu-
ment, which is the name of an input

source file to compile. There can by mul-
tiple S commands in a row, in which case
all of the input files are compiled, produc-
ing a single output file.

O (“output”) Followed by a file name argu-
ment, which is the name of the output as-
sembler file. The file names from previous
S commands (since the lastO command)
are all compiled to produce the named
output assembler file.

The server currently writes out diagnostics to
its standard error, but it should instead send
them back to the client using the socket, so the
client can write out diagnostics on its standard
error.

The client is either thegcc command, or some
IDE. It could also be an enhancedmake. It
callssocket , and then attempts toconnect
to "./.gcc-server" . If there is no server
running, it starts up a server, and tries again.
(This part has not yet been implemented.)

If the gcc command is asked to compile mul-
tiple source files, it only opens a connection to
the server once, and only sends a singleF com-
mand. If a-o option is specified (and-E is
not specified) then (as an optimization) we can
havegcc do a multi-file compile, specifying a
singleOoutput file but multipleS input files.

3 Initialization

Initializing the compiler is relatively straight-
forward when compiling a single file. But a
server needs three levels of initialization:

1. Initialization that only needs to be done
once. For example creating the builtin
type nodes, and declaring__builtin
functions.

24 • GCC Developers Summit

2. Initialization that needs to be done for
each compilation request (i.e. for each
output file). For example opening the as-
sembler output file, and initializing vari-
ous data structures used by the compiler
back-end.

3. Initialization that needs to be done for
each input file. For example making
available any macros defined with-D
command-line flags - even if a previous
source file#undef ’d it. Also clearing out
any top-level declarations left over from
previous source files.

The historical code base has a number of as-
sumptions and dependencies that are no longer
appropriate with the compile server. We
interface between the language-independent
toplev.c and the language front-ends uses
callback functions that needed some changing:
The call-backs and functions that do one-time-
only initialization use the wordinitially ,
while the init is used for initialization
that is done once per compilation request.
For example the modified filec-common.c
contains bothc_common_initially and
c_common_init .

In general, we want to do as much as possible
in initially functions rather thaninit
functions. The obvious reason is to avoid re-
doing work needlessly, but there is a more im-
portant reason: The goal of the compile server
is to save and re-use trees across compilations.
These will make use of various builtin trees,
such asinteger_type_node . If these
builtins get re-defined, then any trees that make
use of them will become invalid.

The CPP functions make use of a
cpp_reader structure that maintains
the state of the pre-processor. The global
parse_in is initialized to acpp_reader
instance allocated atinitially -time. This

is important, because thecpp_reader
maintains a lot of state, including a cache of
header file contents, that we want to preserve
across compilations. In fact, a simple compile
server that only preserves the contents of
header files is one option for a less ambitious
compile server.

4 Caching text vs tokens vs trees

The fundamental design question for a compile
server is what state to save between compila-
tions. Three options come to mind:

• Preserving header file text is easy to im-
plement, especially ascpplib already
has a cache that does this. We just need to
tweak things a little bit. This is especially
useful if the OS is slow in handling file
lookup, doesn’t handle memory-mapped
files, or doesn’t do a good job buffering
files. Otherwise, the benefit should be mi-
nor. However, it is a modest change which
should be easy to implement.

• We can also preserve the raw token
streams in the header files, before macro-
expansion. This allows macros that
expand differently for different compi-
lations. However, we’d have to use
some new data structure for preserving
the tokens, and then feed them back to
cpplib . Any performance advantage
over preserving text is likely to be mod-
est, and unlikely to justify the rather rad-
ical changes tocpplib that would seem
to be required.

• Preserving the post-macro-expansion to-
ken stream seems more promising. Sav-
ing and later replaying the token stream
coming out ofcpplib doesn’t appear to
be very difficult, and would save the time
used for re-reading and re-lexing header

GCC Developers Summit 2003 • 25

files, though it would not save the time
spent on parsing and semantic analysis.
On the other hand consistency checks and
dealing with some of the ugly parts of the
languages and the compiler are simpler.

• The best performance gain comes from
saving and re-using the tree nodes af-
ter parsing and name lookup. This as-
sumes that (normally) a header file con-
sists mainly of declarations (including
macro definitions), and the “meaning” of
these declarations does not change across
compilations. That “meaning” may de-
pend on declarations in other header files,
but the “meaning” of those declarations is
also constant. (The C++ language specifi-
cation enshrines something similar in the
one-definition rule.)

Thus if we parse a declaration in a header
file, the result normally is a decl node or
a macro. Re-parsing the same header file
will result in an equivalent decl node or
macro. So instead of re-parsing and cre-
ating new nodes, we can just skip parsing
and re-use the old one.

A difficultly in re-using trees is determin-
ing when it is actually safe and correct to
do so, and when we have to re-parse the
header file. Another complication is that
the compiler modifies and merges trees
after-the-fact in various ways. We will
discuss these issues below.

The current prototype takes this approach.

5 Granularity of re-parsing

We say that a header file or portion of one
is parsed when actual characters are lexed,
parsed, and semantic actions performed. A file
or portion of one isre-parsedwhen the same
text is parsed a second or subsequent time, ei-
ther because the same file is included multiple

times without guards, or because we’re pro-
cessing a new main file. The goal of the com-
pile server is to minimize re-parsing text. In-
stead, we want tore-usea file or portion of
a file, which means we want to achieve the
semantic effects of parsing (typically creating
and adding declarations into the global scope),
without actually scanning or parsing the text.
We say that weprocessa file or a portion of
one to mean either parsing or re-using it.

We will later discuss how we can determine
when it is ok to re-use (a part of) a file, and
we have to re-parse it, but first let us consider
granularity of re-parsing: When we need to re-
parse, how much should we re-parse? The fol-
lowing approaches seem possible:

1. Re-read the entire header file. This is con-
ceptually simple, since deciding whether
to re-use or re-parse is decided when we
see an#include . This avoids any com-
plications about managing and seeking to
a position within a file. However, this is
not a major benefit, given thatcpplib al-
ready caches entire header files, and seek-
ing within a buffer is trivial. The prob-
lem with this approach is that handling
conditionals within a header file is diffi-
cult. We have to decide at the beginning
of the file whether any of it is invalid, and
whether any conditional compilation di-
rectives may “go the other way” compared
to when we originally parsed the file. This
is doable, but non-trivial. Also, this ap-
proach may be excessively conservative,
in that we have to invalidate too much.

2. Re-read a header file fragment between
any pre-processor directives. Each header
file is cached in a buffer. (This is not
new with the compile server.) When a
header file is re-used, we read from the
saved buffer. Pre-processor directives (in-
cluding conditionals) are handled in the

26 • GCC Developers Summit

normal way, by reading from the buffer.
However, if the fragment following a di-
rective (or the beginning of file) is valid,
we we just restore its declarations, and
skip ahead to the next directive (or end of
file). This approach has the big advantage
that we can use the existing code for eval-
uating and processing directives. It does
have the disadvantage that we have to re-
parse and re-evaluate directives, but sim-
plicity and consistency probably is more
valuable. There is also a simplification
because fragments (unlike header files)
don’t nest.

This is what is currently implemented.

3. Re-read a header file fragment between
conditional compilation directives. It is a
refinement of the previous option, except
that#define (and#undef) are treated
as part of a fragment, rather than delim-
iting fragments. A big advantage is that
we can re-use macro definitions, without
having to re-parse them.

I think this may be the best approach, but
I haven’t explored it yet.

4. Re-read just an individual declaration.
The problem with this is that we need to
maintain some amount of state with each
fragment, and the cost goes up if we make
the fragments too small: There are usu-
ally lots of declarations. The advantage of
smaller fragments is that there is less to
re-parse when a declaration becomes in-
valid, which reduces the chance of other
declarations becoming invalid. However,
we expect that this will not compensate
for the extra overheads, so we have not in-
vestigated this option.

Using fragments as the unit of re-parsing lets
us handle cases like this easily, where we can
re-useD1, even if we later find out we have to
re-parseD2:

#if M1
D1;
#endif
#if M2
D2
#endif

Header guards (as shown below to protected
against multiple inclusion) are no problem
when using fragments. The processing of
the #include and the header guard doesn’t
change when the compile server uses frag-
ments - the only difference is how it handles
the body of the header file.

#ifndef __H
#define __H
...
#endif

6 Entering and exiting fragments

The pre-processer uses callsbacks
enter_fragment and exit_fragment
to let the language-front-end know about the
start and end of fragments. These are bounds
to the functionscb_enter_fragment and
cb_exit_fragment in c-common.c .

The preprocessor maintains a cache of header
files, including their text. Each header file
also gets astruct cpp_fragment chain.
A new cpp_fragment is created whenever
cpplib starts processing a fragment and there
isn’t already acpp_fragment for that loca-
tion. This is done at the start of a header file,
and after each preprocessor directive. (We will
probably change the code so that#define
and#undef do not delimit fragments.) If the
language-specific callback returns non-NULL,
then the fragment has to be (re-)parsed nor-
mally. The preprocessor remember the re-
turned pointer, and it is passed back on subse-

GCC Developers Summit 2003 • 27

quententer_fragment calls for the same
cpp_fragment .

If cb_enter_fragment returns NULL, it
means the fragment can be re-used. The
preprocesor skips ahead to the end of the
fragment, ignoring anything skipped. The
cb_enter_fragment will have performed
any semantic actions for the fragment, such
restoring declarations into the top-level scope.

At the end of a fragment,cpplib calls
the exit_fragment callback, which per-
forms any language-specific actions needed if
this fragment is a candidate for future re-use.
Note thatexit_fragment is not called if
enter_fragment returned NULL.

7 Dependencies

Before we can re-use a saved fragment, we
need to determine if the declarations itde-
pends onhave changed, When a declaration is
parsed, identifiers appearing in it (such as pa-
rameter type names) are resolved using other
declarations, macros, and other dependencies.
So conceptually for each declaration we must
remember the set of other declarations and
“things” that it depends on. This is the former’s
depends-on-set. A pre-condition for re-using a
declaration when compiling a new file is that
any declarations it depends on also have been
re-used in the new compilation: A depended-
on declaration must have been processed, or
else it will not be defined, and it must not have
been re-parsed, in case that defined the decla-
rations to something new.

Consider a header fileh1.h containing:

#if M1
typedef int word;
#else
typedef long word;
#endif

/* Define flags,
which depends on word. */

extern word flags;

Assume the first time we#include h1.h ,
M1 is true, so word and flags are de-
fined. AssumeM1 is false the next time we
#include h1.h , so we get the other defi-
nition of word . Thus the saved definition of
flags , which depended on the old definition
of word , needs to be invalidated, and we have
to re-parse the fragment definingflags .

We can use a conservative approximation of
the depends-on set. For example, we can for
each header file remember the set of other
header files it uses, where a header file uses
some other header file if any declaration de-
fined in the former header file uses any dec-
laration in the latter header file. We can also
remember dependencies at the level of header
file fragments. This is the issue of the gran-
ularity of remembered dependencies (which
is related to but distinct from the granularity
of re-parsing). It actually has two parts: Is
a depends-on-set a set of declarations, frag-
ments, or files? How many depends-on-sets
do we maintain: One for each declaration, for
each fragment, or for each file?

Assuming the granularity of re-parsing is a
fragment, then there is no point in maintaining
a depends-on-set for each declaration. Instead
we maintain a depends-on-set for each frag-
ment, which is the union of the depends-on-
sets of the declarationsprovidedby the frag-
ment.

In the current implementation the elements of a
depends-on-set are fragments: I.e. a fragment
has a set of other fragments that provide decla-
rations it depends on. This is an optimization,
since there is no point in separately remember-
ing more than one declaration from the same
fragment (they will all be valid or all invalid).

28 • GCC Developers Summit

(However, there is a case for making the
depends-on-set elements be declarations rather
than fragments, because we then don’t have to
map from a declaration to the fragment that
provided it. The current implementation adds a
field to each declaration that points to the frag-
ment that declared it, and this is wasteful. (We
can also get the fragments by mapping back
from the declarations line number, but this is
slower, even if we change to using the line-map
structures.) However, we still need an efficient
way to determine if a declaration has been re-
used. We can do that by looking at the dec-
laration’s name, and verifying that the name’s
global binding is the declaration.)

7.1 Implementation details

For efficiency, a depends-on-set is represented
as a vector (currently aTREE_VEC, but it
could be a raw C array). This is more com-
pact than using a list, but has the complica-
tion that we don’t know how big an array to
allocate. To avoid excess re-allocation, we use
a global arraycurrent_fragment_deps_

stack (that we grow if needed) and a global
countercurrent_fragment_deps_end ,
This is used for the depends-on-set of the cur-
rent fragment. When we get to the end of the
fragment incb_exit_fragment , we allo-
cate the fragment’s depends-on-set (in the field
uses_fragments), whose size we now
know, filling it from current_fragment_

deps_stack , and then re-settingcurrent_

fragment_deps_end to 0.

We need to avoid adding the same
fragment multiple times to the current
depend-on-set. We do that by setting a
bit in the fragment when we save it in
current_fragment_deps_stack . If
the bit is set, we don’t need to add it. The
bit is cleared when incb_exit_fragment
we copy the stack into the fragment’s
uses_fragments field.

A global counterc_timestamp is incre-
mented on various occasions, and used as a
“clock” for various timestamps. Each fragment
has two timestamps:read_timestamp is
set when the fragment is (re-)parsed, while
include_timestamp is set whenever the
fragment is processed (parsed or re-used).
Both are set oncb_enter_fragment . We
also have a global main_timestamp
set whenever we starting compiling a
new main file. For a fragmentf to be
valid (a candidate for re-use), we re-
quire that f.include_timestamp <
main_timestamp , otherwise the fragment
has already been processed in this compila-
tion, and re-processing it is probably an error
we want to catch. We also require that for
each fragmentu in uses_fragments (the
depends-on-set) that all of the following are
true:

u->include_timestamp >=

main_timestamp (i.e. u has been
processed in this compilation);

that u.read_timestamp != 0 (it has
been parsed at some point!);

and that u.read_timestamp <=

f.read_timestamp (the most recent
time u was parsed was before the most
recent time thatf was parsed—i.e., thatu
hasn’t been re-parsed since we last used
it).

7.2 Depending on the lack of a definition

One subtle complication concernsnegative de-
pendencies: Some code may work one way if
an identifier has no binding and a different way
if it has a binding.

One example (from Geoff Keating): Suppose
the tagstruct x is undefined when this is
first seen:

GCC Developers Summit 2003 • 29

// in something.h
extern int do_something (struct x *);

This is legal C, but the parameter type is a
“local” (and useless) type, different from any
global struct x . Next, supposestruct
x has been declared (a forward declaration is
enough) the next time this fragment is pro-
cessed. In that case the parameter type of
do_something is the globalstruct x ,
and so the meaning ofdo_something has
changed. However, the dependency checking
discussed about will not catch this, since the
first time something.h was included there
was nothing for it depend on. This particular
problem will cause a warning to be written out
the first time, and we can at the same time in-
validate the current fragment (disabling future
re-use).

However, there may be more complex prob-
lems involving negative dependencies, for ex-
ample involving C++ function overloading.

8 Macro dependencies

The meaning of a fragment may also depend
on the definition of macros. Consider the fol-
lowing:

char buffer[BUFSIZ];

If the macroBUFSIZ changes, then the the
type ofbuffer is different, so the containing
fragment would have to be invalidated.

The implementation does not yet check for
macro re-definitions.

Assuming we change the implementation so
that macro definitions are part of fragments,
and we still store dependencies in terms of
fragments depending on other fragments, then

we have the basics of what we need. All that
would need to be added is that when a macro
is used, we note that the current fragment de-
pends on the fragment containing the macro
definition.

Which fragments get processed will also de-
pend on macros, but since conditional compi-
lation directives are always re-evaluated, this is
not a problem.

8.1 Depending on lack of a macro bindings

We also have the issue of negative dependen-
cies for macros: A fragment will use an iden-
tifier, and if later that identifier is bound to a
macro, then the fragment will be invalid. Con-
sider a header filea.h :

extern int i, j;

and a header fileb.h :

inline int foo() { return i; }

Supposefile1.c does this:

#include "a.h"
#include "b.h"

andfile2.c does this:

#include "a.h"
#define int size_t
#define i j
#include "b.h"

In file1.c the fragmentb.h depends on
a.h , since it usedi . But the meaning of frag-
mentb.h in file2.c is very different.

30 • GCC Developers Summit

The obvious solution is for every fragment to
maintain a set of identifiers that the fragments
depends on not being bound to macros, and to
check this list on fragment re-use. However,
this is quite expensive, as fragments will often
use many non-macro identifiers. Below, is a
less expensive (unimplemented) solution.

8.2 Checking lack of macro bindings

Here is one solution, that is inexpensive in the
common case. For each identifier we add two
bits:

unsigned used_as_nonmacro : 1;
unsigned also_used_as_macro : 1;

When an identifier is referenced, and there
is no macro definition for it (i.e.#define
strcmp strcmp doesn’t count), then we
set the used_as_nonmacro bit. This is
permanent—we never reset it.

If an identifier with theused_as_nonmacro

bit gets#define d as a macro, then we also
set thealso_used_as_macro bit (which is
also permanent). We also invalidate all frag-
ments. We can do this by setting this global (or
field in cpp_reader):

int first_valid_fragment_timestamp;

to c_timestamp . This forces all fragments
to be re-read the next time they are needed.

If an identifier is referenced, and it has the
also_used_as_macro bit set, then we add
it to a list belonging to the current fragment.
Then the next time the fragment is needed,
to check validity we check the macro state of
identifier on that list.

This implementation has the advantage that the
common case is cheap, not requiring any ex-
tra state except two bits per identifier. (We

also need space for a list header in each frag-
ment, but it may be possible to share with some
other list.). However, the rare cases get handled
without excessive cost.

9 Saving and restoring bindings

While a fragment is being parsed, each lan-
guage front-end is responsible for remember-
ing the bindings (declarations etc) that are be-
ing created, so they can be restored if the frag-
ment is re-used. The code for this is relatively
independent of the rest of the compile server
code, so it can be written without understand-
ing the details of the server.

Each binding that needs to be remem-
bered is added to the globalfragment_

bindings_stack , which is (currently)
a TREE_VEC. How much of the stack
is currently used is given by the global
fragment_bindings_end . There
are helper functions note_fragment_

binding_1 , note_fragment_binding_2 ,
and note_fragment_binding_3 to add
trees to the stack. What is added is up to the
front-end; we’ll give examples later. At the
end of the fragment,cb_exit_fragment

will allocate a TREE_VECwhose length is
fragment_bindings_end , assign that to
the fragmentsbindings field, and copy that
many elements fromfragment_bindings_

stack .

If a fragment is re-used, thencb_enter_

fragment will call the language-specific func-
tion restore_from_fragment . This is re-
sponsible for going through thebindings ar-
ray and restoring the bindings.

The C language front-end currently does the
following:

• pushdecl calls note_fragment_

GCC Developers Summit 2003 • 31

binding_1 , passing it the declaration
that ispushdecl ’s argument.

• pushtag calls note_fragment_

binding_1 , passing it theTREE_LIST
that is used to link the type into the tag
scope. This is called when the tag is
declared, including forward declarations.

• finish_struct and finish_enum

both callnote_fragment_binding_3 ,
passing it the struct/union/enum type,
the field list or enum values list, and
the type size. This is called when a
struct/union/enum tag type is defined.

To restore the bindings when re-using a
fragment, the function restore_from_

fragment in c-decl.c just loops through
thebindings TREE_VEC .

• If the element is a declaration, it set the
IDENTIFIER_GLOBAL_VALUE of the
declaration’s name to point to the decla-
ration, and chains it into thenames list
of thecurrent_binding_level .

• If the element is aTREE_LIST, we
know it was created bypushtag . So
we chain it into the tags list of
the current_binding_level . We
also null out the TYPE_FIELD and
TYPE_SIZE fields of the tag type, so
don’t get complaints if there is a later
start_struct . This restores a tag
type declaration.

• If the element is a type node, then it must
have been created byfinish_struct
or finish_enum , and must be fol-
lowed by a fields and a size node. Set
theTYPE_FIELDSand theTYPE_SIZE
fields of the type to those values. This re-
stores a tag type definition.

10 Modification-in-place of trees

As the compilation proceeds, the compiler
sometimes modifies existing declarations. This
causes some difficulties. Some examples:

• When the C or C++ front-end sees a dec-
laration with the same name as a pre-
vious declaration in the same scope, it
calls the functionduplicate_decls
to compare the old and new declarations.
This happens most frequently when the
old declaration is a forward or tentative
declaration. If the declarations match,
duplicate_decls may merge the in-
formation from the new declaration into
the old declaration, and then discard the
new declaration. If the old declaration
was in a header file that the compile server
re-uses, then it will incorrectly also con-
tain the information from the new decla-
ration.

• In C++ functions may be overloaded.
When a new function declaration over-
loads an older function declaration, the
latter is converted to a special overload
declaration. When a header file contain-
ing that declaration is re-used, we may in-
advertently also get overloaded functions
that aren’t supposed to be visible. This
may effect overload resolution, or cause
future incorrect error messages.

• A header file may contain a tentative
structure declaration (such asstruct
T), and a different header file may con-
tain a definition of thestruct with all
the fields. We need to be careful that re-
using the former does not re-use the latter.
Worse, some C programs may re-use the
same structure tag for incompatible types.
(This is poor style and rare, but we should
at least detect it.)

32 • GCC Developers Summit

Most of these merging operations are in prac-
tice harmless, or at least will very rarely cause
problems, though they may cause some errors
to not be properly detected. Sometimes the
merging operations can be handled by special
code, or it may be possible to “clean up” the
compiler to avoid them. However, there are so
many places in the compiler that modify older
tree nodes that we need a general framework
for dealing with them. Such a framework is an
undo buffer.

Whenever the compiler destructively modifies
a tree node that “belongs” to some “other”
header fragment, then it needs to append to a
global undo buffer enough information to undo
the modification. Before starting to compile a
new main file, the compiler runs through the
undo buffer in inverse order, undoing the re-
membered modifications. This allows frag-
ment re-use to push the associated declarations
without contamination from other fragments.

Implementation of the undo buffer has just
started, so I don’t know how will it will work
in practice, or how much undo information is
likely to be needed.

11 Some complications

Various unusual cases cause complications.

11.1 Nested #define inside declarations

On GNU/Linux <bits/siginfo.h> con-
tains:

enum
{

SI_ASYNCNL = -6,
define SI_ASYNCNL SI_ASYNCNL

SI_SIGIO,
define SI_SIGIO SI_SIGIO
...

SI_KERNEL = 0x80

#define SI_KERNEL SI_KERNEL
};

This causes a problem if#define is the end
of a fragment, since then we get a bunch of
fragments that are not self-contained. If for
some reason some but not all of these frag-
ments get invalidated and have to be re-parsed,
then the parser will get very confused!

This particular case is not a problem if we im-
plement the model that#define is part of a
fragment, rather than delimiting one, as I think
we should. Another and more general solution
if to invalidate a fragment if it starts or ends
not at top level: I.e. nested inside some other
declaration or scope. We discuss this next.

11.2 Conditional compilation inside declara-
tions

Many systems (including GNU/Linux and
Darwin) have code like the following (in
<netinet/ip.h>):

struct timestamp
{

u_int8_t len;
u_int8_t ptr;

#if __BYTE_ORDER == __LITTLE_ENDIAN
unsigned int flags:4;
unsigned int overflow:4;

#elif __BYTE_ORDER == __BIG_ENDIAN
unsigned int overflow:4;
unsigned int flags:4;

#else
error "Please fix <bits/endian.h>"
#endif

u_int32_t data[9];
};

This particular case should not be a problem in
practice, since the value of__BYTE_ORDER
is presumably not going to change. However,
it is possible that the first or last fragment might
becomes invalidated for some reason, causing

GCC Developers Summit 2003 • 33

the non-conditional parts to get re-parsed. In
that case, we need to make sure that the condi-
tional parts also get invalidated and re-parsed.
(The converse could also be true, though I
don’t see how that could happen.)

A general solution uses acurrently_

nested variable. It is incremented when start-
ing a declaration (such as an enum, class,
template, or inline function), and decremented
when exiting the declaration. Ifcurrently_

nested is positive when eithercb_enter_

fragment or cb_exit_fragment is called,
then the fragment is invalidated, disabling fu-
ture re-use.

This should be safe, but not ideal, asstruct
timestamp would be needlessly invalidated.
It would be better (though unimplemented) to
treat all the fragments that contain a part of
struct timestamp as a single unit. A
fragment groupis a minimal sequence of frag-
ments in the same header file such that if
currently_nested is true at the end of
one fragments then it and the following frag-
ment are both in the group. A fragment “fol-
lows” another if it is the next fragment pro-
cessed during a single processing of its file. For
simplicity, we require that there be no macro
definitions or undefinitions within the fragment
group. When we parse the fragment group, we
remember all the conditionals. We treat the
fragment group as a single fragment with a sin-
gle constructed compound conditional. When
we process the group the next time, we eval-
uate this compound conditional at the start of
the group. If it matches, we use the fragments
declarations like a normal re-use. If it does not
match, we re-parse the fragments as multiple
normal fragments.

11.3 Other non-nesting

One common example of non-nesting:

#ifdef __cplusplus
extern "{"
#endif

This causes the following to nested syntacti-
cally. However, we don’t want it to cause fol-
lowing fragments to be invalidated!

C++ namespaces.may have similar issues.

11.4 Types defined in multiple locations

The C standard requires that both<stdio.h>
and<stdlib.h> definesize_t . The trick
is to do this without a duplicate definition if
both are included. One common solution (used
on Darwin and other *BSD system) is to define
size_t in both headers, but use guards:

#ifndef __size_t_defined
#define __size_t_defined
typedef __SIZE_TYPE size_t;
#endif

Now supposea.c has

#include <stdio.h>
#include <stdlib.h>

andb.c has:

#include <stdlib.h>
#include <stdio.h>

In this case the dependencies might prevent
us from re-using the cached definition of
size_t . Worse, definitions that depend on
size_t also have to be invalidated. Note that
this is not a problem of the correctness of the
compile server, only its performance.

C++ has a “one-definition rule” that requires
that each type declaration etc only a single

34 • GCC Developers Summit

definition: If different compilation units see
different definitions, they must be token-by-
token the same. In practice this usually means
they are in the same header file, but as in the
size_t example, that is not strictly required.
However, if there are multiple definitions, they
will have inconsistent source lines. If you ask
an IDE forsize_t ’s definition, it will not be
able to give a unique answer. This suggests
that a good rule of design is the “extended one-
definition rule”: There should only be a sin-
gle definition, at a single location in a unique
header file.

Thesize_t definitions violate this extended
rule. Therefore, I think the “correct” solution
is to fix the headers to not do this. (We can use
fixincludes to avoid having to change the
installed headers, of course.) A simple solution
is to create a headerbits/size_t.h :

#ifndef _SIZE_T_H
#define _SIZE_T_H
typedef __SIZE_TYPE size_t;
#endif

and then have bothstdio.h andstdlib.h
do#include <bits/size_t.h> .

There are other solutions possible, but this
seems the cleanest and simplest. On
GNU/Linux systems using glibc, we have:

define __need_size_t
define __need_NULL
include <stddef.h>

The magic __need_size_t _ asks
stddef.h to define size_t and noth-
ing else. This satisfies the “extended one-
definition rule”, and I don’t know any reason
why it should cause problems for the compile
server. It is a rather complex mechanism,
though.

12 Results and conclusions

The compile server has been used to compile
sets of related C files (some Apple Carbon
files) and C++ (parts of the Octave mathemati-
cal library). The preliminary results have been
impressive, with speeds-ups of 3x or more.
However, there are a number of constructs that
are not handled correctly, some planned fea-
tures (such as the undo buffer) have not been
implemented yet, and for some constructs it is
not clear what the right solution is. So any de-
tailed performance numbers would be prema-
ture and misleading.

Work continues on the compile server, since
we at Apple believe it has great long-term po-
tential. The latest patches are available by
emailing<per@bothner.com> .

Thanks to the members and management of
the Apple compiler group (including Ted Gold-
stein, Ron Price, Mike Stump, and Geoff Keat-
ing) for discussions and support of this project.

