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Abstract

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and
a simple but effective approach to object-oriented programming. Python’s elegant syntax and dynamic
typing, together with its interpreted nature, make it an ideal language for scripting and rapid application
development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form
for all major platforms from the Python web site, http://www.python.org, and can be freely distributed.
The same site also contains distributions of and pointers to many free third party Python modules,
programs and tools, and additional documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++
(or other languages callable from C). Python is also suitable as an extension language for customizable
applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language
and system. It helps to have a Python interpreter handy for hands-on experience, but all examples are
self-contained, so the tutorial can be read off-line as well.

For a description of standard objects and modules, see the Python Library Reference document. The
Python Reference Manual gives a more formal definition of the language. To write extensions in C or
C++, read the Extending and Embedding and Python/C API manuals. There are also several books
covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every com-
monly used feature. Instead, it introduces many of Python’s most noteworthy features, and will give
you a good idea of the language’s flavor and style. After reading it, you will be able to read and write
Python modules and programs, and you will be ready to learn more about the various Python library
modules described in the Python Library Reference.
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CHAPTER

ONE

Whetting Your Appetite

If you ever wrote a large shell script, you probably know this feeling: you’d love to add yet another
feature, but it’s already so slow, and so big, and so complicated; or the feature involves a system call
or other function that is only accessible from C . . . Usually the problem at hand isn’t serious enough
to warrant rewriting the script in C; perhaps the problem requires variable-length strings or other data
types (like sorted lists of file names) that are easy in the shell but lots of work to implement in C, or
perhaps you’re not sufficiently familiar with C.

Another situation: perhaps you have to work with several C libraries, and the usual C
write/compile/test/re-compile cycle is too slow. You need to develop software more quickly. Possi-
bly perhaps you’ve written a program that could use an extension language, and you don’t want to
design a language, write and debug an interpreter for it, then tie it into your application.

In such cases, Python may be just the language for you. Python is simple to use, but it is a real
programming language, offering much more structure and support for large programs than the shell has.
On the other hand, it also offers much more error checking than C, and, being a very-high-level language,
it has high-level data types built in, such as flexible arrays and dictionaries that would cost you days
to implement efficiently in C. Because of its more general data types Python is applicable to a much
larger problem domain than Awk or even Perl, yet many things are at least as easy in Python as in those
languages.

Python allows you to split up your program in modules that can be reused in other Python programs. It
comes with a large collection of standard modules that you can use as the basis of your programs — or
as examples to start learning to program in Python. There are also built-in modules that provide things
like file I/O, system calls, sockets, and even interfaces to GUI toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development
because no compilation and linking is necessary. The interpreter can be used interactively, which makes
it easy to experiment with features of the language, to write throw-away programs, or to test functions
during bottom-up program development. It is also a handy desk calculator.

Python allows writing very compact and readable programs. Programs written in Python are typically
much shorter than equivalent C programs, for several reasons:

• the high-level data types allow you to express complex operations in a single statement;

• statement grouping is done by indentation instead of begin/end brackets;

• no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new built-in function or module
to the interpreter, either to perform critical operations at maximum speed, or to link Python programs
to libraries that may only be available in binary form (such as a vendor-specific graphics library). Once
you are really hooked, you can link the Python interpreter into an application written in C and use it
as an extension or command language for that application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing
to do with nasty reptiles. Making references to Monty Python skits in documentation is not only allowed,
it is encouraged!
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1.1 Where From Here

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the
best way to learn a language is using it, you are invited here to do so.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane
information, but essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system though examples,
beginning with simple expressions, statements and data types, through functions and modules, and
finally touching upon advanced concepts like exceptions and user-defined classes.

2 Chapter 1. Whetting Your Appetite



CHAPTER

TWO

Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed as ‘/usr/local/bin/python’ on those machines where it is avail-
able; putting ‘/usr/local/bin’ in your Unix shell’s search path makes it possible to start it by typing the
command

python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other
places are possible; check with your local Python guru or system administrator. (E.g., ‘/usr/local/python’
is a popular alternative location.)

Typing an EOF character (Control-D on Unix, Control-Z on DOS or Windows) at the primary prompt
causes the interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter
by typing the following commands: ‘import sys; sys.exit()’.

The interpreter’s line-editing features usually aren’t very sophisticated. On Unix, whoever installed
the interpreter may have enabled support for the GNU readline library, which adds more elaborate
interactive editing and history features. Perhaps the quickest check to see whether command line editing
is supported is typing Control-P to the first Python prompt you get. If it beeps, you have command
line editing; see Appendix A for an introduction to the keys. If nothing appears to happen, or if ^P is
echoed, command line editing isn’t available; you’ll only be able to use backspace to remove characters
from the current line.

The interpreter operates somewhat like the Unix shell: when called with standard input connected to
a tty device, it reads and executes commands interactively; when called with a file name argument or
with a file as standard input, it reads and executes a script from that file.

A third way of starting the interpreter is ‘python -c command [arg] ...’, which executes the state-
ment(s) in command, analogous to the shell’s -c option. Since Python statements often contain spaces
or other characters that are special to the shell, it is best to quote command in its entirety with double
quotes.

Note that there is a difference between ‘python file’ and ‘python <file’. In the latter case, input
requests from the program, such as calls to input() and raw input(), are satisfied from file. Since this
file has already been read until the end by the parser before the program starts executing, the program
will encounter EOF immediately. In the former case (which is usually what you want) they are satisfied
from whatever file or device is connected to standard input of the Python interpreter.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode
afterwards. This can be done by passing -i before the script. (This does not work if the script is read
from standard input, for the same reason as explained in the previous paragraph.)

Argument Passing
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When known to the interpreter, the script name and additional arguments thereafter are passed to the
script in the variable sys.argv, which is a list of strings. Its length is at least one; when no script and no
arguments are given, sys.argv[0] is an empty string. When the script name is given as ’-’ (meaning
standard input), sys.argv[0] is set to ’-’. When -c command is used, sys.argv[0] is set to ’-c’.
Options found after -c command are not consumed by the Python interpreter’s option processing but
left in sys.argv for the command to handle.

Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive mode. In this mode it
prompts for the next command with the primary prompt, usually three greater-than signs (‘>>> ’); for
continuation lines it prompts with the secondary prompt, by default three dots (‘... ’).

The interpreter prints a welcome message stating its version number and a copyright notice before
printing the first prompt, e.g.:

python

Python 1.5b1 (#1, Dec 3 1997, 00:02:06) [GCC 2.7.2.2] on sunos5

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>>

2.2 The Interpreter and Its Environment

Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it
then returns to the primary prompt; when input came from a file, it exits with a nonzero exit status after
printing the stack trace. (Exceptions handled by an except clause in a try statement are not errors in
this context.) Some errors are unconditionally fatal and cause an exit with a nonzero exit; this applies
to internal inconsistencies and some cases of running out of memory. All error messages are written to
the standard error stream; normal output from the executed commands is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels
the input and returns to the primary prompt.1 Typing an interrupt while a command is executing raises
the KeyboardInterrupt exception, which may be handled by a try statement.

Executable Python Scripts

On BSD’ish Unix systems, Python scripts can be made directly executable, like shell scripts, by putting
the line

#! /usr/bin/env python

(assuming that the interpreter is on the user’s $PATH) at the beginning of the script and giving the file
an executable mode. The ‘#!’ must be the first two characters of the file.

The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed ev-
ery time the interpreter is started. You can do this by setting an environment variable named $PYTHON-
STARTUP to the name of a file containing your start-up commands. This is similar to the ‘.profile’ feature
of the Unix shells.

1A problem with the GNU Readline package may prevent this.

4 Chapter 2. Using the Python Interpreter



This file is only read in interactive sessions, not when Python reads commands from a script, and not
when ‘/dev/tty’ is given as the explicit source of commands (which otherwise behaves like an interactive
session). It is executed in the same name space where interactive commands are executed, so that objects
that it defines or imports can be used without qualification in the interactive session. You can also change
the prompts sys.ps1 and sys.ps2 in this file.

If you want to read an additional start-up file from the current directory, you can program this in the
global start-up file, e.g. ‘execfile(’.pythonrc’)’. If you want to use the startup file in a script, you
must do this explicitly in the script:

import os

if os.path.isfile(os.environ[’PYTHONSTARTUP’]):

execfile(os.environ[’PYTHONSTARTUP’])

2.2. The Interpreter and Its Environment 5
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CHAPTER

THREE

An Informal Introduction to Python

In the following examples, input and output are distinguished by the presence or absence of prompts
(‘>>> ’ and ‘... ’): to repeat the example, you must type everything after the prompt, when the
prompt appears; lines that do not begin with a prompt are output from the interpreter.Note that a
secondary prompt on a line by itself in an example means you must type a blank line; this is used to end
a multi-line command.

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, ‘>>>
’. (It shouldn’t take long.)

Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value.
Expression syntax is straightforward: the operators +, -, * and / work just like in most other languages
(e.g., Pascal or C); parentheses can be used for grouping. For example:

>>> 2+2

4

>>> # This is a comment

... 2+2

4

>>> 2+2 # and a comment on the same line as code

4

>>> (50-5*6)/4

5

>>> # Integer division returns the floor:

... 7/3

2

>>> 7/-3

-3

Like in C, the equal sign (‘=’) is used to assign a value to a variable. The value of an assignment is not
written:

>>> width = 20

>>> height = 5*9

>>> width * height

900

A value can be assigned to several variables simultaneously:

7



>>> x = y = z = 0 # Zero x, y and z

>>> x

0

>>> y

0

>>> z

0

There is full support for floating point; operators with mixed type operands convert the integer operand
to floating point:

>>> 4 * 2.5 / 3.3

3.0303030303

>>> 7.0 / 2

3.5

Complex numbers are also supported; imaginary numbers are written with a suffix of ‘j’ or ‘J’. Complex
numbers with a nonzero real component are written as ‘(real+imagj)’, or can be created with the
‘complex(real, imag)’ function.

>>> 1j * 1J

(-1+0j)

>>> 1j * complex(0,1)

(-1+0j)

>>> 3+1j*3

(3+3j)

>>> (3+1j)*3

(9+3j)

>>> (1+2j)/(1+1j)

(1.5+0.5j)

Complex numbers are always represented as two floating point numbers, the real and imaginary part.
To extract these parts from a complex number z , use z.real and z.imag.

>>> a=1.5+0.5j

>>> a.real

1.5

>>> a.imag

0.5

The conversion functions to floating point and integer (float(), int() and long()) don’t work for
complex numbers — there is no one correct way to convert a complex number to a real number. Use
abs(z) to get its magnitude (as a float) or z.real to get its real part.

>>> a=1.5+0.5j

>>> float(a)

Traceback (innermost last):

File "<stdin>", line 1, in ?

TypeError: can’t convert complex to float; use e.g. abs(z)

>>> a.real

1.5

>>> abs(a)

1.58113883008

In interactive mode, the last printed expression is assigned to the variable . This means that when you
are using Python as a desk calculator, it is somewhat easier to continue calculations, for example:

8 Chapter 3. An Informal Introduction to Python



>>> tax = 17.5 / 100

>>> price = 3.50

>>> price * tax

0.6125

>>> price + _

4.1125

>>> round(_, 2)

4.11

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you
would create an independent local variable with the same name masking the built-in variable with its
magic behavior.

Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can
be enclosed in single quotes or double quotes:

>>> ’spam eggs’

’spam eggs’

>>> ’doesn\’t’

"doesn’t"

>>> "doesn’t"

"doesn’t"

>>> ’"Yes," he said.’

’"Yes," he said.’

>>> "\"Yes,\" he said."

’"Yes," he said.’

>>> ’"Isn\’t," she said.’

’"Isn\’t," she said.’

String literals can span multiple lines in several ways. Newlines can be escaped with backslashes, e.g.:

hello = "This is a rather long string containing\n\

several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\

significant.\n"

print hello

which would print the following:

This is a rather long string containing

several lines of text just as you would do in C.

Note that whitespace at the beginning of the line is significant.

Or, strings can be surrounded in a pair of matching triple-quotes: """ or ’’’. End of lines do not need
to be escaped when using triple-quotes, but they will be included in the string.

print """

Usage: thingy [OPTIONS]

-h Display this usage message

-H hostname Hostname to connect to

"""

produces the following output:

3.1. Using Python as a Calculator 9



Usage: thingy [OPTIONS]

-h Display this usage message

-H hostname Hostname to connect to

The interpreter prints the result of string operations in the same way as they are typed for input: inside
quotes, and with quotes and other funny characters escaped by backslashes, to show the precise value.
The string is enclosed in double quotes if the string contains a single quote and no double quotes, else it’s
enclosed in single quotes. (The print statement, described later, can be used to write strings without
quotes or escapes.)

Strings can be concatenated (glued together) with the + operator, and repeated with *:

>>> word = ’Help’ + ’A’

>>> word

’HelpA’

>>> ’<’ + word*5 + ’>’

’<HelpAHelpAHelpAHelpAHelpA>’

Two string literals next to each other are automatically concatenated; the first line above could also
have been written ‘word = ’Help’ ’A’’; this only works with two literals, not with arbitrary string
expressions.

Strings can be subscripted (indexed); like in C, the first character of a string has subscript (index) 0.
There is no separate character type; a character is simply a string of size one. Like in Icon, substrings
can be specified with the slice notation: two indices separated by a colon.

>>> word[4]

’A’

>>> word[0:2]

’He’

>>> word[2:4]

’lp’

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults
to the size of the string being sliced.

>>> word[:2] # The first two characters

’He’

>>> word[2:] # All but the first two characters

’lpA’

Here’s a useful invariant of slice operations: s[:i] + s[i:] equals s.

>>> word[:2] + word[2:]

’HelpA’

>>> word[:3] + word[3:]

’HelpA’

Degenerate slice indices are handled gracefully: an index that is too large is replaced by the string size,
an upper bound smaller than the lower bound returns an empty string.

10 Chapter 3. An Informal Introduction to Python



>>> word[1:100]

’elpA’

>>> word[10:]

’’

>>> word[2:1]

’’

Indices may be negative numbers, to start counting from the right. For example:

>>> word[-1] # The last character

’A’

>>> word[-2] # The last-but-one character

’p’

>>> word[-2:] # The last two characters

’pA’

>>> word[:-2] # All but the last two characters

’Hel’

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[-0] # (since -0 equals 0)

’H’

Out-of-range negative slice indices are truncated, but don’t try this for single-element (non-slice) indices:

>>> word[-100:]

’HelpA’

>>> word[-10] # error

Traceback (innermost last):

File "<stdin>", line 1

IndexError: string index out of range

The best way to remember how slices work is to think of the indices as pointing between characters, with
the left edge of the first character numbered 0. Then the right edge of the last character of a string of n
characters has index n, for example:

+---+---+---+---+---+

| H | e | l | p | A |

+---+---+---+---+---+

0 1 2 3 4 5

-5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the second row gives the
corresponding negative indices. The slice from i to j consists of all characters between the edges labeled
i and j , respectively.

For nonnegative indices, the length of a slice is the difference of the indices, if both are within bounds,
e.g., the length of word[1:3] is 2.

The built-in function len() returns the length of a string:

>>> s = ’supercalifragilisticexpialidocious’

>>> len(s)

34

3.1. Using Python as a Calculator 11



Lists

Python knows a number of compound data types, used to group together other values. The most versatile
is the list, which can be written as a list of comma-separated values (items) between square brackets.
List items need not all have the same type.

>>> a = [’spam’, ’eggs’, 100, 1234]

>>> a

[’spam’, ’eggs’, 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

>>> a[0]

’spam’

>>> a[3]

1234

>>> a[-2]

100

>>> a[1:-1]

[’eggs’, 100]

>>> a[:2] + [’bacon’, 2*2]

[’spam’, ’eggs’, ’bacon’, 4]

>>> 3*a[:3] + [’Boe!’]

[’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’Boe!’]

Unlike strings, which are immutable, it is possible to change individual elements of a list:

>>> a

[’spam’, ’eggs’, 100, 1234]

>>> a[2] = a[2] + 23

>>> a

[’spam’, ’eggs’, 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list:

>>> # Replace some items:

... a[0:2] = [1, 12]

>>> a

[1, 12, 123, 1234]

>>> # Remove some:

... a[0:2] = []

>>> a

[123, 1234]

>>> # Insert some:

... a[1:1] = [’bletch’, ’xyzzy’]

>>> a

[123, ’bletch’, ’xyzzy’, 1234]

>>> a[:0] = a # Insert (a copy of) itself at the beginning

>>> a

[123, ’bletch’, ’xyzzy’, 1234, 123, ’bletch’, ’xyzzy’, 1234]

The built-in function len() also applies to lists:

>>> len(a)

8
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It is possible to nest lists (create lists containing other lists), for example:

>>> q = [2, 3]

>>> p = [1, q, 4]

>>> len(p)

3

>>> p[1]

[2, 3]

>>> p[1][0]

2

>>> p[1].append(’xtra’) # See section 5.1

>>> p

[1, [2, 3, ’xtra’], 4]

>>> q

[2, 3, ’xtra’]

Note that in the last example, p[1] and q really refer to the same object! We’ll come back to object
semantics later.

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance,
we can write an initial subsequence of the Fibonacci series as follows:

>>> # Fibonacci series:

... # the sum of two elements defines the next

... a, b = 0, 1

>>> while b < 10:

... print b

... a, b = b, a+b

...

1

1

2

3

5

8

This example introduces several new features.

• The first line contains a multiple assignment: the variables a and b simultaneously get the new
values 0 and 1. On the last line this is used again, demonstrating that the expressions on the
right-hand side are all evaluated first before any of the assignments take place.

• The while loop executes as long as the condition (here: b < 10) remains true. In Python, like in
C, any non-zero integer value is true; zero is false. The condition may also be a string or list value,
in fact any sequence; anything with a non-zero length is true, empty sequences are false. The test
used in the example is a simple comparison. The standard comparison operators are written the
same as in C: <, >, ==, <=, >= and !=.

• The body of the loop is indented: indentation is Python’s way of grouping statements. Python does
not (yet!) provide an intelligent input line editing facility, so you have to type a tab or space(s)
for each indented line. In practice you will prepare more complicated input for Python with a
text editor; most text editors have an auto-indent facility. When a compound statement is entered
interactively, it must be followed by a blank line to indicate completion (since the parser cannot
guess when you have typed the last line).

• The print statement writes the value of the expression(s) it is given. It differs from just writing
the expression you want to write (as we did earlier in the calculator examples) in the way it handles
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multiple expressions and strings. Strings are printed without quotes, and a space is inserted between
items, so you can format things nicely, like this:

>>> i = 256*256

>>> print ’The value of i is’, i

The value of i is 65536

A trailing comma avoids the newline after the output:

>>> a, b = 0, 1

>>> while b < 1000:

... print b,

... a, b = b, a+b

...

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not
completed.
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CHAPTER

FOUR

More Control Flow Tools

Besides the while statement just introduced, Python knows the usual control flow statements known
from other languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the if statement. For example:

>>> if x < 0:

... x = 0

... print ’Negative changed to zero’

... elif x == 0:

... print ’Zero’

... elif x == 1:

... print ’Single’

... else:

... print ’More’

...

There can be zero or more elif parts, and the else part is optional. The keyword ‘elif’ is short for
‘else if’, and is useful to avoid excessive indentation. An if . . . elif . . . elif . . . sequence is a substitute
for the switch or case statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than
always iterating over an arithmetic progression of numbers (like in Pascal), or leaving the user completely
free in the iteration test and step (as C), Python’s for statement iterates over the items of any sequence
(e.g., a list or a string), in the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:

... a = [’cat’, ’window’, ’defenestrate’]

>>> for x in a:

... print x, len(x)

...

cat 3

window 6

defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable
sequence types, i.e., lists). If you need to modify the list you are iterating over, e.g., duplicate selected
items, you must iterate over a copy. The slice notation makes this particularly convenient:
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>>> for x in a[:]: # make a slice copy of the entire list

... if len(x) > 6: a.insert(0, x)

...

>>> a

[’defenestrate’, ’cat’, ’window’, ’defenestrate’]

4.3 The range() Function

If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It
generates lists containing arithmetic progressions, e.g.:

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range(10) generates a list of 10 values, exactly
the legal indices for items of a sequence of length 10. It is possible to let the range start at another
number, or to specify a different increment (even negative):

>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)

[-10, -40, -70]

To iterate over the indices of a sequence, combine range() and len() as follows:

>>> a = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]

>>> for i in range(len(a)):

... print i, a[i]

...

0 Mary

1 had

2 a

3 little

4 lamb

4.4 break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the smallest enclosing for or while loop.

The continue statement, also borrowed from C, continues with the next iteration of the loop.

Loop statements may have an else clause; it is executed when the loop terminates through exhaustion of
the list (with for) or when the condition becomes false (with while), but not when the loop is terminated
by a break statement. This is exemplified by the following loop, which searches for prime numbers:
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>>> for n in range(2, 10):

... for x in range(2, n):

... if n % x == 0:

... print n, ’equals’, x, ’*’, n/x

... break

... else:

... print n, ’is a prime number’

...

2 is a prime number

3 is a prime number

4 equals 2 * 2

5 is a prime number

6 equals 2 * 3

7 is a prime number

8 equals 2 * 4

9 equals 3 * 3

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the
program requires no action. For example:

>>> while 1:

... pass # Busy-wait for keyboard interrupt

...

4.6 De�ning Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n

... "Print a Fibonacci series up to n"

... a, b = 0, 1

... while b < n:

... print b,

... a, b = b, a+b

...

>>> # Now call the function we just defined:

... fib(2000)

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the function name and the
parenthesized list of formal parameters. The statements that form the body of the function start at the
next line, indented by a tab stop. The first statement of the function body can optionally be a string
literal; this string literal is the function’s documentation string, or docstring. There are tools which
use docstrings to automatically produce printed documentation, or to let the user interactively browse
through code; it’s good practice to include docstrings in code that you write, so try to make a habit of
it.

The execution of a function introduces a new symbol table used for the local variables of the function.
More precisely, all variable assignments in a function store the value in the local symbol table; whereas
variable references first look in the local symbol table, then in the global symbol table, and then in the
table of built-in names. Thus, global variables cannot be directly assigned a value within a function
(unless named in a global statement), although they may be referenced.
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The actual parameters (arguments) to a function call are introduced in the local symbol table of the
called function when it is called; thus, arguments are passed using call by value.1 When a function calls
another function, a new local symbol table is created for that call.

A function definition introduces the function name in the current symbol table. The value of the function
name has a type that is recognized by the interpreter as a user-defined function. This value can be
assigned to another name which can then also be used as a function. This serves as a general renaming
mechanism:

>>> fib

<function object at 10042ed0>

>>> f = fib

>>> f(100)

1 1 2 3 5 8 13 21 34 55 89

You might object that fib is not a function but a procedure. In Python, like in C, procedures are just
functions that don’t return a value. In fact, technically speaking, procedures do return a value, albeit a
rather boring one. This value is called None (it’s a built-in name). Writing the value None is normally
suppressed by the interpreter if it would be the only value written. You can see it if you really want to:

>>> print fib(0)

None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of
printing it:

>>> def fib2(n): # return Fibonacci series up to n

... "Return a list containing the Fibonacci series up to n"

... result = []

... a, b = 0, 1

... while b < n:

... result.append(b) # see below

... a, b = b, a+b

... return result

...

>>> f100 = fib2(100) # call it

>>> f100 # write the result

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

• The return statement returns with a value from a function. return without an expression ar-
gument is used to return from the middle of a procedure (falling off the end also returns from a
procedure), in which case the None value is returned.

• The statement result.append(b) calls a method of the list object result. A method is a function
that ‘belongs’ to an object and is named obj.methodname, where obj is some object (this may
be an expression), and methodname is the name of a method that is defined by the object’s type.
Different types define different methods. Methods of different types may have the same name
without causing ambiguity. (It is possible to define your own object types and methods, using
classes, as discussed later in this tutorial.) The method append() shown in the example, is defined
for list objects; it adds a new element at the end of the list. In this example it is equivalent to
‘result = result + [b]’, but more efficient.

1Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see
any changes the callee makes to it (e.g., items inserted into a list).
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4.7 More on De�ning Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which
can be combined.

Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function
that can be called with fewer arguments than it is defined, e.g.

def ask_ok(prompt, retries=4, complaint=’Yes or no, please!’):

while 1:

ok = raw_input(prompt)

if ok in (’y’, ’ye’, ’yes’): return 1

if ok in (’n’, ’no’, ’nop’, ’nope’): return 0

retries = retries - 1

if retries < 0: raise IOError, ’refusenik user’

print complaint

This function can be called either like this: ask ok(’Do you really want to quit?’) or like this:
ask ok(’OK to overwrite the file?’, 2).

The default values are evaluated at the point of function definition in the defining scope, so that e.g.

i = 5

def f(arg = i): print arg

i = 6

f()

will print 5.

Keyword Arguments

Functions can also be called using keyword arguments of the form ‘keyword = value’. For instance, the
following function:

def parrot(voltage, state=’a stiff’, action=’voom’, type=’Norwegian Blue’):

print "-- This parrot wouldn’t", action,

print "if you put", voltage, "Volts through it."

print "-- Lovely plumage, the", type

print "-- It’s", state, "!"

could be called in any of the following ways:

parrot(1000)

parrot(action = ’VOOOOOM’, voltage = 1000000)

parrot(’a thousand’, state = ’pushing up the daisies’)

parrot(’a million’, ’bereft of life’, ’jump’)

but the following calls would all be invalid:

4.7. More on Defining Functions 19



parrot() # required argument missing

parrot(voltage=5.0, ’dead’) # non-keyword argument following keyword

parrot(110, voltage=220) # duplicate value for argument

parrot(actor=’John Cleese’) # unknown keyword

In general, an argument list must have any positional arguments followed by any keyword arguments,
where the keywords must be chosen from the formal parameter names. It’s not important whether a
formal parameter has a default value or not. No argument must receive a value more than once — formal
parameter names corresponding to positional arguments cannot be used as keywords in the same calls.

When a final formal parameter of the form **name is present, it receives a dictionary containing all key-
word arguments whose keyword doesn’t correspond to a formal parameter. This may be combined with a
formal parameter of the form *name (described in the next subsection) which receives a tuple containing
the positional arguments beyond the formal parameter list. (*name must occur before **name.) For
example, if we define a function like this:

def cheeseshop(kind, *arguments, **keywords):

print "-- Do you have any", kind, ’?’

print "-- I’m sorry, we’re all out of", kind

for arg in arguments: print arg

print ’-’*40

for kw in keywords.keys(): print kw, ’:’, keywords[kw]

It could be called like this:

cheeseshop(’Limburger’, "It’s very runny, sir.",

"It’s really very, VERY runny, sir.",

client=’John Cleese’,

shopkeeper=’Michael Palin’,

sketch=’Cheese Shop Sketch’)

and of course it would print:

-- Do you have any Limburger ?

-- I’m sorry, we’re all out of Limburger

It’s very runny, sir.

It’s really very, VERY runny, sir.

----------------------------------------

client : John Cleese

shopkeeper : Michael Palin

sketch : Cheese Shop Sketch

Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary
number of arguments. These arguments will be wrapped up in a tuple. Before the variable number of
arguments, zero or more normal arguments may occur.

def fprintf(file, format, *args):

file.write(format % args)

Lambda Forms
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By popular demand, a few features commonly found in functional programming languages and Lisp have
been added to Python. With the lambda keyword, small anonymous functions can be created. Here’s a
function that returns the sum of its two arguments: ‘lambda a, b: a+b’. Lambda forms can be used
wherever function objects are required. They are syntactically restricted to a single expression. Seman-
tically, they are just syntactic sugar for a normal function definition. Like nested function definitions,
lambda forms cannot reference variables from the containing scope, but this can be overcome through
the judicious use of default argument values, e.g.

def make_incrementor(n):

return lambda x, incr=n: x+incr

Documentation Strings

There are emerging conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should
not explicitly state the object’s name or type, since these are available by other means (except if the
name happens to be a verb describing a function’s operation). This line should begin with a capital
letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating
the summary from the rest of the description. The following lines should be one of more of paragraphs
describing the objects calling conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that
process documentation have to strip indentation. This is done using the following convention. The
first non-blank line after the first line of the string determines the amount of indentation for the entire
documentation string. (We can’t use the first line since it is generally adjacent to the string’s opening
quotes so its indentation is not apparent in the string literal.) Whitespace “equivalent” to this indentation
is then stripped from the start of all lines of the string. Lines that are indented less should not occur,
but if they occur all their leading whitespace should be stripped. Equivalence of whitespace should be
tested after expansion of tabs (to 8 spaces, normally).
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CHAPTER

FIVE

Data Structures

This chapter describes some things you’ve learned about already in more detail, and adds some new
things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

insert(i, x) Insert an item at a given position. The first argument is the index of the element before
which to insert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is
equivalent to a.append(x).

append(x) Equivalent to a.insert(len(a), x).

index(x) Return the index in the list of the first item whose value is x. It is an error if there is no such
item.

remove(x) Remove the first item from the list whose value is x. It is an error if there is no such item.

sort() Sort the items of the list, in place.

reverse() Reverse the elements of the list, in place.

count(x) Return the number of times x appears in the list.

An example that uses all list methods:

>>> a = [66.6, 333, 333, 1, 1234.5]

>>> print a.count(333), a.count(66.6), a.count(’x’)

2 1 0

>>> a.insert(2, -1)

>>> a.append(333)

>>> a

[66.6, 333, -1, 333, 1, 1234.5, 333]

>>> a.index(333)

1

>>> a.remove(333)

>>> a

[66.6, -1, 333, 1, 1234.5, 333]

>>> a.reverse()

>>> a

[333, 1234.5, 1, 333, -1, 66.6]

>>> a.sort()

>>> a

[-1, 1, 66.6, 333, 333, 1234.5]
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Functional Programming Tools

There are three built-in functions that are very useful when used with lists: filter(), map(), and
reduce().

‘filter(function, sequence)’ returns a sequence (of the same type, if possible) consisting of those items
from the sequence for which function(item) is true. For example, to compute some primes:

>>> def f(x): return x%2 != 0 and x%3 != 0

...

>>> filter(f, range(2, 25))

[5, 7, 11, 13, 17, 19, 23]

‘map(function, sequence)’ calls function(item) for each of the sequence’s items and returns a list of the
return values. For example, to compute some cubes:

>>> def cube(x): return x*x*x

...

>>> map(cube, range(1, 11))

[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there
are sequences and is called with the corresponding item from each sequence (or None if some sequence
is shorter than another). If None is passed for the function, a function returning its argument(s) is
substituted.

Combining these two special cases, we see that ‘map(None, list1, list2)’ is a convenient way of turning
a pair of lists into a list of pairs. For example:

>>> seq = range(8)

>>> def square(x): return x*x

...

>>> map(None, seq, map(square, seq))

[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49)]

‘reduce(func, sequence)’ returns a single value constructed by calling the binary function func on the
first two items of the sequence, then on the result and the next item, and so on. For example, to compute
the sum of the numbers 1 through 10:

>>> def add(x,y): return x+y

...

>>> reduce(add, range(1, 11))

55

If there’s only one item in the sequence, its value is returned; if the sequence is empty, an exception is
raised.

A third argument can be passed to indicate the starting value. In this case the starting value is returned
for an empty sequence, and the function is first applied to the starting value and the first sequence item,
then to the result and the next item, and so on. For example,
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>>> def sum(seq):

... def add(x,y): return x+y

... return reduce(add, seq, 0)

...

>>> sum(range(1, 11))

55

>>> sum([])

0

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value: the del statement. This
can also be used to remove slices from a list (which we did earlier by assignment of an empty list to the
slice). For example:

>>> a

[-1, 1, 66.6, 333, 333, 1234.5]

>>> del a[0]

>>> a

[1, 66.6, 333, 333, 1234.5]

>>> del a[2:4]

>>> a

[1, 66.6, 1234.5]

del can also be used to delete entire variables:

>>> del a

Referencing the name a hereafter is an error (at least until another value is assigned to it). We’ll find
other uses for del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, e.g., indexing and slicing operations. They
are two examples of sequence data types. Since Python is an evolving language, other sequence data
types may be added. There is also another standard sequence data type: the tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, ’hello!’

>>> t[0]

12345

>>> t

(12345, 54321, ’hello!’)

>>> # Tuples may be nested:

... u = t, (1, 2, 3, 4, 5)

>>> u

((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))

As you see, on output tuples are alway enclosed in parentheses, so that nested tuples are interpreted
correctly; they may be input with or without surrounding parentheses, although often parentheses are
necessary anyway (if the tuple is part of a larger expression).

Tuples have many uses, e.g., (x, y) coordinate pairs, employee records from a database, etc. Tuples, like
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strings, are immutable: it is not possible to assign to the individual items of a tuple (you can simulate
much of the same effect with slicing and concatenation, though).

A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks
to accommodate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one
item is constructed by following a value with a comma (it is not sufficient to enclose a single value in
parentheses). Ugly, but effective. For example:

>>> empty = ()

>>> singleton = ’hello’, # <-- note trailing comma

>>> len(empty)

0

>>> len(singleton)

1

>>> singleton

(’hello’,)

The statement t = 12345, 54321, ’hello!’ is an example of tuple packing: the values 12345, 54321
and ’hello!’ are packed together in a tuple. The reverse operation is also possible, e.g.:

>>> x, y, z = t

This is called, appropriately enough, tuple unpacking. Tuple unpacking requires that the list of variables
on the left has the same number of elements as the length of the tuple. Note that multiple assignment
is really just a combination of tuple packing and tuple unpacking!

Occasionally, the corresponding operation on lists is useful: list unpacking. This is supported by enclosing
the list of variables in square brackets:

>>> a = [’spam’, ’eggs’, 100, 1234]

>>> [a1, a2, a3, a4] = a

5.4 Dictionaries

Another useful data type built into Python is the dictionary. Dictionaries are sometimes found in other
languages as “associative memories” or “associative arrays”. Unlike sequences, which are indexed by
a range of numbers, dictionaries are indexed by keys, which can be any non-mutable type; strings and
numbers can always be keys. Tuples can be used as keys if they contain only strings, numbers, or tuples.
You can’t use lists as keys, since lists can be modified in place using their append() method.

It is best to think of a dictionary as an unordered set of key:value pairs, with the requirement that the
keys are unique (within one dictionary). A pair of braces creates an empty dictionary: {}. Placing a
comma-separated list of key:value pairs within the braces adds initial key:value pairs to the dictionary;
this is also the way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and extracting the value given the
key. It is also possible to delete a key:value pair with del. If you store using a key that is already in use,
the old value associated with that key is forgotten. It is an error to extract a value using a non-existent
key.

The keys() method of a dictionary object returns a list of all the keys used in the dictionary, in random
order (if you want it sorted, just apply the sort() method to the list of keys). To check whether a single
key is in the dictionary, use the has key() method of the dictionary.

Here is a small example using a dictionary:
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>>> tel = {’jack’: 4098, ’sape’: 4139}

>>> tel[’guido’] = 4127

>>> tel

{’sape’: 4139, ’guido’: 4127, ’jack’: 4098}

>>> tel[’jack’]

4098

>>> del tel[’sape’]

>>> tel[’irv’] = 4127

>>> tel

{’guido’: 4127, ’irv’: 4127, ’jack’: 4098}

>>> tel.keys()

[’guido’, ’irv’, ’jack’]

>>> tel.has_key(’guido’)

1

5.5 More on Conditions

The conditions used in while and if statements above can contain other operators besides comparisons.

The comparison operators in and not in check whether a value occurs (does not occur) in a sequence.
The operators is and is not compare whether two objects are really the same object; this only matters
for mutable objects like lists. All comparison operators have the same priority, which is lower than that
of all numerical operators.

Comparisons can be chained: e.g., a < b == c tests whether a is less than b and moreover b equals c.

Comparisons may be combined by the Boolean operators and and or, and the outcome of a comparison
(or of any other Boolean expression) may be negated with not. These all have lower priorities than
comparison operators again; between them, not has the highest priority, and or the lowest, so that A
and not B or C is equivalent to (A and (not B)) or C. Of course, parentheses can be used to express
the desired composition.

The Boolean operators and and or are so-called shortcut operators: their arguments are evaluated from
left to right, and evaluation stops as soon as the outcome is determined. E.g., if A and C are true but
B is false, A and B and C does not evaluate the expression C. In general, the return value of a shortcut
operator, when used as a general value and not as a Boolean, is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> string1, string2, string3 = ’’, ’Trondheim’, ’Hammer Dance’

>>> non_null = string1 or string2 or string3

>>> non_null

’Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expressions.

5.6 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type. The comparison
uses lexicographical ordering: first the first two items are compared, and if they differ this determines
the outcome of the comparison; if they are equal, the next two items are compared, and so on, until
either sequence is exhausted. If two items to be compared are themselves sequences of the same type,
the lexicographical comparison is carried out recursively. If all items of two sequences compare equal,
the sequences are considered equal. If one sequence is an initial subsequence of the other, the shorted
sequence is the smaller one. Lexicographical ordering for strings uses the ascii ordering for individual
characters. Some examples of comparisons between sequences with the same types:
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(1, 2, 3) < (1, 2, 4)

[1, 2, 3] < [1, 2, 4]

’ABC’ < ’C’ < ’Pascal’ < ’Python’

(1, 2, 3, 4) < (1, 2, 4)

(1, 2) < (1, 2, -1)

(1, 2, 3) = (1.0, 2.0, 3.0)

(1, 2, (’aa’, ’ab’)) < (1, 2, (’abc’, ’a’), 4)

Note that comparing objects of different types is legal. The outcome is deterministic but arbitrary: the
types are ordered by their name. Thus, a list is always smaller than a string, a string is always smaller
than a tuple, etc. Mixed numeric types are compared according to their numeric value, so 0 equals 0.0,
etc.1

1The rules for comparing objects of different types should not be relied upon; they may change in a future version of
the language.
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CHAPTER

SIX

Modules

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and
variables) are lost. Therefore, if you want to write a somewhat longer program, you are better off using
a text editor to prepare the input for the interpreter and running it with that file as input instead. This
is known as creating a script. As your program gets longer, you may want to split it into several files for
easier maintenance. You may also want to use a handy function that you’ve written in several programs
without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive
instance of the interpreter. Such a file is called a module; definitions from a module can be imported into
other modules or into the main module (the collection of variables that you have access to in a script
executed at the top level and in calculator mode).

A module is a file containing Python definitions and statements. The file name is the module name with
the suffix ‘.py’ appended. Within a module, the module’s name (as a string) is available as the value of
the global variable name . For instance, use your favorite text editor to create a file called ‘fibo.py’
in the current directory with the following contents:

# Fibonacci numbers module

def fib(n): # write Fibonacci series up to n

a, b = 0, 1

while b < n:

print b,

a, b = b, a+b

def fib2(n): # return Fibonacci series up to n

result = []

a, b = 0, 1

while b < n:

result.append(b)

a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol table; it
only enters the module name fibo there. Using the module name you can access the functions:
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>>> fibo.fib(1000)

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo.__name__

’fibo’

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib

>>> fib(500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions. These statements are in-
tended to initialize the module. They are executed only the first time the module is imported somewhere.1

Each module has its own private symbol table, which is used as the global symbol table by all functions
defined in the module. Thus, the author of a module can use global variables in the module without
worrying about accidental clashes with a user’s global variables. On the other hand, if you know what
you are doing you can touch a module’s global variables with the same notation used to refer to its
functions, modname.itemname.

Modules can import other modules. It is customary but not required to place all import statements at
the beginning of a module (or script, for that matter). The imported module names are placed in the
importing module’s global symbol table.

There is a variant of the import statement that imports names from a module directly into the importing
module’s symbol table. For example:

>>> from fibo import fib, fib2

>>> fib(500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table
(so in the example, fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *

>>> fib(500)

1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore ( ).

The Module Search Path

When a module named spam is imported, the interpreter searches for a file named ‘spam.py’ in the current
directory, and then in the list of directories specified by the environment variable $PYTHONPATH. This
has the same syntax as the shell variable $PATH, i.e., a list of directory names. When $PYTHONPATH
is not set, or when the file is not found there, the search continues in an installation-dependent default
path; on Unix, this is usually ‘.:/usr/local/lib/python’.

1In fact function definitions are also ‘statements’ that are ‘executed’; the execution enters the function name in the
module’s global symbol table.
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Actually, modules are searched in the list of directories given by the variable sys.path which is initialized
from the directory containing the input script (or the current directory), $PYTHONPATH and the
installation-dependent default. This allows Python programs that know what they’re doing to modify
or replace the module search path. See the section on Standard Modules later.

\Compiled" Python �les

As an important speed-up of the start-up time for short programs that use a lot of standard modules,
if a file called ‘spam.pyc’ exists in the directory where ‘spam.py’ is found, this is assumed to contain an
already-“byte-compiled” version of the module spam. The modification time of the version of ‘spam.py’
used to create ‘spam.pyc’ is recorded in ‘spam.pyc’, and the file is ignored if these don’t match.

Normally, you don’t need to do anything to create the ‘spam.pyc’ file. Whenever ‘spam.py’ is successfully
compiled, an attempt is made to write the compiled version to ‘spam.pyc’. It is not an error if this attempt
fails; if for any reason the file is not written completely, the resulting ‘spam.pyc’ file will be recognized as
invalid and thus ignored later. The contents of the ‘spam.pyc’ file is platform independent, so a Python
module directory can be shared by machines of different architectures.

Some tips for experts:

• When the Python interpreter is invoked with the -O flag, optimized code is generated and stored
in ‘.pyo’ files. The optimizer currently doesn’t help much; it only removes assert statements and
SET LINENO instructions. When -O is used, all bytecode is optimized; .pyc files are ignored and
.py files are compiled to optimized bytecode.

• A program doesn’t run any faster when it is read from a ‘.pyc’ or ‘.pyo’ file than when it is read
from a ‘.py’ file; the only thing that’s faster about ‘.pyc’ or ‘.pyo’ files is the speed with which they
are loaded.

• When a script is run by giving its name on the command line, the bytecode for the script is never
written to a ‘.pyc’ or ‘.pyo’ file. Thus, the startup time of a script may be reduced by moving most
of its code to a module and having a small bootstrap script that imports that module.

• It is possible to have a file called ‘spam.pyc’ (or ‘spam.pyo’ when -O is used) without a module
‘spam.py’ in the same module. This can be used to distribute a library of Python code in a form
that is moderately hard to reverse engineer.

• The module compileall can create ‘.pyc’ files (or ‘.pyo’ files when -O is used) for all modules in a
directory.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library
Reference (“Library Reference” hereafter). Some modules are built into the interpreter; these provide
access to operations that are not part of the core of the language but are nevertheless built in, either
for efficiency or to provide access to operating system primitives such as system calls. The set of such
modules is a configuration option; e.g., the amoeba module is only provided on systems that somehow
support Amoeba primitives. One particular module deserves some attention: sys, which is built into
every Python interpreter. The variables sys.ps1 and sys.ps2 define the strings used as primary and
secondary prompts:

6.2. Standard Modules 31



>>> import sys

>>> sys.ps1

’>>> ’

>>> sys.ps2

’... ’

>>> sys.ps1 = ’C> ’

C> print ’Yuck!’

Yuck!

C>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys.path is a list of strings that determine the interpreter’s search path for modules. It is
initialized to a default path taken from the environment variable $PYTHONPATH, or from a built-in
default if $PYTHONPATH is not set. You can modify it using standard list operations, e.g.:

>>> import sys

>>> sys.path.append(’/ufs/guido/lib/python’)

6.3 The dir() Function

The built-in function dir() is used to find out which names a module defines. It returns a sorted list of
strings:

>>> import fibo, sys

>>> dir(fibo)

[’__name__’, ’fib’, ’fib2’]

>>> dir(sys)

[’__name__’, ’argv’, ’builtin_module_names’, ’copyright’, ’exit’,

’maxint’, ’modules’, ’path’, ’ps1’, ’ps2’, ’setprofile’, ’settrace’,

’stderr’, ’stdin’, ’stdout’, ’version’]

Without arguments, dir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]

>>> import fibo, sys

>>> fib = fibo.fib

>>> dir()

[’__name__’, ’a’, ’fib’, ’fibo’, ’sys’]

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you want a list of those, they are
defined in the standard module builtin :
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>>> import __builtin__

>>> dir(__builtin__)

[’AccessError’, ’AttributeError’, ’ConflictError’, ’EOFError’, ’IOError’,

’ImportError’, ’IndexError’, ’KeyError’, ’KeyboardInterrupt’,

’MemoryError’, ’NameError’, ’None’, ’OverflowError’, ’RuntimeError’,

’SyntaxError’, ’SystemError’, ’SystemExit’, ’TypeError’, ’ValueError’,

’ZeroDivisionError’, ’__name__’, ’abs’, ’apply’, ’chr’, ’cmp’, ’coerce’,

’compile’, ’dir’, ’divmod’, ’eval’, ’execfile’, ’filter’, ’float’,

’getattr’, ’hasattr’, ’hash’, ’hex’, ’id’, ’input’, ’int’, ’len’, ’long’,

’map’, ’max’, ’min’, ’oct’, ’open’, ’ord’, ’pow’, ’range’, ’raw_input’,

’reduce’, ’reload’, ’repr’, ’round’, ’setattr’, ’str’, ’type’, ’xrange’]

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For
example, the module name A.B designates a submodule named ‘B’ in a package named ‘A’. Just like the
use of modules saves the authors of different modules from having to worry about each other’s global
variable names, the use of dotted module names saves the authors of multi-module packages like NumPy
or PIL from having to worry about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound
files and sound data. There are many different sound file formats (usually recognized by their extension,
e.g. ‘.wav’, ‘.aiff’, ‘.au’), so you may need to create and maintain a growing collection of modules for the
conversion between the various file formats. There are also many different operations you might want to
perform on sound data (e.g. mixing, adding echo, applying an equalizer function, creating an artificial
stereo effect), so in addition you will be writing a never-ending stream of modules to perform these
operations. Here’s a possible structure for your package (expressed in terms of a hierarchical filesystem):

Sound/ Top-level package

__init__.py Initialize the sound package

Formats/ Subpackage for file format conversions

__init__.py

wavread.py

wavwrite.py

aiffread.py

aiffwrite.py

auread.py

auwrite.py

...

Effects/ Subpackage for sound effects

__init__.py

echo.py

surround.py

reverse.py

...

Filters/ Subpackage for filters

__init__.py

equalizer.py

vocoder.py

karaoke.py

...

The ‘ init .py’ files are required to make Python treat the directories as containing packages; this is
done to prevent directories with a common name, such as ‘string’, from unintentionally hiding valid
modules that occur later on the module search path. In the simplest case, ‘ init .py’ can just be
an empty file, but it can also execute initialization code for the package or set the all variable,
described later.

Users of the package can import individual modules from the package, for example:
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import Sound.Effects.echo

This loads the submodule Sound.Effects.echo. It must be referenced with its full name, e.g.

Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from Sound.Effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used
as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from Sound.Effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage)
of the package, or some other name defined in the package, like a function, class or variable. The import
statement first tests whether the item is defined in the package; if not, it assumes it is a module and
attempts to load it. If it fails to find it, ImportError is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must
be a package; the last item can be a module or a package but can’t be a class or function or variable
defined in the previous item.

Importing * From a Package

Now what happens when the user writes from Sound.Effects import *? Ideally, one would hope
that this somehow goes out to the filesystem, finds which submodules are present in the package, and
imports them all. Unfortunately, this operation does not work very well on Mac and Windows platforms,
where the filesystem does not always have accurate information about the case of a filename! On these
platforms, there is no guaranteed way to know whether a file ‘ECHO.PY’ should be imported as a module
echo, Echo or ECHO. (For example, Windows 95 has the annoying practice of showing all file names with
a capitalized first letter.) The DOS 8+3 filename restriction adds another interesting problem for long
module names.

The only solution is for the package author to provide an explicit index of the package. The import
statement uses the following convention: if a package’s ‘ init .py’ code defines a list named all ,
it is taken to be the list of module names that should be imported when from package import * is
encountered. It is up to the package author to keep this list up-to-date when a new version of the
package is released. Package authors may also decide not to support it, if they don’t see a use for
importing * from their package. For example, the file Sounds/Effects/ init .py could contain the
following code:

__all__ = ["echo", "surround", "reverse"]

This would mean that from Sound.Effects import * would import the three named submodules of
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the Sound package.

If all is not defined, the statement from Sound.Effects import * does not import all submod-
ules from the package Sound.Effects into the current namespace; it only ensures that the package
Sound.Effects has been imported (possibly running its initialization code, ‘ init .py’) and then im-
ports whatever names are defined in the package. This includes any names defined (and submodules
explicitly loaded) by ‘ init .py’. It also includes any submodules of the package that were explicitly
loaded by previous import statements, e.g.

import Sound.Effects.echo

import Sound.Effects.surround

from Sound.Effects import *

In this example, the echo and surround modules are imported in the current namespace because they
are defined in the Sound.Effects package when the from...import statement is executed. (This also
works when all is defined.)

Note that in general the practicing of importing * from a module or package is frowned upon, since it
often causes poorly readable code. However, it is okay to use it to save typing in interactive sessions,
and certain modules are designed to export only names that follow certain patterns.

Remember, there is nothing wrong with using from Package import specific submodule! In fact,
this is the recommended notation unless the importing module needs to use submodules with the same
name from different packages.

Intra-package References

The submodules often need to refer to each other. For example, the surround module might use the echo
module. In fact, such references are so common that the import statement first looks in the containing
package before looking in the standard module search path. Thus, the surround module can simply use
import echo or from echo import echofilter. If the imported module is not found in the current
package (the package of which the current module is a submodule), the import statement looks for a
top-level module with the given name.

When packages are structured into subpackages (as with the Sound package in the example), there’s no
shortcut to refer to submodules of sibling packages - the full name of the subpackage must be used. For
example, if the module Sound.Filters.vocoder needs to use the echo module in the Sound.Effects
package, it can use from Sound.Effects import echo.
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CHAPTER

SEVEN

Input and Output

There are several ways to present the output of a program; data can be printed in a human-readable
form, or written to a file for future use. This chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we’ve encountered two ways of writing values: expression statements and the print statement.
(A third way is using the write() method of file objects; the standard output file can be referenced as
sys.stdout. See the Library Reference for more information on this.)

Often you’ll want more control over the formatting of your output than simply printing space-separated
values. There are two ways to format your output; the first way is to do all the string handling yourself;
using string slicing and concatenation operations you can create any lay-out you can imagine. The
standard module string contains some useful operations for padding strings to a given column width;
these will be discussed shortly. The second way is to use the % operator with a string as the left argument.
% interprets the left argument as a C sprintf()-style format string to be applied to the right argument,
and returns the string resulting from this formatting operation.

One question remains, of course: how do you convert values to strings? Luckily, Python has a way to
convert any value to a string: pass it to the repr() function, or just write the value between reverse
quotes (‘‘). Some examples:

>>> x = 10 * 3.14

>>> y = 200*200

>>> s = ’The value of x is ’ + ‘x‘ + ’, and y is ’ + ‘y‘ + ’...’

>>> print s

The value of x is 31.4, and y is 40000...

>>> # Reverse quotes work on other types besides numbers:

... p = [x, y]

>>> ps = repr(p)

>>> ps

’[31.4, 40000]’

>>> # Converting a string adds string quotes and backslashes:

... hello = ’hello, world\n’

>>> hellos = ‘hello‘

>>> print hellos

’hello, world\012’

>>> # The argument of reverse quotes may be a tuple:

... ‘x, y, (’spam’, ’eggs’)‘

"(31.4, 40000, (’spam’, ’eggs’))"

Here are two ways to write a table of squares and cubes:
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>>> import string

>>> for x in range(1, 11):

... print string.rjust(‘x‘, 2), string.rjust(‘x*x‘, 3),

... # Note trailing comma on previous line

... print string.rjust(‘x*x*x‘, 4)

...

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

>>> for x in range(1,11):

... print ’%2d %3d %4d’ % (x, x*x, x*x*x)

...

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

(Note that one space between each column was added by the way print works: it always adds spaces
between its arguments.)

This example demonstrates the function string.rjust(), which right-justifies a string in a field of a
given width by padding it with spaces on the left. There are similar functions string.ljust() and
string.center(). These functions do not write anything, they just return a new string. If the input
string is too long, they don’t truncate it, but return it unchanged; this will mess up your column lay-out
but that’s usually better than the alternative, which would be lying about a value. (If you really want
truncation you can always add a slice operation, as in ‘string.ljust(x, n)[0:n]’.)

There is another function, string.zfill(), which pads a numeric string on the left with zeros. It
understands about plus and minus signs:

>>> string.zfill(’12’, 5)

’00012’

>>> string.zfill(’-3.14’, 7)

’-003.14’

>>> string.zfill(’3.14159265359’, 5)

’3.14159265359’

Using the % operator looks like this:

>>> import math

>>> print ’The value of PI is approximately %5.3f.’ % math.pi

The value of PI is approximately 3.142.

If there is more than one format in the string you pass a tuple as right operand, e.g.
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>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 8637678}

>>> for name, phone in table.items():

... print ’%-10s ==> %10d’ % (name, phone)

...

Jack ==> 4098

Dcab ==> 8637678

Sjoerd ==> 4127

Most formats work exactly as in C and require that you pass the proper type; however, if you don’t you
get an exception, not a core dump. The %s format is more relaxed: if the corresponding argument is not
a string object, it is converted to string using the str() built-in function. Using * to pass the width or
precision in as a separate (integer) argument is supported. The C formats %n and %p are not supported.

If you have a really long format string that you don’t want to split up, it would be nice if you could
reference the variables to be formatted by name instead of by position. This can be done by using an
extension of C formats using the form %(name)format, e.g.

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 8637678}

>>> print ’Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d’ % table

Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new built-in vars() function, which returns a dictio-
nary containing all local variables.

7.2 Reading and Writing Files

open() returns a file object, and is most commonly used with two arguments: ‘open(filename, mode)’.

>>> f=open(’/tmp/workfile’, ’w’)

>>> print f

<open file ’/tmp/workfile’, mode ’w’ at 80a0960>

The first argument is a string containing the filename. The second argument is another string containing
a few characters describing the way in which the file will be used. mode can be ’r’ when the file will
only be read, ’w’ for only writing (an existing file with the same name will be erased), and ’a’ opens
the file for appending; any data written to the file is automatically added to the end. ’r+’ opens the
file for both reading and writing. The mode argument is optional; ’r’ will be assumed if it’s omitted.

On Windows and the Macintosh, ’b’ appended to the mode opens the file in binary mode, so there are
also modes like ’rb’, ’wb’, and ’r+b’. Windows makes a distinction between text and binary files; the
end-of-line characters in text files are automatically altered slightly when data is read or written. This
behind-the-scenes modification to file data is fine for ascii text files, but it’ll corrupt binary data like
that in JPEGs or ‘.EXE’ files. Be very careful to use binary mode when reading and writing such files.
(Note that the precise semantics of text mode on the Macintosh depends on the underlying C library
being used.)

Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.

To read a file’s contents, call f.read(size), which reads some quantity of data and returns it as a string.
size is an optional numeric argument. When size is omitted or negative, the entire contents of the file will
be read and returned; it’s your problem if the file is twice as large as your machine’s memory. Otherwise,
at most size bytes are read and returned. If the end of the file has been reached, f.read() will return
an empty string ("").
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>>> f.read()

’This is the entire file.\012’

>>> f.read()

’’

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string,
and is only omitted on the last line of the file if the file doesn’t end in a newline. This makes the return
value unambiguous; if f.readline() returns an empty string, the end of the file has been reached, while
a blank line is represented by ’\n’, a string containing only a single newline.

>>> f.readline()

’This is the first line of the file.\012’

>>> f.readline()

’Second line of the file\012’

>>> f.readline()

’’

f.readlines() uses f.readline() repeatedly, and returns a list containing all the lines of data in the
file.

>>> f.readlines()

[’This is the first line of the file.\012’, ’Second line of the file\012’]

f.write(string) writes the contents of string to the file, returning None.

>>> f.write(’This is a test\n’)

f.tell() returns an integer giving the file object’s current position in the file, measured in bytes from
the beginning of the file. To change the file object’s position, use ‘f.seek(offset, from what)’. The
position is computed from adding offset to a reference point; the reference point is selected by the
from what argument. A from what value of 0 measures from the beginning of the file, 1 uses the current
file position, and 2 uses the end of the file as the reference point. from what can be omitted and defaults
to 0, using the beginning of the file as the reference point.

>>> f=open(’/tmp/workfile’, ’r+’)

>>> f.write(’0123456789abcdef’)

>>> f.seek(5) # Go to the 5th byte in the file

>>> f.read(1)

’5’

>>> f.seek(-3, 2) # Go to the 3rd byte before the end

>>> f.read(1)

’d’

When you’re done with a file, call f.close() to close it and free up any system resources taken up by
the open file. After calling f.close(), attempts to use the file object will automatically fail.

>>> f.close()

>>> f.read()

Traceback (innermost last):

File "<stdin>", line 1, in ?

ValueError: I/O operation on closed file

File objects have some additional methods, such as isatty() and truncate() which are less frequently
used; consult the Library Reference for a complete guide to file objects.
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The pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read()
method only returns strings, which will have to be passed to a function like string.atoi(), which takes
a string like ’123’ and returns its numeric value 123. However, when you want to save more complex
data types like lists, dictionaries, or class instances, things get a lot more complicated.

Rather than have users be constantly writing and debugging code to save complicated data types, Python
provides a standard module called pickle. This is an amazing module that can take almost any Python
object (even some forms of Python code!), and convert it to a string representation; this process is called
pickling. Reconstructing the object from the string representation is called unpickling. Between pickling
and unpickling, the string representing the object may have been stored in a file or data, or sent over a
network connection to some distant machine.

If you have an object x, and a file object f that’s been opened for writing, the simplest way to pickle the
object takes only one line of code:

pickle.dump(x, f)

To unpickle the object again, if f is a file object which has been opened for reading:

x = pickle.load(f)

(There are other variants of this, used when pickling many objects or when you don’t want to write the
pickled data to a file; consult the complete documentation for pickle in the Library Reference.)

pickle is the standard way to make Python objects which can be stored and reused by other programs
or by a future invocation of the same program; the technical term for this is a persistent object. Because
pickle is so widely used, many authors who write Python extensions take care to ensure that new data
types such as matrices can be properly pickled and unpickled.
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CHAPTER

EIGHT

Errors and Exceptions

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you
have probably seen some. There are (at least) two distinguishable kinds of errors: syntax errors and
exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get
while you are still learning Python:

>>> while 1 print ’Hello world’

File "<stdin>", line 1

while 1 print ’Hello world’

^

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the
line where the error was detected. The error is caused by (or at least detected at) the token preceding
the arrow: in the example, the error is detected at the keyword print, since a colon (‘:’) is missing
before it. File name and line number are printed so you know where to look in case the input came from
a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is
made to execute it. Errors detected during execution are called exceptions and are not unconditionally
fatal: you will soon learn how to handle them in Python programs. Most exceptions are not handled by
programs, however, and result in error messages as shown here:

>>> 10 * (1/0)

Traceback (innermost last):

File "<stdin>", line 1

ZeroDivisionError: integer division or modulo

>>> 4 + spam*3

Traceback (innermost last):

File "<stdin>", line 1

NameError: spam

>>> ’2’ + 2

Traceback (innermost last):

File "<stdin>", line 1

TypeError: illegal argument type for built-in operation
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The last line of the error message indicates what happened. Exceptions come in different types, and the
type is printed as part of the message: the types in the example are ZeroDivisionError, NameError and
TypeError. The string printed as the exception type is the name of the built-in name for the exception
that occurred. This is true for all built-in exceptions, but need not be true for user-defined exceptions
(although it is a useful convention). Standard exception names are built-in identifiers (not reserved
keywords).

The rest of the line is a detail whose interpretation depends on the exception type; its meaning is
dependent on the exception type.

The preceding part of the error message shows the context where the exception happened, in the form
of a stack backtrace. In general it contains a stack backtrace listing source lines; however, it will not
display lines read from standard input.

The Library Reference lists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which
prints a table of inverses of some floating point numbers:

>>> numbers = [0.3333, 2.5, 0, 10]

>>> for x in numbers:

... print x,

... try:

... print 1.0 / x

... except ZeroDivisionError:

... print ’*** has no inverse ***’

...

0.3333 3.00030003

2.5 0.4

0 *** has no inverse ***

10 0.1

The try statement works as follows.

• First, the try clause (the statement(s) between the try and except keywords) is executed.

• If no exception occurs, the except clause is skipped and execution of the try statement is finished.

• If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then
if its type matches the exception named after the except keyword, the rest of the try clause is
skipped, the except clause is executed, and then execution continues after the try statement.

• If an exception occurs which does not match the exception named in the except clause, it is passed
on to outer try statements; if no handler is found, it is an unhandled exception and execution stops
with a message as shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At
most one handler will be executed. Handlers only handle exceptions that occur in the corresponding try
clause, not in other handlers of the same try statement. An except clause may name multiple exceptions
as a parenthesized list, e.g.:

... except (RuntimeError, TypeError, NameError):

... pass

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme
caution, since it is easy to mask a real programming error in this way!
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The try . . . except statement has an optional else clause, which must follow all except clauses. It is
useful to place code that must be executed if the try clause does not raise an exception. For example:

for arg in sys.argv[1:]:

try:

f = open(arg, ’r’)

except IOError:

print ’cannot open’, arg

else:

print arg, ’has’, len(f.readlines()), ’lines’

f.close()

When an exception occurs, it may have an associated value, also known as the exceptions’s argument.
The presence and type of the argument depend on the exception type. For exception types which have
an argument, the except clause may specify a variable after the exception name (or list) to receive the
argument’s value, as follows:

>>> try:

... spam()

... except NameError, x:

... print ’name’, x, ’undefined’

...

name spam undefined

If an exception has an argument, it is printed as the last part (‘detail’) of the message for unhandled
exceptions.

Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also if
they occur inside functions that are called (even indirectly) in the try clause. For example:

>>> def this_fails():

... x = 1/0

...

>>> try:

... this_fails()

... except ZeroDivisionError, detail:

... print ’Handling run-time error:’, detail

...

Handling run-time error: integer division or modulo

8.4 Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur. For example:

>>> raise NameError, ’HiThere’

Traceback (innermost last):

File "<stdin>", line 1

NameError: HiThere

The first argument to raise names the exception to be raised. The optional second argument specifies
the exception’s argument.

8.5 User-de�ned Exceptions
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Programs may name their own exceptions by assigning a string to a variable. For example:

>>> my_exc = ’my_exc’

>>> try:

... raise my_exc, 2*2

... except my_exc, val:

... print ’My exception occurred, value:’, val

...

My exception occurred, value: 4

>>> raise my_exc, 1

Traceback (innermost last):

File "<stdin>", line 1

my_exc: 1

Many standard modules use this to report errors that may occur in functions they define.

8.6 De�ning Clean-up Actions

The try statement has another optional clause which is intended to define clean-up actions that must
be executed under all circumstances. For example:

>>> try:

... raise KeyboardInterrupt

... finally:

... print ’Goodbye, world!’

...

Goodbye, world!

Traceback (innermost last):

File "<stdin>", line 2

KeyboardInterrupt

A finally clause is executed whether or not an exception has occurred in the try clause. When an
exception has occurred, it is re-raised after the finally clause is executed. The finally clause is also
executed “on the way out” when the try statement is left via a break or return statement.

A try statement must either have one or more except clauses or one finally clause, but not both.
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CHAPTER

NINE

Classes

Python’s class mechanism adds classes to the language with a minimum of new syntax and semantics.
It is a mixture of the class mechanisms found in C++ and Modula-3. As is true for modules, classes
in Python do not put an absolute barrier between definition and user, but rather rely on the politeness
of the user not to “break into the definition.” The most important features of classes are retained with
full power, however: the class inheritance mechanism allows multiple base classes, a derived class can
override any methods of its base class or classes, a method can call the method of a base class with the
same name. Objects can contain an arbitrary amount of private data.

In C++ terminology, all class members (including the data members) are public, and all member functions
are virtual. There are no special constructors or destructors. As in Modula-3, there are no shorthands
for referencing the object’s members from its methods: the method function is declared with an explicit
first argument representing the object, which is provided implicitly by the call. As in Smalltalk, classes
themselves are objects, albeit in the wider sense of the word: in Python, all data types are objects.
This provides semantics for importing and renaming. But, just like in C++ or Modula-3, built-in types
cannot be used as base classes for extension by the user. Also, like in C++ but unlike in Modula-3, most
built-in operators with special syntax (arithmetic operators, subscripting etc.) can be redefined for class
instances.

9.1 A Word About Terminology

Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk
and C++ terms. (I would use Modula-3 terms, since its object-oriented semantics are closer to those of
Python than C++, but I expect that few readers have heard of it.)

I also have to warn you that there’s a terminological pitfall for object-oriented readers: the word “object”
in Python does not necessarily mean a class instance. Like C++ and Modula-3, and unlike Smalltalk,
not all types in Python are classes: the basic built-in types like integers and lists are not, and even
somewhat more exotic types like files aren’t. However, all Python types share a little bit of common
semantics that is best described by using the word object.

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object.
This is known as aliasing in other languages. This is usually not appreciated on a first glance at Python,
and can be safely ignored when dealing with immutable basic types (numbers, strings, tuples). However,
aliasing has an (intended!) effect on the semantics of Python code involving mutable objects such as
lists, dictionaries, and most types representing entities outside the program (files, windows, etc.). This
is usually used to the benefit of the program, since aliases behave like pointers in some respects. For
example, passing an object is cheap since only a pointer is passed by the implementation; and if a function
modifies an object passed as an argument, the caller will see the change — this obviates the need for
two different argument passing mechanisms as in Pascal.

9.2 Python Scopes and Name Spaces
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Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions
play some neat tricks with name spaces, and you need to know how scopes and name spaces work to
fully understand what’s going on. Incidentally, knowledge about this subject is useful for any advanced
Python programmer.

Let’s begin with some definitions.

A name space is a mapping from names to objects. Most name spaces are currently implemented as
Python dictionaries, but that’s normally not noticeable in any way (except for performance), and it
may change in the future. Examples of name spaces are: the set of built-in names (functions such as
abs(), and built-in exception names); the global names in a module; and the local names in a function
invocation. In a sense the set of attributes of an object also form a name space. The important thing to
know about name spaces is that there is absolutely no relation between names in different name spaces;
for instance, two different modules may both define a function “maximize” without confusion — users
of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot — for example, in the expression
z.real, real is an attribute of the object z. Strictly speaking, references to names in modules are
attribute references: in the expression modname.funcname, modname is a module object and funcname
is an attribute of it. In this case there happens to be a straightforward mapping between the module’s
attributes and the global names defined in the module: they share the same name space!1

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module
attributes are writable: you can write ‘modname.the answer = 42’. Writable attributes may also be
deleted with the del statement, e.g. ‘del modname.the answer’.

Name spaces are created at different moments and have different lifetimes. The name space containing the
built-in names is created when the Python interpreter starts up, and is never deleted. The global name
space for a module is created when the module definition is read in; normally, module name spaces also
last until the interpreter quits. The statements executed by the top-level invocation of the interpreter,
either read from a script file or interactively, are considered part of a module called main , so they
have their own global name space. (The built-in names actually also live in a module; this is called

builtin .)

The local name space for a function is created when the function is called, and deleted when the function
returns or raises an exception that is not handled within the function. (Actually, forgetting would be
a better way to describe what actually happens.) Of course, recursive invocations each have their own
local name space.

A scope is a textual region of a Python program where a name space is directly accessible. “Directly
accessible” here means that an unqualified reference to a name attempts to find the name in the name
space.

Although scopes are determined statically, they are used dynamically. At any time during execution,
exactly three nested scopes are in use (i.e., exactly three name spaces are directly accessible): the
innermost scope, which is searched first, contains the local names, the middle scope, searched next,
contains the current module’s global names, and the outermost scope (searched last) is the name space
containing built-in names.

Usually, the local scope references the local names of the (textually) current function. Outside of func-
tions, the local scope references the same name space as the global scope: the module’s name space.
Class definitions place yet another name space in the local scope.

It is important to realize that scopes are determined textually: the global scope of a function defined in
a module is that module’s name space, no matter from where or by what alias the function is called. On
the other hand, the actual search for names is done dynamically, at run time — however, the language
definition is evolving towards static name resolution, at “compile” time, so don’t rely on dynamic name
resolution! (In fact, local variables are already determined statically.)

A special quirk of Python is that assignments always go into the innermost scope. Assignments do not
copy data — they just bind names to objects. The same is true for deletions: the statement ‘del x’

1Except for one thing. Module objects have a secret read-only attribute called dict which returns the dictionary
used to implement the module’s name space; the name dict is an attribute but not a global name. Obviously, using
this violates the abstraction of name space implementation, and should be restricted to things like post-mortem debuggers.
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removes the binding of x from the name space referenced by the local scope. In fact, all operations that
introduce new names use the local scope: in particular, import statements and function definitions bind
the module or function name in the local scope. (The global statement can be used to indicate that
particular variables live in the global scope.)

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

Class De�nition Syntax

The simplest form of class definition looks like this:

class ClassName:

<statement-1>

.

.

.

<statement-N>

Class definitions, like function definitions (def statements) must be executed before they have any effect.
(You could conceivably place a class definition in a branch of an if statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other state-
ments are allowed, and sometimes useful — we’ll come back to this later. The function definitions inside
a class normally have a peculiar form of argument list, dictated by the calling conventions for methods
— again, this is explained later.

When a class definition is entered, a new name space is created, and used as the local scope — thus, all
assignments to local variables go into this new name space. In particular, function definitions bind the
name of the new function here.

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper
around the contents of the name space created by the class definition; we’ll learn more about class objects
in the next section. The original local scope (the one in effect just before the class definitions was entered)
is reinstated, and the class object is bound here to the class name given in the class definition header
(ClassName in the example).

Class Objects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute references in Python: obj.name. Valid
attribute names are all the names that were in the class’s name space when the class object was created.
So, if the class definition looked like this:

class MyClass:

"A simple example class"

i = 12345

def f(x):

return ’hello world’

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a function object,
respectively. Class attributes can also be assigned to, so you can change the value of MyClass.i by
assignment. doc is also a valid attribute that’s read-only, returning the docstring belonging to the
class: "A simple example class").
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Class instantiation uses function notation. Just pretend that the class object is a parameterless function
that returns a new instance of the class. For example, (assuming the above class):

x = MyClass()

creates a new instance of the class and assigns this object to the local variable x.

Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are
attribute references. There are two kinds of valid attribute names.

The first I’ll call data attributes. These correspond to “instance variables” in Smalltalk, and to “data
members” in C++. Data attributes need not be declared; like local variables, they spring into existence
when they are first assigned to. For example, if x is the instance of MyClass created above, the following
piece of code will print the value 16, without leaving a trace:

x.counter = 1

while x.counter < 10:

x.counter = x.counter * 2

print x.counter

del x.counter

The second kind of attribute references understood by instance objects are methods. A method is a
function that “belongs to” an object. (In Python, the term method is not unique to class instances:
other object types can have methods as well, e.g., list objects have methods called append, insert,
remove, sort, and so on. However, below, we’ll use the term method exclusively to mean methods of
class instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that
are (user-defined) function objects define corresponding methods of its instances. So in our example,
x.f is a valid method reference, since MyClass.f is a function, but x.i is not, since MyClass.i is not.
But x.f is not the same thing as MyClass.f — it is a method object, not a function object.

Method Objects

Usually, a method is called immediately, e.g.:

x.f()

In our example, this will return the string ’hello world’. However, it is not necessary to call a method
right away: x.f is a method object, and can be stored away and called at a later moment, for example:

xf = x.f

while 1:

print xf()

will continue to print ‘hello world’ until the end of time.

What exactly happens when a method is called? You may have noticed that x.f() was called without
an argument above, even though the function definition for f specified an argument. What happened to
the argument? Surely Python raises an exception when a function that requires an argument is called
without any — even if the argument isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is that the object is
passed as the first argument of the function. In our example, the call x.f() is exactly equivalent to
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MyClass.f(x). In general, calling a method with a list of n arguments is equivalent to calling the
corresponding function with an argument list that is created by inserting the method’s object before the
first argument.

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters.
When an instance attribute is referenced that isn’t a data attribute, its class is searched. If the name
denotes a valid class attribute that is a function object, a method object is created by packing (pointers
to) the instance object and the function object just found together in an abstract object: this is the
method object. When the method object is called with an argument list, it is unpacked again, a new
argument list is constructed from the instance object and the original argument list, and the function
object is called with this new argument list.

9.4 Random Remarks

[These should perhaps be placed more carefully...]

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which
may cause hard-to-find bugs in large programs, it is wise to use some kind of convention that minimizes
the chance of conflicts, e.g., capitalize method names, prefix data attribute names with a small unique
string (perhaps just an underscore), or use verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In
other words, classes are not usable to implement pure abstract data types. In fact, nothing in Python
makes it possible to enforce data hiding — it is all based upon convention. (On the other hand, the
Python implementation, written in C, can completely hide implementation details and control access to
an object if necessary; this can be used by extensions to Python written in C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the methods
by stamping on their data attributes. Note that clients may add data attributes of their own to an
instance object without affecting the validity of the methods, as long as name conflicts are avoided —
again, a naming convention can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find
that this actually increases the readability of methods: there is no chance of confusing local variables
and instance variables when glancing through a method.

Conventionally, the first argument of methods is often called self. This is nothing more than a conven-
tion: the name self has absolutely no special meaning to Python. (Note, however, that by not following
the convention your code may be less readable by other Python programmers, and it is also conceivable
that a class browser program be written which relies upon such a convention.)

Any function object that is a class attribute defines a method for instances of that class. It is not
necessary that the function definition is textually enclosed in the class definition: assigning a function
object to a local variable in the class is also ok. For example:

# Function defined outside the class

def f1(self, x, y):

return min(x, x+y)

class C:

f = f1

def g(self):

return ’hello world’

h = g

Now f, g and h are all attributes of class C that refer to function objects, and consequently they are all
methods of instances of C — h being exactly equivalent to g. Note that this practice usually only serves
to confuse the reader of a program.

Methods may call other methods by using method attributes of the self argument, e.g.:
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class Bag:

def empty(self):

self.data = []

def add(self, x):

self.data.append(x)

def addtwice(self, x):

self.add(x)

self.add(x)

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create
objects in a known initial state. Therefore a class may define a special method named init (), like
this:

def __init__(self):

self.empty()

When a class defines an init () method, class instantiation automatically invokes init () for
the newly-created class instance. So in the Bag example, a new and initialized instance can be obtained
by:

x = Bag()

Of course, the init () method may have arguments for greater flexibility. In that case, arguments
given to the class instantiation operator are passed on to init (). For example,

>>> class Complex:

... def __init__(self, realpart, imagpart):

... self.r = realpart

... self.i = imagpart

...

>>> x = Complex(3.0,-4.5)

>>> x.r, x.i

(3.0, -4.5)

Methods may reference global names in the same way as ordinary functions. The global scope associated
with a method is the module containing the class definition. (The class itself is never used as a global
scope!) While one rarely encounters a good reason for using global data in a method, there are many
legitimate uses of the global scope: for one thing, functions and modules imported into the global scope
can be used by methods, as well as functions and classes defined in it. Usually, the class containing the
method is itself defined in this global scope, and in the next section we’ll find some good reasons why a
method would want to reference its own class!

9.5 Inheritance

Of course, a language feature would not be worthy of the name “class” without supporting inheritance.
The syntax for a derived class definition looks as follows:

class DerivedClassName(BaseClassName):

<statement-1>

.

.

.

<statement-N>
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The name BaseClassName must be defined in a scope containing the derived class definition. Instead of
a base class name, an expression is also allowed. This is useful when the base class is defined in another
module, e.g.,

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class. When the class object is
constructed, the base class is remembered. This is used for resolving attribute references: if a requested
attribute is not found in the class, it is searched in the base class. This rule is applied recursively if the
base class itself is derived from some other class.

There’s nothing special about instantiation of derived classes: DerivedClassName() creates a new in-
stance of the class. Method references are resolved as follows: the corresponding class attribute is
searched, descending down the chain of base classes if necessary, and the method reference is valid if this
yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges
when calling other methods of the same object, a method of a base class that calls another method
defined in the same base class, may in fact end up calling a method of a derived class that overrides it.
(For C++ programmers: all methods in Python are “virtual functions”.)

An overriding method in a derived class may in fact want to extend rather than simply replace the base
class method of the same name. There is a simple way to call the base class method directly: just call
‘BaseClassName.methodname(self, arguments)’. This is occasionally useful to clients as well. (Note
that this only works if the base class is defined or imported directly in the global scope.)

Multiple Inheritance

Python supports a limited form of multiple inheritance as well. A class definition with multiple base
classes looks as follows:

class DerivedClassName(Base1, Base2, Base3):

<statement-1>

.

.

.

<statement-N>

The only rule necessary to explain the semantics is the resolution rule used for class attribute references.
This is depth-first, left-to-right. Thus, if an attribute is not found in DerivedClassName, it is searched
in Base1, then (recursively) in the base classes of Base1, and only if it is not found there, it is searched
in Base2, and so on.

(To some people breadth first — searching Base2 and Base3 before the base classes of Base1 — looks
more natural. However, this would require you to know whether a particular attribute of Base1 is
actually defined in Base1 or in one of its base classes before you can figure out the consequences of a
name conflict with an attribute of Base2. The depth-first rule makes no differences between direct and
inherited attributes of Base1.)

It is clear that indiscriminate use of multiple inheritance is a maintenance nightmare, given the reliance
in Python on conventions to avoid accidental name conflicts. A well-known problem with multiple
inheritance is a class derived from two classes that happen to have a common base class. While it is
easy enough to figure out what happens in this case (the instance will have a single copy of “instance
variables” or data attributes used by the common base class), it is not clear that these semantics are in
any way useful.

9.6 Private Variables
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There is limited support for class-private identifiers. Any identifier of the form spam (at least two
leading underscores, at most one trailing underscore) is now textually replaced with classname spam,
where classname is the current class name with leading underscore(s) stripped. This mangling is done
without regard of the syntactic position of the identifier, so it can be used to define class-private instance
and class variables, methods, as well as globals, and even to store instance variables private to this class
on instances of other classes. Truncation may occur when the mangled name would be longer than 255
characters. Outside classes, or when the class name consists of only underscores, no mangling occurs.

Name mangling is intended to give classes an easy way to define “private” instance variables and methods,
without having to worry about instance variables defined by derived classes, or mucking with instance
variables by code outside the class. Note that the mangling rules are designed mostly to avoid accidents;
it still is possible for a determined soul to access or modify a variable that is considered private. This
can even be useful, e.g. for the debugger, and that’s one reason why this loophole is not closed. (Buglet:
derivation of a class with the same name as the base class makes use of private variables of the base class
possible.)

Notice that code passed to exec, eval() or evalfile() does not consider the classname of the invoking
class to be the current class; this is similar to the effect of the global statement, the effect of which is
likewise restricted to code that is byte-compiled together. The same restriction applies to getattr(),
setattr() and delattr(), as well as when referencing dict directly.

Here’s an example of a class that implements its own getattr and setattr methods and
stores all attributes in a private variable, in a way that works in Python 1.4 as well as in previous
versions:

class VirtualAttributes:

__vdict = None

__vdict_name = locals().keys()[0]

def __init__(self):

self.__dict__[self.__vdict_name] = {}

def __getattr__(self, name):

return self.__vdict[name]

def __setattr__(self, name, value):

self.__vdict[name] = value

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling together
a couple of named data items. An empty class definition will do nicely, e.g.:

class Employee:

pass

john = Employee() # Create an empty employee record

# Fill the fields of the record

john.name = ’John Doe’

john.dept = ’computer lab’

john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that
emulates the methods of that data type instead. For instance, if you have a function that formats some
data from a file object, you can define a class with methods read() and readline() that gets the data
from a string buffer instead, and pass it as an argument.
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Instance method objects have attributes, too: m.im self is the object of which the method is an instance,
and m.im func is the function object corresponding to the method.

Exceptions Can Be Classes

User-defined exceptions are no longer limited to being string objects — they can be identified by classes
as well. Using this mechanism it is possible to create extensible hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the first form, instance must be an instance of Class or of a class derived from it. The second form
is a shorthand for

raise instance.__class__, instance

An except clause may list classes as well as string objects. A class in an except clause is compatible with
an exception if it is the same class or a base class thereof (but not the other way around — an except
clause listing a derived class is not compatible with a base class). For example, the following code will
print B, C, D in that order:

class B:

pass

class C(B):

pass

class D(C):

pass

for c in [B, C, D]:

try:

raise c()

except D:

print "D"

except C:

print "C"

except B:

print "B"

Note that if the except clauses were reversed (with ‘except B’ first), it would have printed B, B, B —
the first matching except clause is triggered.

When an error message is printed for an unhandled exception which is a class, the class name is printed,
then a colon and a space, and finally the instance converted to a string using the built-in function str().
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CHAPTER

TEN

What Now?

Hopefully reading this tutorial has reinforced your interest in using Python. Now what should you do?

You should read, or at least page through, the Library Reference, which gives complete (though terse)
reference material about types, functions, and modules that can save you a lot of time when writing
Python programs. The standard Python distribution includes a lot of code in both C and Python;
there are modules to read Unix mailboxes, retrieve documents via HTTP, generate random numbers,
parse command-line options, write CGI programs, compress data, and a lot more; skimming through the
Library Reference will give you an idea of what’s available.

The major Python Web site is http://www.python.org; it contains code, documentation, and pointers to
Python-related pages around the Web. This web site is mirrored in various places around the world,
such as Europe, Japan, and Australia; a mirror may be faster than the main site, depending on your
geographical location. A more informal site is http://starship.skyport.net, which contains a bunch of Python-
related personal home pages; many people have downloadable software here.

For Python-related questions and problem reports, you can post to the newsgroup comp.lang.python,
or send them to the mailing list at python-list@cwi.nl. The newsgroup and mailing list are gatewayed,
so messages posted to one will automatically be forwarded to the other. There are around 35–45
postings a day, asking (and answering) questions, suggesting new features, and announcing new mod-
ules. Before posting, be sure to check the list of Frequently Asked Questions (also called the FAQ), at
http://www.python.org/doc/FAQ.html, or look for it in the ‘Misc/’ directory of the Python source distribu-
tion. The FAQ answers many of the questions that come up again and again, and may already contain
the solution for your problem.

You can support the Python community by joining the Python Software Activity, which runs the
python.org web, ftp and email servers, and organizes Python workshops. See http://www.python.org/psa/

for information on how to join.
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APPENDIX

A

Interactive Input Editing and History
Substitution

Some versions of the Python interpreter support editing of the current input line and history substitution,
similar to facilities found in the Korn shell and the GNU Bash shell. This is implemented using the GNU
Readline library, which supports Emacs-style and vi-style editing. This library has its own documentation
which I won’t duplicate here; however, the basics are easily explained.

A.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary or secondary prompt.
The current line can be edited using the conventional Emacs control characters. The most important of
these are: C-A (Control-A) moves the cursor to the beginning of the line, C-E to the end, C-B moves it
one position to the left, C-F to the right. Backspace erases the character to the left of the cursor, C-D
the character to its right. C-K kills (erases) the rest of the line to the right of the cursor, C-Y yanks back
the last killed string. C-underscore undoes the last change you made; it can be repeated for cumulative
effect.

A.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved in a history buffer, and
when a new prompt is given you are positioned on a new line at the bottom of this buffer. C-P moves
one line up (back) in the history buffer, C-N moves one down. Any line in the history buffer can be
edited; an asterisk appears in front of the prompt to mark a line as modified. Pressing the Return key
passes the current line to the interpreter. C-R starts an incremental reverse search; C-S starts a forward
search.

A.3 Key Bindings

The key bindings and some other parameters of the Readline library can be customized by placing
commands in an initialization file called ‘$HOME/.inputrc’. Key bindings have the form

key-name: function-name

or

"string": function-name

and options can be set with
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set option-name value

For example:

# I prefer vi-style editing:

set editing-mode vi

# Edit using a single line:

set horizontal-scroll-mode On

# Rebind some keys:

Meta-h: backward-kill-word

"\C-u": universal-argument

"\C-x\C-r": re-read-init-file

Note that the default binding for TAB in Python is to insert a TAB instead of Readline’s default filename
completion function. If you insist, you can override this by putting

TAB: complete

in your ‘$HOME/.inputrc’. (Of course, this makes it hard to type indented continuation lines...)

Automatic completion of variable and module names is optionally available. To enable it in the inter-
preter’s interactive mode, add the following to your ‘$HOME/.pythonrc’ file:

import rlcompleter, readline

readline.parse_and_bind(’tab: complete’)

This binds the TAB key to the completion function, so hitting the TAB key twice suggests completions;
it looks at Python statement names, the current local variables, and the available module names. For
dotted expressions such as string.a, it will evaluate the the expression up to the final ‘.’ and then
suggest completions from the attributes of the resulting object. Note that this may execute application-
defined code if an object with a getattr () method is part of the expression.

A.4 Commentary

This facility is an enormous step forward compared to previous versions of the interpreter; however,
some wishes are left: It would be nice if the proper indentation were suggested on continuation lines (the
parser knows if an indent token is required next). The completion mechanism might use the interpreter’s
symbol table. A command to check (or even suggest) matching parentheses, quotes etc. would also be
useful.
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