Python Library Reference
Release 2.2.2

Guido van Rossum
Fred L. Drake, Jr., editor

October 14, 2002

PythonLabs
Email: python-docs@python.org

Copyright (©) 2001 Python Software Foundation. All rights reserved.

Copyright (© 2000 BeOpen.com. All rights reserved.

Copyright (©) 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright (©) 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range
of applications, from simple text processing scripts to interactive Web browsers.

While the Python Reference Manual describes the exact syntax and semantics of the language, it does
not describe the standard library that is distributed with the language, and which greatly enhances its
immediate usability. This library contains built-in modules (written in C) that provide access to system
functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as
modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability
of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library
modules (which may or may not be available, depending on whether the underlying platform supports
them and on the configuration choices made at compile time). It also documents the standard types of the
language and its built-in functions and exceptions, many of which are not or incompletely documented
in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to
Python, see the Python Tutorial; the Python Reference Manual remains the highest authority on syntactic
and semantic questions. Finally, the manual entitled Eztending and Embedding the Python Interpreter
describes how to add new extensions to Python and how to embed it in other applications.

CONTENTS

1 Introduction 1
2 Built-in Functions, Types, and Exceptions 3
2.1 Built-in Functions L 3
2.2 Built-in Types o e e e e e 12
2.3 Built-in Exceptions oL 27
3 Python Runtime Services 31
3.1 sys — System-specific parameters and functionso 31
3.2 gc — Garbage Collector interface 36
3.3 weakref — Weak references L L L 38
3.4 fpectl — Floating point exception control oo 41
3.5 atexit — Exit handlers 43
3.6 types — Names for all built-in types o oo 43
3.7 UserDict — Class wrapper for dictionary objects 45
3.8 UserList — Class wrapper for list objects 46
3.9 UserString — Class wrapper for string objects 46
3.10 operator — Standard operators as functions. Lo oL 47
3.11 imspect — Inspect live objects Lo 51
3.12 traceback — Print or retrieve a stack traceback o000 55
3.13 linecache — Random access to text lines 57
3.14 pickle — Python object serializationo oL 57
3.15 cPickle — A faster pickle 65
3.16 copy_reg — Register pickle support functions Lo 66
3.17 shelve — Python object persistence 66
3.18 copy — Shallow and deep copy operations 67
3.19 marshal — Internal Python object serialization 68
3.20 warnings — Warning control oL oL o 69
3.21 imp — Access the import internals oL Lo 71
3.22 code — Interpreter base classes L 74
3.23 codeop — Compile Python code 76
3.24 pprint — Data pretty printero Lo 7
3.25 repr — Alternate repr () implementation 79
3.26 new — Creation of runtime internal objects L o oL 80
3.27 site — Site-specific configuration hook oo o000 81
3.28 user — User-specific configuration hook 0oL 82
3.29 __builtin__ — Built-in functions oo o 82
3.30 __main__ — Top-level script environment Lo oo 82
4 String Services 85
4.1 string — Common string operations e 85
4.2 re — Regular expression operations L Lo 88
4.3 struct — Interpret strings as packed binary data 97

4.4
4.5
4.6
4.7
4.8
4.9

difflib — Helpers for computing deltas
fpformat — Floating point conversions oL 0oL
StringI0 — Read and write strings as files o oL
cStringI0 — Faster version of StringI0 oo
codecs — Codec registry and base classes o o
unicodedata — Unicode Database

Miscellaneous Services

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

pydoc — Documentation generator and online help system
doctest — Test docstrings represent reality Lo oL
unittest — Unit testing framework
math — Mathematical functions e
cmath — Mathematical functions for complex numbers
random — Generate pseudo-random numberso
whrandom — Pseudo-random number generator L.
bisect — Array bisection algorithm
array — BEfficient arrays of numeric valueso oL
ConfigParser — Configuration file parser
fileinput — Iterate over lines from multiple input streams
xreadlines — Efficient iteration over afile oL
calendar — General calendar-related functions Lo
cmd — Support for line-oriented command interpreters
shlex — Simple lexical analysis L

Generic Operating System Services

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

os — Miscellaneous operating system interfaces
os.path — Common pathname manipulations
dircache — Cached directory listings o oL
stat — Interpreting stat() results Lo
statcache — An optimization of os.stat()
statvfs — Constants used with os.statvfs(),
filecmp — File and Directory Comparisons
popen2 — Subprocesses with accessible I/O streams
time — Time access and conversionso e e
sched — Event scheduler
mutex — Mutual exclusion support Lo
getpass — Portable password inputo oo oo
curses — Terminal handling for character-cell displays
curses.textpad — Text input widget for curses programs
curses.wrapper — Terminal handler for curses programs.
curses.ascii — Utilities for ASCII characters
curses.panel — A panel stack extension for curses. L.
getopt — Parser for command line optionso oL
tempfile — Generate temporary filenames oo
errno — Standard errno system symbols L oL
glob — UNIX style pathname pattern expansion
fnmatch — UNIX filename pattern matching L.
shutil — High-level file operations o
locale — Internationalization services
gettext — Multilingual internationalization services

Optional Operating System Services

7.1
7.2
7.3
7.4
7.5
7.6
7.7

signal — Set handlers for asynchronous events L.
socket — Low-level networking interface
select — Waiting for I/O completion Lo
thread — Multiple threads of control
threading — Higher-level threading interface
Queue — A synchronized queue class e
mmap — Memory-mapped file support oo

113
113
114
119
128
130
131
134
135
136
138
141
142
143
144
145

7.8 anydbm — Generic access to DBM-style databases 240

7.9 dumbdbm — Portable DBM implementation 0L, 241
7.10 dbhash — DBM-style interface to the BSD database library 241
7.11 whichdb — Guess which DBM module created a database 242
7.12 bsddb — Interface to Berkeley DB library 0. 243
7.13 zlib — Compression compatible with gzip L. 244
7.14 gzip — Support for gzip fileso 246
7.15 zipfile — Work with ZIP archives o o 247
7.16 readline — GNU readline interface 250
7.17 rlcompleter — Completion function for GNU readline 251
8 Unix Specific Services 253
8.1 posix — The most common POSIX system calls 253
8.2 pwd — The password database Lo 254
8.3 grp — The group database L L 255
8.4 crypt — Function to check UNIX passwords 255
8.5 dl — Call C functions in shared objects Lo oL 256
8.6 dbm — Simple “database” interface Lo oL o 257
8.7 gdbm — GNU’s reinterpretation of dbm o000 258
8.8 termios — POSIX style tty control 259
8.9 TERMIOS — Constants used with the termios module 260
8.10 tty — Terminal control functions L o 260
8.11 pty — Pseudo-terminal utilities oL o 260
8.12 fcntl — The fentl() and ioctl() systemcalls. L. 261
8.13 pipes — Interface to shell pipelines o 262
8.14 posixfile — File-like objects with locking support 263
8.15 resource — Resource usage information L L0000 265
8.16 nis — Interface to Sun’s NIS (Yellow Pages) 267
8.17 syslog — UNIX syslog library routines 268
8.18 commands — Utilities for running commands L oo 268
9 The Python Debugger 271
9.1 Debugger Commands L e 272
9.2 How It Works e 274
10 The Python Profiler 275
10.1 Imtroduction to the profiler L 275
10.2 How Is This Profiler Different From The Old Profiler? 275
10.3 Imstant Users Manual L L 276
10.4 What Is Deterministic Profiling? o 277
10.5 Reference Manual L 278
10.6 Limitations e 280
10.7 Calibration oL e 281
10.8 Extensions — Deriving Better Profilers o oo 282
11 Internet Protocols and Support 283
11.1 webbrowser — Convenient Web-browser controller 283
11.2 cgi — Common Gateway Interface support. 285
11.3 cgitb — Traceback manager for CGL scripts, 291
11.4 urllib — Open arbitrary resources by URL 292
11.5 urllib2 — extensible library for opening URLs 296
11.6 httplib — HTTP protocol client 302
11.7 ftplib — FTP protocol client L o 305
11.8 gopherlib — Gopher protocol client L oo 308
11.9 poplib — POP3 protocol client L 308
11.10 imaplib — IMAP4 protocol client L 310
11.11 nntplib — NNTP protocol client 313
11.12 smtplib — SMTP protocol client 316

11.13 telnetlib — Telnet client e e e 320

11.14 urlparse — Parse URLs into components
11.15 SocketServer — A framework for network servers L.
11.16 BaseHTTPServer — Basic HTTP server
11.17 SimpleHTTPServer — Simple HTTP request handler
11.18 CGIHTTPServer — CGl-capable HTTP request handler
11.19 Cookie — HTTP state management
11.20 xmlrpclib — XML-RPC client access
11.21 SimpleXMLRPCServer — Basic XML-RPC server
11.22 asyncore — Asynchronous socket handler o 0oL,

12 Internet Data Handling

12.1 formatter — Generic output formatting oo
12.2 email — An email and MIME handling package
12.3 mailcap — Mailcap file handling. L
12.4 mailbox — Read various mailbox formats 0oL
12.5 mhlib — Access to MH mailboxes
12.6 mimetools — Tools for parsing MIME messages
12.7 mimetypes — Map filenames to MIME types L.
12.8 MimeWriter — Generic MIME file writer
12.9 mimify — MIME processing of mail messages,
12.10 multifile — Support for files containing distinct parts
12.11 r£c822 — Parse RFC 2822 mail headers
12.12 base64 — Encode and decode MIME base64 data
12.13 binascii — Convert between binary and ASCIT,
12.14 binhex — Encode and decode binhex4 files oL oL
12.15 quopri — Encode and decode MIME quoted-printable data
12.16 uu — Encode and decode uuencode fileso
12.17 xdrlib — Encode and decode XDR data
12.18 netrc — netrc file processing
12.19 robotparser — Parser for robots.txt L o oo oo

13 Structured Markup Processing Tools

13.1 HTMLParser — Simple HTML and XHTML parser
13.2 sgmllib — Simple SGML parser L
13.3 htmllib — A parser for HTML documents
13.4 htmlentitydefs — Definitions of HTML general entities
13.5 xml.parsers.expat — Fast XML parsing using Expat
13.6 xml.dom — The Document Object Model APT
13.7 xml.dom.minidom — Lightweight DOM implementation
13.8 zml.dom.pulldom — Support for building partial DOM trees
13.9 zml.sax — Support for SAX2 parsers Lo
13.10 xml.sax.handler — Base classes for SAX handlers
13.11 xml.sax.saxutils — SAX Utilities L
13.12 xml.sax.xmlreader — Interface for XML parsers
13.13 xm11ib — A parser for XML documents L Lo

14 Multimedia Services

14.1 audioop — Manipulate raw audio data Lo Lo
14.2 imageop — Manipulate raw image data oL
14.3 aifc — Read and write AIFF and ATFC files.
14.4 sunau — Read and write Sun AU files oL o o
14.5 wave — Read and write WAV files L
14.6 chunk — Read IFF chunked data
14.7 colorsys — Conversions between color systems
14.8 rgbimg — Read and write “SGI RGB” files
14.9 imghdr — Determine the type of an image
14.10 sndhdr — Determine type of sound file oL oL oL

15 Cryptographic Services

339
339
343
369
369
371
373
374
376
376
378
379
383
384
385
386
386
387
390
390

393
393
395
397
398
398
405
414
418
419
420
424
425
429

433
433
436
437
439
441
443
444
445
445
446

447

15.1 hmac — Keyed-Hashing for Message Authentication 447

15.2 md5 — MD5 message digest algorithm oo 448
15.3 sha — SHA message digest algorithm 448
15.4 mpz — GNU arbitrary magnitude integers. L oL 449
15.5 rotor — Enigma-like encryption and decryption 450
16 Graphical User Interfaces with Tk 453
16.1 Tkinter — Python interface to Tcl/Tk o o oL 453
16.2 Tix — Extension widgets for Tk o 463
16.3 ScrolledText — Scrolled Text Widget 468
16.4 turtle — Turtle graphics for Tk 468
16.5 Idle o o e 470
16.6 Other Graphical User Interface Packages 473
17 Restricted Execution 475
17.1 rexec — Restricted execution framework 0oL 476
17.2 Bastion — Restricting access to objects L oL oo 479
18 Python Language Services 481
18.1 parser — Access Python parse trees o 481
18.2 symbol — Constants used with Python parse trees. 489
18.3 token — Constants used with Python parse trees 490
18.4 keyword — Testing for Python keywords 490
18.5 tokenize — Tokenizer for Python source oL 490
18.6 tabnanny — Detection of ambiguous indentation 0oL 491
18.7 pyclbr — Python class browser support o 492
18.8 py_compile — Compile Python source files 492
18.9 compileall — Byte-compile Python libraries 493
18.10 dis — Disassembler for Python byte code 0oL 493
18.11 distutils — Building and installing Python modules 500
19 Python compiler package 501
19.1 The basic interface L 501
19.2 Limitations Lo e e e 502
19.3 Python Abstract Syntax 502
19.4 Using Visitors to Walk ASTso o 506
19.5 Bytecode Generation Lo 507
20 SGI IRIX Specific Services 509
20.1 al — Audio functions on the SGI Lo 509
20.2 AL — Constants used with the al module L. 511
20.3 cd — CD-ROM access on SGI systems 0 e 511
20.4 £1 — FORMS library for graphical user interfaces 514
20.5 FL — Constants used with the f1 module 519
20.6 flp — Functions for loading stored FORMS designs 519
20.7 fm — Font Manager interface L 519
20.8 gl — Graphics Library interfaceo oL 520
20.9 DEVICE — Constants used with the gl module 522
20.10 GL — Constants used with the gl module 000 522
20.11 imgfile — Support for SGI imglib files oo oo 522
20.12 jpeg — Read and write JPEG files oo o 523
21 SunOS Specific Services 525
21.1 sunaudiodev — Access to Sun audio hardware00 525
21.2 SUNAUDIODEV — Constants used with sunaudiodev 526
22 MS Windows Specific Services 527
22.1 msvcrt — Useful routines from the MS VC++ runtime 527
22.2 _winreg — Windows registry access L o e 528

22.3 winsound — Sound-playing interface for Windows
Undocumented Modules

A1 Frameworks
A.2 Miscellaneous useful utilities o o
A.3 Platform specific modules
A4 Multimedia e e e e
A5 Obsolete e
A.6 SGIl-specific Extension modules Lo

B Reporting Bugs

History and License

C.1 History of the software
C.2 Terms and conditions for accessing or otherwise using Python

Module Index

Index

535
535
535
535
535
536
037

539

541
541
541

545

549

vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as
numbers and lists. For these types, the Python language core defines the form of literals and places some
constraints on their semantics, but does not fully define the semantics. (On the other hand, the language
core does define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python
code without the need of an import statement. Some of these are defined by the core language, but
many are not essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect
this collection. Some modules are written in C and built in to the Python interpreter; others are written
in Python and imported in source form. Some modules provide interfaces that are highly specific to
Python, like printing a stack trace; some provide interfaces that are specific to particular operating
systems, such as access to specific hardware; others provide interfaces that are specific to a particular
application domain, like the World Wide Web. Some modules are available in all versions and ports of
Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in
functions and exceptions, and finally the modules, grouped in chapters of related modules. The ordering
of the chapters as well as the ordering of the modules within each chapter is roughly from most relevant
to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when
you get bored, you will get a reasonable overview of the available modules and application areas that
are supported by the Python library. Of course, you don’t have to read it like a novel — you can also
browse the table of contents (in front of the manual), or look for a specific function, module or term in
the index (in the back). And finally, if you enjoy learning about random subjects, you choose a random
page number (see module random) and read a section or two. Regardless of the order in which you read
the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions and Functions,”
as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Functions, Types, and Exceptions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched
last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.!

The tables in this chapter document the priorities of operators by listing them in order of ascending
priority (within a table) and grouping operators that have the same priority in the same box. Binary
operators of the same priority group from left to right. (Unary operators group from right to left, but
there you have no real choice.) See chapter 5 of the Python Reference Manual for the complete picture
on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed
here in alphabetical order.

__import__(name [, globals[, locals[, fromlist]]])
This function is invoked by the import statement. It mainly exists so that you can replace it with
another function that has a compatible interface, in order to change the semantics of the import
statement. For examples of why and how you would do this, see the standard library modules
ihooks and rexec. See also the built-in module imp, which defines some useful operations out of
which you can build your own __import__() function.

For example, the statement ‘import spam’ results in the following call: __import__(’spam’,
globals(), locals(), [1); the statement ‘from spam.ham import eggs’ results in
‘__import__(’spam.ham’, globals(), locals(), [’eggs’])’. Note that even though

locals() and [’eggs’] are passed in as arguments, the __import__() function does not set
the local variable named eggs; this is done by subsequent code that is generated for the import
statement. (In fact, the standard implementation does not use its locals argument at all, and uses
its globals only to determine the package context of the import statement.)

When the name variable is of the form package.module, normally, the top-level package (the
name up till the first dot) is returned, not the module named by name. However, when a non-
empty fromlist argument is given, the module named by name is returned. This is done for
compatibility with the bytecode generated for the different kinds of import statement; when using
‘import spam.ham.eggs’, the top-level package spam must be placed in the importing namespace,
but when using ‘from spam.ham import eggs’, the spam.ham subpackage must be used to find the
eggs variable. As a workaround for this behavior, use getattr () to extract the desired components.
For example, you could define the following helper:

import string

def my_import (name) :

1 Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version
of this manual.

mod = __import__(name)
components = string.split(name, ’.’)
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs(z)
Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

apply (function, args [, keywords])

The function argument must be a callable object (a user-defined or built-in function or method,
or a class object) and the args argument must be a sequence. The function is called with args as
the argument list; the number of arguments is the length of the tuple. If the optional keywords
argument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments
to be added to the end of the the argument list. Calling apply () is different from just calling
function Cargs), since in that case there is always exactly one argument. The use of apply() is
equivalent to function (xargs, **keywords). Use of apply() is not necessary since the “extended
call syntax,” as used in the last example, is completely equivalent.

buffer(object[, offset [, size]])
The object argument must be an object that supports the buffer call interface (such as strings,
arrays, and buffers). A new buffer object will be created which references the object argument.
The buffer object will be a slice from the beginning of object (or from the specified offset). The
slice will extend to the end of object (or will have a length given by the size argument).

callable(object)
Return true if the object argument appears callable, false if not. If this returns true, it is still
possible that a call fails, but if it is false, calling object will never succeed. Note that classes
are callable (calling a class returns a new instance); class instances are callable if they have a
__call__ () method.

chr (¢)
Return a string of one character whose ASCII code is the integer . For example, chr(97) returns
the string ’a’. This is the inverse of ord(). The argument must be in the range [0..255], inclusive;
ValueError will be raised if 7 is outside that range.

cmp (z, y)
Compare the two objects x and y and return an integer according to the outcome. The return
value is negative if z < y, zero if z == y and strictly positive if z > y.

coerce(z, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the
same rules as used by arithmetic operations.

compile(string, filename, kind[, ﬂags[, dontfinherit]])

Compile the string into a code object. Code objects can be executed by an exec statement or
evaluated by a call to eval(). The filename argument should give the file from which the code
was read; pass some recognizable value if it wasn’t read from a file (’<string>’ is commonly
used). The kind argument specifies what kind of code must be compiled; it can be ’exec’ if string
consists of a sequence of statements, ’eval’ if it consists of a single expression, or ’single’ if it
consists of a single interactive statement (in the latter case, expression statements that evaluate to
something else than None will printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a
single newline character (*\n’), and the input must be terminated by at least one newline character.
If line endings are represented by ’\r\n’, use the string replace() method to change them into
\n’.

The optional arguments flags and dont_inherit (which are new in Python 2.2) control which future
statements (see PEP 236) affect the compilation of string. If neither is present (or both are zero) the
code is compiled with those future statements that are in effect in the code that is calling compile. If
the flags argument is given and dont_inherit is not (or is zero) then the future statements specified
by the flags argument are used in addition to those that would be used anyway. If dont_inherit is

4 Chapter 2. Built-in Functions, Types, and Exceptions

a non-zero integer then the flags argument is it — the future statements in effect around the call to
compile are ignored.

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple
statements. The bitfield required to specify a given feature can be found as the compiler_ flag
attribute on the _Feature instance in the __future__ module.

complex(real[, z'mag])
Create a complex number with the value real + imag*j or convert a string or number to a complex
number. If the first parameter is a string, it will be interpreted as a complex number and the
function must be called without a second parameter. The second parameter can never be a string.
Each argument may be any numeric type (including complex). If imag is omitted, it defaults to
zero and the function serves as a numeric conversion function like int (), long() and float().

delattr (object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be
the name of one of the object’s attributes. The function deletes the named attribute, provided the
object allows it. For example, delattr(z, ’foobar’) is equivalent to del x.foobar.

dict([mapping—or—sequence])

Return a new dictionary initialized from the optional argument. If an argument is not specified,
return a new empty dictionary. If the argument is a mapping object, return a dictionary mapping
the same keys to the same values as does the mapping object. Else the argument must be a
sequence, a container that supports iteration, or an iterator object. The elements of the argument
must each also be of one of those kinds, and each must in turn contain exactly two objects. The
first is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen
more than once, the last value associated with it is retained in the new dictionary. For example,
these all return a dictionary equal to {1: 2, 2: 3}

edict({1: 2, 2: 3}

edict({1: 2, 2: 3}.items())
edict({1: 2, 2: 3}.iteritems())
edict(zip((1, 2), (2, 3)))
edict([[2, 3], [1, 211)
edict([(i-1, i) for i in (2, 3)])

New in version 2.2.

dir([object])

Without arguments, return the list of names in the current local symbol table. With an argument,
attempts to return a list of valid attributes for that object. This information is gleaned from
the object’s __dict__ attribute, if defined, and from the class or type object. The list is not
necessarily complete. If the object is a module object, the list contains the names of the module’s
attributes. If the object is a type or class object, the list contains the names of its attributes, and
recursively of the attributes of its bases. Otherwise, the list contains the object’s attributes’ names,
the names of its class’s attributes, and recursively of the attributes of its class’s base classes. The
resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’, ’struct’]

>>> dir(struct)

[’__doc__’, ’__name__’, ’calcsize’, ’error’, ’pack’, ’unpack’]

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it
tries to supply an interesting set of names more than it tries to supply a rigorously or consistently
defined set of names, and its detailed behavior may change across releases.

divmod(a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and

2.1. Built-in Functions 5

remainder when using long division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a / b, a % b). For
floating point numbers the result is (¢, a % b), where ¢ is usually math.floor(a / b) but may
be 1 less than that. In any case ¢ * b + a % b is very close to a, if a % b is non-zero it has the
same sign as b, and 0 <= abs(a % b) < abs(b).

Changed in version 2.3: Using divmod () with complex numbers is deprecated.

eval(e:rpression[, globals[, locals]])
The arguments are a string and two optional dictionaries. The expression argument is parsed and
evaluated as a Python expression (technically speaking, a condition list) using the globals and locals
dictionaries as global and local name space. If the locals dictionary is omitted it defaults to the
globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

>>> x =1
>>> print eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (such as those created by
compile()). In this case pass a code object instead of a string. The code object must have
been compiled passing ’eval’ as the kind argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of state-
ments from a file is supported by the execfile () function. The globals() and locals() functions
returns the current global and local dictionary, respectively, which may be useful to pass around
for use by eval() or execfile().

execfile(ﬁle[, globals[, locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different
from the import statement in that it does not use the module administration — it reads the file
unconditionally and does not create a new module.?

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a
sequence of Python statements (similarly to a module) using the globals and locals dictionaries as
global and local namespace. If the locals dictionary is omitted it defaults to the globals dictionary.
If both dictionaries are omitted, the expression is executed in the environment where execfile ()
is called. The return value is None.

Warning: The default locals act as described for function locals() below: modifications to the
default locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to
see effects of the code on locals after function execfile() returns. execfile() cannot be used
reliably to modify a function’s locals.

file(filename [, mode[, bufsize]])
Return a new file object (described earlier under Built-in Types). The first two arguments are the
same as for stdio’s fopen(): filename is the file name to be opened, mode indicates how the file
is to be opened: ’r’ for reading, ’w’ for writing (truncating an existing file), and ’a’ opens it
for appending (which on some UNIX systems means that all writes append to the end of the file,
regardless of the current seek position).

Modes ’r+’, *w+’ and ’a+’ open the file for updating (note that *w+’ truncates the file). Append
’b’ to the mode to open the file in binary mode, on systems that differentiate between binary and
text files (else it is ignored). If the file cannot be opened, I0Error is raised.

If mode is omitted, it defaults to >r’. When opening a binary file, you should append ’b’ to the
mode value for improved portability. (It’s useful even on systems which don’t treat binary and text
files differently, where it serves as documentation.) The optional bufsize argument specifies the
file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negative bufsize means to use the system default,

2Tt is used relatively rarely so does not warrant being made into a statement.

6 Chapter 2. Built-in Functions, Types, and Exceptions

which is usually line buffered for for tty devices and fully buffered for other files. If omitted, the
system default is used.?

The file() constructor is new in Python 2.2. The previous spelling, open(), is retained for
compatibility, and is an alias for file().

filter (function, list)
Construct a list from those elements of list for which function returns true. list may be either
a sequence, a container which supports iteration, or an iterator, If list is a string or a tuple, the
result also has that type; otherwise it is always a list. If function is None, the identity function is
assumed, that is, all elements of list that are false (zero or empty) are removed.

float(z)
Convert a string or a number to floating point. If the argument is a string, it must contain a
possibly signed decimal or floating point number, possibly embedded in whitespace; this behaves
identical to string.atof (z). Otherwise, the argument may be a plain or long integer or a floating
point number, and a floating point number with the same value (within Python’s floating point
precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

getattr (object, name[, default])
Return the value of the named attributed of object. name must be a string. If the string is the
name of one of the object’s attributes, the result is the value of that attribute. For example,
getattr(x, ’foobar’) is equivalent to x.foobar. If the named attribute does not exist, default
is returned if provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of
the current module (inside a function or method, this is the module where it is defined, not the
module from which it is called).

hasattr(object, name)
The arguments are an object and a string. The result is 1 if the string is the name of one of the
object’s attributes, 0 if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to
quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal
have the same hash value (even if they are of different types, as is the case for 1 and 1.0).

help([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is
given, the interactive help system starts on the interpreter console. If the argument is a string, then
the string is looked up as the name of a module, function, class, method, keyword, or documentation
topic, and a help page is printed on the console. If the argument is any other kind of object, a help
page on the object is generated. New in version 2.2.

hex(z)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python
expression. Note: this always yields an unsigned literal. For example, on a 32-bit machine,
hex(-1) yields *0xffffffff’. When evaluated on a machine with the same word size, this literal
is evaluated as -1; at a different word size, it may turn up as a large positive number or raise an
OverflowError exception.

id (object)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be
unique and constant for this object during its lifetime. Two objects whose lifetimes are disjunct

3Specifying a buffer size currently has no effect on systems that don’t have setvbuf (). The interface to specify the
buffer size is not done using a method that calls setvbuf (), because that may dump core when called after any I/O has
been performed, and there’s no reliable way to determine whether this is the case.

2.1. Built-in Functions 7

may have the same id() value. (Implementation note: this is the address of the object.)

input([prompt])
Equivalent to eval (raw_input (prompt)). Warning: This function is not safe from user errors!
It expects a valid Python expression as input; if the input is not syntactically valid, a SyntaxError
will be raised. Other exceptions may be raised if there is an error during evaluation. (On the other
hand, sometimes this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

Consider using the raw_input () function for general input from users.

int (;L’[, radix])

Convert a string or number to a plain integer. If the argument is a string, it must contain a pos-
sibly signed decimal number representable as a Python integer, possibly embedded in whitespace;
this behaves identical to string.atoi(q:[, mdix]). The radiz parameter gives the base for the
conversion and may be any integer in the range [2, 36], or zero. If radiz is zero, the proper radix
is guessed based on the contents of string; the interpretation is the same as for integer literals. If
radiz is specified and z is not a string, TypeError is raised. Otherwise, the argument may be a
plain or long integer or a floating point number. Conversion of floating point numbers to integers
truncates (towards zero).

intern(string)
Enter string in the table of “interned” strings and return the interned string — which is string itself
or a copy. Interning strings is useful to gain a little performance on dictionary lookup — if the keys
in a dictionary are interned, and the lookup key is interned, the key comparisons (after hashing)
can be done by a pointer compare instead of a string compare. Normally, the names used in Python
programs are automatically interned, and the dictionaries used to hold module, class or instance
attributes have interned keys. Interned strings are immortal (never get garbage collected).

isinstance (object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct or
indirect) subclass thereof. Also return true if classinfo is a type object and object is an object of
that type. If object is not a class instance or a object of the given type, the function always returns
false. If classinfo is neither a class object nor a type object, it may be a tuple of class or type
objects, or may recursively contain other such tuples (other sequence types are not accepted). If
classinfo is not a class, type, or tuple of classes, types, and such tuples, a TypeError exception is
raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass(classi, class2)
Return true if class! is a subclass (direct or indirect) of class2. A class is considered a subclass of
itself. If either argument is not a class object, a TypeError exception is raised.

iter(o[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the
presence of the second argument. Without a second argument, o must be a collection object
which supports the iteration protocol (the —_iter__() method), or it must support the sequence
protocol (the __getitem__ () method with integer arguments starting at 0). If it does not support
either of those protocols, TypeError is raised. If the second argument, sentinel, is given, then o
must be a callable object. The iterator created in this case will call o with no arguments for each
call to its next () method; if the value returned is equal to sentinel, StopIteration will be raised,
otherwise the value will be returned. New in version 2.2.

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (string,
tuple or list) or a mapping (dictionary).

list([sequence])
Return a list whose items are the same and in the same order as sequence’s items. sequence may be
either a sequence, a container that supports iteration, or an iterator object. If sequence is already
a list, a copy is made and returned, similar to sequence[:]. For instance, list (’abc’) returns
[’a’, ’b’, ’c’] and 1list((1, 2, 3)) returns [1, 2, 3].

8 Chapter 2. Built-in Functions, Types, and Exceptions

locals()
Return a dictionary representing the current local symbol table. Warning: The contents of this
dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long(a:[, mdix])
Convert a string or number to a long integer. If the argument is a string, it must contain a
possibly signed number of arbitrary size, possibly embedded in whitespace; this behaves identical
to string.atol(z). The radiz argument is interpreted in the same way as for int (), and may
only be given when z is a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating
point numbers to integers truncates (towards zero).

map (function, list, ...)
Apply function to every item of list and return a list of the results. If additional list arguments are
passed, function must take that many arguments and is applied to the items of all lists in parallel;
if a list is shorter than another it is assumed to be extended with None items. If function is None,
the identity function is assumed; if there are multiple list arguments, map () returns a list consisting
of tuples containing the corresponding items from all lists (a kind of transpose operation). The list
arguments may be any kind of sequence; the result is always a list.

max(s[, args...])
With a single argument s, return the largest item of a non-empty sequence (such as a string, tuple
or list). With more than one argument, return the largest of the arguments.

min(s[, args...])
With a single argument s, return the smallest item of a non-empty sequence (such as a string,
tuple or list). With more than one argument, return the smallest of the arguments.

oct(x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression.
Note: this always yields an unsigned literal. For example, on a 32-bit machine, oct(-1) yields
2037777777777°. When evaluated on a machine with the same word size, this literal is evaluated
as -1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

open (filename [, mode [, bufsize]])
An alias for the file() function above.

ord(c)
Return the AscII value of a string of one character or a Unicode character. E.g., ord(’a’) returns
the integer 97, ord(u’
u2020°) returns 8224. This is the inverse of chr() for strings and of unichr() for Unicode
characters.

pout,])
Return z to the power y; if z is present, return z to the power y, modulo z (computed more
efficiently than pow(z, y) % z). The arguments must have numeric types. With mixed operand
types, the coercion rules for binary arithmetic operators apply. For int and long int operands, the
result has the same type as the operands (after coercion) unless the second argument is negative;
in that case, all arguments are converted to float and a float result is delivered. For example,
10%*2 returns 100, but 10%*-2 returns 0.01. (This last feature was added in Python 2.2. In
Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must
be omitted. If z is present, z and y must be of integer types, and y must be non-negative. (This
restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argument pow() returned
platform-dependent results depending on floating-point rounding accidents.)

range([start,] stop [, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used
in for loops. The arguments must be plain integers. If the step argument is omitted, it defaults
to 1. If the start argument is omitted, it defaults to 0. The full form returns a list of plain integers

2.1. Built-in Functions 9

[start, start + step, start + 2 * step, ...]. If step is positive, the last element is the largest
start + i * step less than stop; if step is negative, the last element is the largest start + i * step
greater than stop. step must not be zero (or else ValueError is raised). Example:

>>> range(10)

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

o, 3, 6, 9]

>>> range(0, -10, -1)

o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

1

>>> range(1, 0)

1

raw_input ([prompt])

If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and
returns that. When EOF is read, EOFError is raised. Example:

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> s

"Monty Python’s Flying Circus"

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing
and history features.

reduce (function, sequence[, z'm'tialz'zer])

Apply function of two arguments cumulatively to the items of sequence, from left to right, so as
to reduce the sequence to a single value. For example, reduce(lambda x, y: =x+y, [1, 2, 3,
4, 5]) calculates ((((1+2)+3)+4)+5). If the optional initializer is present, it is placed before the
items of the sequence in the calculation, and serves as a default when the sequence is empty. If
initializer is not given and sequence contains only one item, the first item is returned.

reload (module)

Re-parse and re-initialize an already imported module. The argument must be a module object,
so it must have been successfully imported before. This is useful if you have edited the module
source file using an external editor and want to try out the new version without leaving the Python
interpreter. The return value is the module object (the same as the module argument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does
not bind its name locally, but does store a (partially initialized) module object in sys.modules. To
reload the module you must first import it again (this will bind the name to the partially initialized
module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained.
Redefinitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache
of objects — with a try statement it can test for the table’s presence and skip its initialization if
desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except
for sys, __main__ and __builtin__. In many cases, however, extension modules are not designed
to be initialized more than once, and may fail in arbitrary ways when reloaded.

10

Chapter 2. Built-in Functions, Types, and Exceptions

If a module imports objects from another module using from ... import ..., calling reload()

for the other module does not redefine the objects imported from it — one way around this is
to re-execute the from statement, another is to use import and qualified names (module.name)
instead.

If a module instantiates instances of a class, reloading the module that defines the class does not
affect the method definitions of the instances — they continue to use the old class definition. The
same is true for derived classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded
by conversions (reverse quotes). It is sometimes useful to be able to access this operation as an
ordinary function. For many types, this function makes an attempt to return a string that would
yield an object with the same value when passed to eval().

round(a:[, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it
defaults to zero. The result is a floating point number. Values are rounded to the closest multiple
of 10 to the power minus n; if two multiples are equally close, rounding is done away from 0 (so.
for example, round (0.5) is 1.0 and round(-0.5) is -1.0).

setattr (object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary
value. The string may name an existing attribute or a new attribute. The function assigns the
value to the attribute, provided the object allows it. For example, setattr(z, ’foobar’, 123) is
equivalent to x . foobar = 123.

slice([start,] stop [, step])
Return a slice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start,
stop and step which merely return the argument values (or their default). They have no other
explicit functionality; however they are used by Numerical Python and other third party exten-
sions. Slice objects are also generated when extended indexing syntax is used. For example:
‘a[start:stop:step]’ or ‘al[start:stop, i]’.

str (object)
Return a string containing a nicely printable representation of an object. For strings, this returns
the string itself. The difference with repr (object) is that str(object) does not always attempt to
return a string that is acceptable to eval (); its goal is to return a printable string.

tuple([sequence])
Return a tuple whose items are the same and in the same order as sequence’s items. sequence may
be a sequence, a container that supports iteration, or an iterator object. If sequence is already
a tuple, it is returned unchanged. For instance, tuple(’abc’) returns returns (’a’, ’b’, ’c’)
and tuple([1, 2, 3]) returns (1, 2, 3).

type (object)
Return the type of an object. The return value is a type object. The standard module types
defines names for all built-in types. For instance:

>>> import types
>>> if type(x) == types.StringType: print "It’s a string"

unichr(s)
Return the Unicode string of one character whose Unicode code is the integer i. For example,
unichr (97) returns the string u’a’. This is the inverse of ord() for Unicode strings. The argument
must be in the range [0..65535], inclusive. ValueError is raised otherwise. New in version 2.0.

unicode(object[, encoding[, errors]])
Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode () will decode the object which can either be an 8-bit
string or a character buffer using the codec for encoding. The encoding parameter is a string giving

2.1. Built-in Functions 11

the name of an encoding; if the encoding is not known, LookupError is raised. Error handling is
done according to errors; this specifies the treatment of characters which are invalid in the input
encoding. If errors is *strict’ (the default), a ValueError is raised on errors, while a value of
>ignore’ causes errors to be silently ignored, and a value of ’replace’ causes the official Unicode
replacement character, U+FFFD, to be used to replace input characters which cannot be decoded.
See also the codecs module.

If no optional parameters are given, unicode () will mimic the behaviour of str() except that it
returns Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or
subclass it will return that Unicode string without any additional decoding applied.

For objects which provide a __unicode__ () method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested
and then converted to a Unicode string using the codec for the default encoding in ’strict’ mode.

New in version 2.0. Changed in version 2.2: Support for __unicode__ () added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a
module, class or class instance object as argument (or anything else that has a __dict__ attribute),
returns a dictionary corresponding to the object’s symbol table. The returned dictionary should
not be modified: the effects on the corresponding symbol table are undefined.*

xrange([start,] stop [, step])
This function is very similar to range (), but returns an “xrange object” instead of a list. This is
an opaque sequence type which yields the same values as the corresponding list, without actually
storing them all simultaneously. The advantage of xrange() over range() is minimal (since
xrange () still has to create the values when asked for them) except when a very large range
is used on a memory-starved machine or when all of the range’s elements are never used (such as
when the loop is usually terminated with break).

zip(seql, ...)
This function returns a list of tuples, where the i-th tuple contains the i-th element from each of
the argument sequences. At least one sequence is required, otherwise a TypeError is raised. The
returned list is truncated in length to the length of the shortest argument sequence. When there
are multiple argument sequences which are all of the same length, zip() is similar to map() with
an initial argument of None. With a single sequence argument, it returns a list of 1-tuples. New
in version 2.0.

2.2 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the
numeric types, sequence types, and several others, including types themselves. There is no explicit
Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested
for truth value, and converted to a string (with the ... ¢ notation). The latter conversion is implicitly
used when an object is written by the print statement.

2.2.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

e False

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved
from other scopes (such as modules) can be. This may change.

12 Chapter 2. Built-in Functions, Types, and Exceptions

e zero of any numeric type, for example, 0, OL, 0.0, 0j.

e any empty sequence, for example, *’, (), [J.

e any empty mapping, for example, {3}.

e instances of user-defined classes, if the class defines a __nonzero__() or __len__ () method,

when that method returns the integer zero or bool value False.®

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 for false and 1 for true,
unless otherwise stated. (Important exception: the Boolean operations ‘or’ and ‘and’ always return one
of their operands.)

2.2.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
T or y if z is false, then y, else z (1)
z and y if z is false, then z, else y (1)

not if z is false, then 1, else 0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not’ has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a ==
b), and a == not b is a syntax error.

2.2.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher
than that of the Boolean operations). Comparisons can be chained arbitrarily; for example, z < y <=
z is equivalent to < y and y <= z, except that y is evaluated only once (but in both cases z is not
evaluated at all when z < y is found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
1= not equal (1)
<> not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and != are alternate spellings for the same operator. (I couldn’t choose between ABC and C! :-)
= is the preferred spelling; <> is obsolescent.

5 Additional information on these special methods may be found in the Python Reference Manual.

2.2, Built-in Types 13

Objects of different types, except different numeric types, never compare equal; such objects are ordered
consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Further-
more, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class defines the __cmp__ () method. Refer
to the Python Reference Manual for information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names;
objects of the same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, ‘in’ and ‘not in’, are supported only by sequence
types (below).

2.2.4 Numeric Types

There are four numeric types: plain integers, long integers, floating point numbers, and complex numbers.
Plain integers (also just called integers) are implemented using long in C, which gives them at least 32
bits of precision. Long integers have unlimited precision. Floating point numbers are implemented using
double in C. All bets on their precision are off unless you happen to know the machine you are working
with.

Complex numbers have a real and imaginary part, which are both implemented using double in C. To
extract these parts from a complex number z, use z.real and z.imag.

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including hex and octal numbers) yield plain integers. Integer literals with an ‘L’ or
‘1’ suffix yield long integers (‘L’ is preferred because ‘11’ looks too much like eleven!). Numeric literals
containing a decimal point or an exponent sign yield floating point numbers. Appending ‘j” or ‘J’ to a
numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different
numeric types, the operand with the “smaller” type is converted to that of the other, where plain integer
is smaller than long integer is smaller than floating point is smaller than complex. Comparisons between
numbers of mixed type use the same rule. The functions int (), long(), float(), and complex() can
be used to coerce numbers to a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (op-
erations in the same box have the same priority; all numeric operations have a higher priority than
comparison operations):

Operation Result Notes
T+ oy sum of = and y
-y difference of = and y
T ¥y product of z and y
x /Yy quotient of x and y (1)
xhy remainder of x / y (4)
-z z negated
+x 2 unchanged
abs (z) absolute value or magnitude of z
int (x) x converted to integer (2)
long(z) z converted to long integer (2)
float(z) z converted to floating point
complex(re,im) | a complex number with real part re, imaginary part im. im defaults to zero.
c.conjugate() | conjugate of the complex number ¢
divmod(z, y) | thepair (z / y, = % y) (3)(4)
pow(z, y) z to the power y
T k% y z to the power y

6As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similar for tuples.

14 Chapter 2. Built-in Functions, Types, and Exceptions

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards
minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long
integer if either operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() and ceil() in the math module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, and divmod().

Deprecated since release 2.3. Instead convert to float using abs () if appropriate.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative
numbers are treated as their 2’s complement value (for long integers, this assumes a sufficiently large
number of bits that no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than
the comparisons; the unary operation ‘~’ has the same priority as the other unary numeric operations
(4+7 and (_7)'

This table lists the bit-string operations sorted in ascending priority (operations in the same box have
the same priority):

Operation | Result Notes
x|y bitwise or of x and y
x Ty bitwise exclusive or of x and y
T &y bitwise and of z and y
T << n x shifted left by n bits (1), (2)
T >>n z shifted right by n bits (1), (3)
“z the bits of z inverted

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division by pow(2, n) without overflow check.

2.2.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods;
these are used to allow user-defined classes to support iteration. Sequences, described below in more
detail, always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__diter__Q)
Return an iterator object. The object is required to support the iterator protocol described be-
low. If a container supports different types of iteration, additional methods can be provided to
specifically request iterators for those iteration types. (An example of an object supporting multi-
ple forms of iteration would be a tree structure which supports both breadth-first and depth-first
traversal.) This method corresponds to the tp_iter slot of the type structure for Python objects
in the Python/C APL

2.2, Built-in Types 15

The iterator objects themselves are required to support the following two methods, which together form
the iterator protocol:

__iter__Q
Return the iterator object itself. This is required to allow both containers and iterators to be
used with the for and in statements. This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C API.

next ()
Return the next item from the container. If there are no further items, raise the StopIteration
exception. This method corresponds to the tp_iternext slot of the type structure for Python
objects in the Python/C APIL

Python defines several iterator objects to support iteration over general and specific sequence types,
dictionaries, and other more specialized forms. The specific types are not important beyond their imple-
mentation of the iterator protocol.

The intention of the protocol is that once an iterator’s next () method raises StopIteration, it will
continue to do so on subsequent calls. Implementations that do not obey this property are deemed
broken. (This constraint was added in Python 2.3; in Python 2.2, various iterators are broken according
to this rule.)

2.2.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quotes: ’xyzzy’, "frobozz". See chapter 2 of the Python
Reference Manual for more about string literals. Unicode strings are much like strings, but are specified
in the syntax using a preceeding ‘v’ character: u’abc’, u"def". Lists are constructed with square
brackets, separating items with commas: [a, b, c]. Tuples are constructed by the comma operator
(not within square brackets), with or without enclosing parentheses, but an empty tuple must have the
enclosing parentheses, e.g., a, b, cor (). A single item tuple must have a trailing comma, e.g., (d,).

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin
function buffer(). They support concatenation and repetition, but the result is a new string object
rather than a new buffer object.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are
created using the xrange() function. They don’t support slicing or concatenation, but do support
repetition, and using in, not in, min() or max() on them is inefficient.

Most sequence types support the following operations. The ‘in’ and ‘not in’ operations have the same
priorities as the comparison operations. The ‘+” and ‘*’ operations have the same priority as the corre-
sponding numeric operations.”

This table lists the sequence operations sorted in ascending priority (operations in the same box have
the same priority). In the table, s and ¢ are sequences of the same type; n, i and j are integers:

Operation Result Notes
x in s 1 if an item of s is equal to z, else O
z not in s | O if an item of s is equal to z, else 1
s+t the concatenation of s and ¢
s * n, n * s | n shallow copies of s concatenated (1)
s[i] i’th item of s, origin 0 (2)
sli:g] slice of s from i to j (2), (3)
len(s) length of s
min(s) smallest item of s
max (s) largest item of s

Notes:

7"They must have since the parser can’t tell the type of the operands.

16 Chapter 2. Built-in Functions, Types, and Exceptions

(1) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s).
Note also that the copies are shallow; nested structures are not copied. This often haunts new
Python programmers; consider:

>>> lists = [[]] * 3
>>> lists

o, 0o, 0l
>>> 1lists[0] .append(3)
>>> lists

(031, [31, [31]

What has happened is that 1ists is a list containing three copies of the list [[1] (a one-element
list containing an empty list), but the contained list is shared by each copy. You can create a list
of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0] .append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

(031, 51, [71]

(2) If 4 or j is negative, the index is relative to the end of the string: len(s) + i or len(s) + j is
substituted. But note that -0 is still 0.

(3) The slice of s from i to j is defined as the sequence of items with index k such that ¢ <= k < j. If
i or j is greater than len(s), use len(s). If i is omitted, use 0. If j is omitted, use len(s). If ¢
is greater than or equal to j, the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize()
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of length width. Padding is done using spaces.

count (sub [, start[, end]])
Return the number of occurrences of substring sub in string S[start:end]. Optional arguments
start and end are interpreted as in slice notation.

decode ([encodz'ng[, errors]])
Decodes the string using the codec registered for encoding. encoding defaults to the default string
encoding. errors may be given to set a different error handling scheme. The default is *strict?,
meaning that encoding errors raise ValueError. Other possible values are *ignore’ and replace’.
New in version 2.2.

encode ([encodz’ng [, errors]])
Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The default for errors is
’strict’, meaning that encoding errors raise a ValueError. Other possible values are ’ignore’
and ’replace’. New in version 2.0.

endswith(su]ﬁx[, start[, end]])
Return true if the string ends with the specified suffiz, otherwise return false. With optional start,
test beginning at that position. With optional end, stop comparing at that position.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are expanded using spaces. If tabsize is not
given, a tab size of 8 characters is assumed.

2.2. Built-in Types 17

find (sub [, start[, end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the
range [start, end). Optional arguments start and end are interpreted as in slice notation. Return
-1 if sub is not found.

index (sub [, start[, end]])
Like £ind (), but raise ValueError when the substring is not found.

isalnum()
Return true if all characters in the string are alphanumeric and there is at least one character, false
otherwise.

isalpha()
Return true if all characters in the string are alphabetic and there is at least one character, false
otherwise.

isdigit()
Return true if there are only digit characters, false otherwise.

islower()

Return true if all cased characters in the string are lowercase and there is at least one cased
character, false otherwise.

isspace()
Return true if there are only whitespace characters in the string and the string is not empty, false
otherwise.

istitle()
Return true if the string is a titlecased string: uppercase characters may only follow uncased
characters and lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased
character, false otherwise.

join(seq)
Return a string which is the concatenation of the strings in the sequence seq. The separator
between elements is the string providing this method.

1just (width)
Return the string left justified in a string of length width. Padding is done using spaces. The
original string is returned if width is less than len(s).

lower ()
Return a copy of the string converted to lowercase.

1strip([chars])
Return a copy of the string with leading characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string
will be stripped from the beginning of the string this method is called on.

replace(old, new[, maa:splz't])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional
argument maxsplit is given, only the first mazsplit occurrences are replaced.

rfind(sub [,start [,end”)
Return the highest index in the string where substring sub is found, such that sub is contained
within s[start,end]. Optional arguments start and end are interpreted as in slice notation. Return
-1 on failure.

rindex(sub[, start[, end]])
Like rfind () but raises ValueError when the substring sub is not found.

rjust (width)
Return the string right justified in a string of length width. Padding is done using spaces. The
original string is returned if width is less than len(s).

18 Chapter 2. Built-in Functions, Types, and Exceptions

rstrip([chars])
Return a copy of the string with trailing characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string
will be stripped from the end of the string this method is called on.

split([sep [,maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at
most maxsplit splits are done. If sep is not specified or None, any whitespace string is a separator.

splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included
in the resulting list unless keepends is given and true.

startswith(preﬁm[, start[, end]])
Return true if string starts with the prefix, otherwise return false. With optional start, test string
beginning at that position. With optional end, stop comparing string at that position.

strip([chars])
Return a copy of the string with leading and trailing characters removed. If chars is omitted
or None, whitespace characters are removed. If given and not None, chars must be a string; the
characters in the string will be stripped from the both ends of the string this method is called on.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

title()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased
characters are lowercase.

translate (table [, deletechars])
Return a copy of the string where all characters occurring in the optional argument deletechars
are removed, and the remaining characters have been mapped through the given translation table,
which must be a string of length 256.

upper ()
Return a copy of the string converted to uppercase.

z£i11 (width)
Return the numeric string left filled with zeros in a string of length width. The original string is
returned if width is less than len(s).

String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also
known as the string formatting or interpolation operator. Given format %values (where format is a
string or Unicode object), % conversion specifications in format are replaced with zero or more elements
of walues. The effect is similar to the using sprintf () in the C language. If format is a Unicode object,
or if any of the objects being converted using the %s conversion are Unicode objects, the result will be a
Unicode object as well.

If format requires a single argument, values may be a single non-tuple object. ® Otherwise, values must
be a tuple with exactly the number of items specified by the format string, or a single mapping object
(for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must
occur in this order:

1. The)4’ character, which marks the start of the specifier.

2. Mapping key value (optional), consisting of an identifier in parentheses (for example, (somename)).

3. Conversion flags (optional), which affect the result of some conversion types.

8 A tuple object in this case should be a singleton.

2.2. Built-in Types 19

4. Minimum field width (optional). If specified as an ‘*’ (asterisk), the actual width is read from the
next element of the tuple in values, and the object to convert comes after the minimum field width
and optional precision.

5. Precision (optional), given as a ‘.’ (dot) followed by the precision. If specified as ‘*’ (an asterisk),
the actual width is read from the next element of the tuple in walues, and the value to convert
comes after the precision.

6. Length modifier (optional).

7. Conversion type.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have
a parenthesized key into that dictionary inserted immediately after the ‘%’ character, and each format
formats the corresponding entry from the mapping. For example:

>>> count = 2

>>> language = ’Python’

>>> print ’%(language)s has %(count)03d quote types.’ % vars()
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘" | The value conversion will use the “alternate form” (where defined below).

‘0’ The conversion will be zero padded.

The converted value is left adjusted (overrides ‘-’).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.

(0

‘“+’ | A sign character (‘+’ or ‘=’) will precede the conversion (overrides a "space” flag).

The length modifier may be h, 1, and L may be present, but are ignored as they are not necessary for
Python.

The conversion types are:

Conversion | Meaning
‘d’ Signed integer decimal.
‘i’ Signed integer decimal.
‘o’ Unsigned octal.
‘u’ Unsigned decimal.
‘x’ Unsigned hexidecimal (lowercase).
‘X’ Uunsigned hexidecimal (uppercase).
‘e’ Floating point exponential format (lowercase).
‘E’ Floating point exponential format (uppercase).
£’ Floating point decimal format.
‘F’ Floating point decimal format.
‘g’ Same as ‘e’ if exponent is greater than -4 or less than precision, ‘£’ otherwise.
‘G’ Same as ‘E’ if exponent is greater than -4 or less than precision, ‘F’ otherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object using repr()).
‘s’ String (converts any python object using str()).
A No argument is converted, results in a ‘%’ character in the result. (The complete specification is %%.)

(The %r conversion was added in Python 2.0.)

Since Python strings have an explicit length, %s conversions do not assume that >\0’ is the end of the
string.

20 Chapter 2. Built-in Functions, Types, and Exceptions

For safety reasons, floating point precisions are clipped to 50; %f conversions for numbers whose absolute
value is over 1e25 are replaced by %g conversions.? All other errors raise exceptions.

Additional string operations are defined in standard modules string and re.

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the
xrange type is that an xrange object will always take the same amount of memory, no matter the size of
the range it represents. There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing and the len() function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations
would be supported by other mutable sequence types (when added to the language) as well. Strings and
tuples are immutable sequence types and such objects cannot be modified once created. The following
operations are defined on mutable sequence types (where z is an arbitrary object):

Operation Result Notes
sli] = item 4 of s is replaced by z

sli:jl =t slice of s from ¢ to j is replaced by ¢

del s[i:j] same as s[i:7] = []

s.append (z) same as s[len(s):len(s)] = [z] (1)

s.extend(z) same as s[len(s):len(s)] = z (2)

s.count () return number of 4’s for which s[i] ==

s.index () return smallest ¢ such that s[i] == z (3)

s.insert (v,) same as s[i:i] = [2]if i >= 0 (4)

s.pop([i]) same as z = s[i]; del s[i]; return z (5)

s.remove (z) same as del s[s.index(x)] (3)

s.reverse() reverses the items of s in place (6)
s. sort([cmpfunc]) sort the items of s in place (6), (7)

Notes:

e C implementation of Python has historically accepted multiple parameters and implicitly joine

1) The C impl tati f Python has historicall ted multipl t d implicitly joined
them into a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated
since Python 1.4.

(2) Raises an exception when z is not a list object. The extend() method is experimental and not
supported by mutable sequence types other than lists.

(3) Raises ValueError when z is not found in s.

(4) When a negative index is passed as the first parameter to the insert () method, the new element
is prepended to the sequence.

(5) The pop() method is only supported by the list and array types. The optional argument ¢ defaults
to -1, so that by default the last item is removed and returned.

(6) The sort() and reverse() methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don’t return the sorted
or reversed list.

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without
hampering correct use and without having to know the exact precision of floating point values on a particular machine.

2.2. Built-in Types 21

(7) The sort () method takes an optional argument specifying a comparison function of two arguments
(list items) which should return a negative, zero or positive number depending on whether the first
argument is considered smaller than, equal to, or larger than the second argument. Note that this
slows the sorting process down considerably; e.g. to sort a list in reverse order it is much faster to
use calls to the methods sort() and reverse() than to use the built-in function sort() with a
comparison function that reverses the ordering of the elements.

2.2.7 Mapping Types

A mapping object maps values of one type (the key type) to arbitrary objects. Mappings are mutable
objects. There is currently only one standard mapping type, the dictionary. A dictionary’s keys are
almost arbitrary values. The only types of values not acceptable as keys are values containing lists or
dictionaries or other mutable types that are compared by value rather than by object identity. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g.
1 and 1.0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated list of key: walue pairs within braces, for ex-
ample: {’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’}.

The following operations are defined on mappings (where a and b are mappings, k is a key, and v and z
are arbitrary objects):

Operation Result Notes
len(a) the number of items in a
alk] the item of a with key & (1)
alkl = v set alk] to v
del alk] remove a[k] from a (1)
a.clear() remove all items from a
a.copy() a (shallow) copy of a
a.has_key (k) 1 if a has a key k, else 0
k in a Equivalent to a.has_key(k) (2)
k not in a Equivalent to not a.has_key(k) (2)
a.items() a copy of a’s list of (key, value) pairs (3)
a.keys() a copy of a’s list of keys (3)
a.update(b) for k in b.keys(: alk] = b[k]
a.values() a copy of a’s list of values (3)
a.get(k[, z|) alk] if k in a, else z (4)
a.setdefault (k|, w]) alk] if k in a, else z (also setting it) (5)
a.popitem() remove and return an arbitrary (key, value) pair (6)
a.iteritems() return an iterator over (key, value) pairs (2), (3)
a.iterkeys() return an iterator over the mapping’s keys (2), (3)
a.itervalues() return an iterator over the mapping’s values (2), (3)

Notes:

(1) Raises a KeyError exception if k is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in random order. If items(), keys(), values(), iteritems(),
iterkeys(), and itervalues() are called with no intervening modifications to the dictionary,
the lists will directly correspond. This allows the creation of (wvalue, key) pairs using zip(Q):
‘pairs = zip(a.values(), a.keys())’. The same relationship holds for the iterkeys() and
itervalues() methods: ‘pairs = zip(a.itervalues(), a.iterkeys())’ provides the same
value for pairs. Another way to create the same list is ‘pairs = [(v, k) for (k, v) in
a.iteritems()]’.

(4) Never raises an exception if k is not in the map, instead it returns . x is optional; when z is not
provided and k is not in the map, None is returned.

22 Chapter 2. Built-in Functions, Types, and Exceptions

(5) setdefault() is like get (), except that if k is missing, z is both returned and inserted into the
dictionary as the value of k.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.

2.2.8 File Objects

File objects are implemented using C’s stdio package and can be created with the built-in constructor
file() described in section 2.1, “Built-in Functions.”'® They are also returned by some other built-in
functions and methods, such as os.popen() and os.fdopen() and the makefile() method of socket
objects.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes
situations where the operation is not defined for some reason, like seek() on a tty device or writing a
file opened for reading.

Files have the following methods:

close()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that
the file be open will raise a ValueError after the file has been closed. Calling close() more than
once is allowed.

flush O
Flush the internal buffer, like stdio’s fflush(). This may be a no-op on some file-like objects.

isatty ()
Return true if the file is connected to a tty(-like) device, else false. Note: If a file-like object is
not associated with a real file, this method should not be implemented.

fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request 1/0
operations from the operating system. This can be useful for other, lower level interfaces that use
file descriptors, such as the fcntl module or os.read() and friends. Note: File-like objects which
do not have a real file descriptor should not provide this method!

read([size])
Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the
size argument is negative or omitted, read all data until EOF is reached. The bytes are returned as
a string object. An empty string is returned when EOF is encountered immediately. (For certain
files, like ttys, it makes sense to continue reading after an EOF is hit.) Note that this method may
call the underlying C function fread () more than once in an effort to acquire as close to size bytes
as possible.

readline([size])
Read one entire line from the file. A trailing newline character is kept in the string!! (but may
be absent when a file ends with an incomplete line). If the size argument is present and non-
negative, it is a maximum byte count (including the trailing newline) and an incomplete line may
be returned. An empty string is returned when EOF is hit immediately. Note: Unlike stdio’s
fgets (), the returned string contains null characters (*\0”) if they occurred in the input.

readlines([sizehint])
Read until EOF using readline () and return a list containing the lines thus read. If the optional
sizehint argument is present, instead of reading up to EOF, whole lines totalling approximately
sizehint bytes (possibly after rounding up to an internal buffer size) are read. Objects implement-
ing a file-like interface may choose to ignore sizehint if it cannot be implemented, or cannot be
implemented efficiently.

10file() is new in Python 2.2. The older built-in open() is an alias for file().

11 The advantage of leaving the newline on is that an empty string can be returned to mean EOF without being ambiguous.
Another advantage is that (in cases where it might matter, for example. if you want to make an exact copy of a file while
scanning its lines) you can tell whether the last line of a file ended in a newline or not (yes this happens!).

2.2, Built-in Types 23

xreadlines()
Equivalent to xreadlines.xreadlines (file). (See the xreadlines module for more information.)
New in version 2.1.

seek(oﬁset[, whence])
Set the file’s current position, like stdio’s fseek(). The whence argument is optional and defaults
to 0 (absolute file positioning); other values are 1 (seek relative to the current position) and 2 (seek
relative to the file’s end). There is no return value. Note that if the file is opened for appending
(mode ’a’ or ’a+’), any seek() operations will be undone at the next write. If the file is only
opened for writing in append mode (mode ’a’), this method is essentially a no-op, but it remains
useful for files opened in append mode with reading enabled (mode ’a+’).

tell()
Return the file’s current position, like stdio’s ftell().

truncate([size])
Truncate the file’s size. If the optional size argument present, the file is truncated to (at most)
that size. The size defaults to the current position. Availability of this function depends on the
operating system version (for example, not all UNIX versions support this operation).

write(str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually
show up in the file until the flush() or close() method is called.

writelines (sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings,
typically a list of strings. There is no return value. (The name is intended to match readlines(Q);
writelines() does not add line separators.)

Files support the iterator protocol. Each iteration returns the same result as file.readline(), and
iteration ends when the readline () method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects,
but should be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attribute; the close ()
method changes the value. It may not be available on all file-like objects.

mode
The I/O mode for the file. If the file was created using the open() built-in function, this will be the
value of the mode parameter. This is a read-only attribute and may not be present on all file-like
objects.

name
If the file object was created using open(), the name of the file. Otherwise, some string that
indicates the source of the file object, of the form ‘<...>’. This is a read-only attribute and may
not be present on all file-like objects.

softspace

Boolean that indicates whether a space character needs to be printed before another value when
using the print statement. Classes that are trying to simulate a file object should also have
a writable softspace attribute, which should be initialized to zero. This will be automatic for
most classes implemented in Python (care may be needed for objects that override attribute access);
types implemented in C will have to provide a writable softspace attribute. Note: This attribute
is not used to control the print statement, but to allow the implementation of print to keep track
of its internal state.

2.2.9 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

24 Chapter 2. Built-in Functions, Types, and Exceptions

Modules

The only special operation on a module is attribute access: m.name, where m is a module and name
accesses a name defined in m’s symbol table. Module attributes can be assigned to. (Note that the
import statement is not, strictly speaking, an operation on a module object; import foo does not
require a module object named foo to exist, rather it requires an (external) definition for a module
named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol
table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment
to the __dict__ attribute is not possible (you can write m.__dict__[’a’] = 1, which defines m.a
to be 1, but you can’t write m.__dict__ = {}.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a
file, they are written as <module ’os’ from ’/usr/local/lib/python2.2/os.pyc’>.

Classes and Class Instances

See chapters 3 and 7 of the Python Reference Manual for these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call
it: funcCargument-list) .

There are really two flavors of function objects: built-in functions and user-defined functions. Both
support the same operation (to call the function), but the implementation is different, hence the different
object types.

The implementation adds two special read-only attributes: f.func_code is a function’s code object (see
below) and f.func_globals is the dictionary used as the function’s global namespace (this is the same
as m.__dict__ where m is the module in which the function f was defined).

Function objects also support getting and setting arbitrary attributes, which can be used to, e.g. attach
metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note
that the current implementation only supports function attributes on user-defined functions. Function
attributes on built-in functions may be supported in the future.

Functions have another special attribute f.__dict__ (a.k.a. f.func_dict) which contains the names-
pace used to support function attributes. __dict__ and func_dict can be accessed directly or set to
a dictionary object. A function’s dictionary cannot be deleted.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in
methods (such as append() on lists) and class instance methods. Built-in methods are described with
the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im_self is the
object on which the method operates, and m.im_func is the function implementing the method. Call-
ing mCarg-1, arg-2, ..., arg-n) is completely equivalent to calling m.im_func(m.im_self, arg-1,
arg-2, ..., arg-n).

Class instance methods are either bound or unbound, referring to whether the method was accessed
through an instance or a class, respectively. When a method is unbound, its im_self attribute will be
None and if called, an explicit self object must be passed as the first argument. In this case, self must
be an instance of the unbound method’s class (or a subclass of that class), otherwise a TypeError is
raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method at-
tributes are actually stored on the underlying function object (meth.im_func), setting method attributes

2.2, Built-in Types 25

on either bound or unbound methods is disallowed. Attempting to set a method attribute results in a
TypeError being raised. In order to set a method attribute, you need to explicitly set it on the underlying
function object:

class C:
def method(self):
pass

c=2¢CO
c.method.im_func.whoami = ’my name is c’

See the Python Reference Manual for more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code
such as a function body. They differ from function objects because they don’t contain a reference to
their global execution environment. Code objects are returned by the built-in compile() function and
can be extracted from function objects through their func_code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement
or the built-in eval () function.

See the Python Reference Manual for more information.
Type Objects
Type objects represent the various object types. An object’s type is accessed by the built-in function

type(). There are no special operations on types. The standard module types defines names for all
standard built-in types.

Types are written like this: <type ’int’>.
The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name).

It is written as None.
The Ellipsis Object

This object is used by extended slice notation (see the Python Reference Manual). Tt supports no special
operations. There is exactly one ellipsis object, named E1lipsis (a built-in name).

It is written as E11lipsis.
Internal Objects

See the Python Reference Manual for this information. It describes stack frame objects, traceback objects,
and slice objects.

2.2.10 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are
relevant:

26 Chapter 2. Built-in Functions, Types, and Exceptions

__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods__
Deprecated since release 2.2. Use the built-in function dir() to get a list of an object’s
attributes. This attribute is no longer available.

__members___
Deprecated since release 2.2. Use the built-in function dir() to get a list of an object’s
attributes. This attribute is no longer available.

__class__
The class to which a class instance belongs.

__bases___
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

2.3 Built-in Exceptions

Exceptions can be class objects or string objects. Though most exceptions have been string objects in
past versions of Python, in Python 1.5 and newer versions, all standard exceptions have been converted
to class objects, and users are encouraged to do the same. The exceptions are defined in the module
exceptions. This module never needs to be imported explicitly: the exceptions are provided in the
built-in namespace as well as the exceptions module.

Two distinct string objects with the same value are considered different exceptions. This is done to force
programmers to use exception names rather than their string value when specifying exception handlers.
The string value of all built-in exceptions is their name, but this is not a requirement for user-defined
exceptions or exceptions defined by library modules.

For class exceptions, in a try statement with an except clause that mentions a particular class, that
clause also handles any exception classes derived from that class (but not exception classes from which
it is derived). Two exception classes that are not related via subclassing are never equivalent, even if
they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except
where mentioned, they have an “associated value” indicating the detailed cause of the error. This may
be a string or a tuple containing several items of information (e.g., an error code and a string explaining
the code). The associated value is the second argument to the raise statement. For string exceptions,
the associated value itself will be stored in the variable named as the second argument of the except
clause (if any). For class exceptions, that variable receives the exception instance. If the exception
class is derived from the standard root class Exception, the associated value is present as the exception
instance’s args attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an
error condition “just like” the situation in which the interpreter raises the same exception; but beware
that there is nothing to prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged
to at least derive new exceptions from the Exception base class. More information on defining exceptions
is available in the Python Tutorial under the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exception Exception

The root class for exceptions. All built-in exceptions are derived from this class. All user-defined
exceptions should also be derived from this class, but this is not (yet) enforced. The str () function,
when applied to an instance of this class (or most derived classes) returns the string value of the
argument or arguments, or an empty string if no arguments were given to the constructor. When
used as a sequence, this accesses the arguments given to the constructor (handy for backward
compatibility with old code). The arguments are also available on the instance’s args attribute,
as a tuple.

2.3. Built-in Exceptions 27

exception StandardError
The base class for all built-in exceptions except StopIteration and SystemExit. StandardError
itself is derived from the root class Exception.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:
OverflowError, ZeroDivisionError, FloatingPointError.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence
is invalid: IndexError, KeyError. This can be raised directly by sys.setdefaultencoding().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: I0Error, 0SError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s errno
attribute (it is assumed to be an error number), and the second item is available on the strerror
attribute (it is usually the associated error message). The tuple itself is also available on the args
attribute. New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are avail-
able as above, while the third item is available on the filename attribute. However, for backwards
compatibility, the args attribute contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The
errno and strerror attributes are also None when the instance was created with other than 2 or
3 arguments. In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute
references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (input () or raw_input()) hits an end-of-file condition
(EOF) without reading any data. (N.B.: the read() and readline () methods of file objects return
an empty string when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be
raised when Python is configured with the --with-fpectl option, or the WANT_SIGFPE_HANDLER
symbol is defined in the ‘pyconfig.h’ file.

exception I0Error
Raised when an I/O operation (such as a print statement, the built-in open() function or a
method of a file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on
exception instance attributes.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import
fails to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution,
a check for interrupts is made regularly. Interrupts typed when a built-in function input() or

28 Chapter 2. Built-in Functions, Types, and Exceptions

raw_input ()) is waiting for input also raise this exception.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting
some objects). The associated value is a string indicating what kind of (internal) operation ran out
of memory. Note that because of the underlying memory management architecture (C’s malloc()
function), the interpreter may not always be able to completely recover from this situation; it
nevertheless raises an exception so that a stack traceback can be printed, in case a run-away
program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The
associated value is an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version
1.5.2.

exception 0SError
This class is derived from EnvironmentError and is used primarily as the os module’s os.error
exception. See EnvironmentError above for a description of the possible associated values. New
in version 1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot
occur for long integers (which would rather raise MemoryError than give up). Because of the lack
of standardization of floating point exception handling in C, most floating point operations also
aren’t checked. For plain integers, all operations that can overflow are checked except left shift,
where typical applications prefer to drop bits than raise an exception.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref .proxy() function, is
used to access an attribute of the referent after it has been garbage collected. For more information
on weak references, see the weakref module. New in version 2.2: Previously known as the
weakref .ReferenceError exception.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated
value is a string indicating what precisely went wrong. (This exception is mostly a relic from a
previous version of the interpreter; it is not used very much any more.)

exception StopIteration
Raised by an iterator’s next () method to signal that there are no further values. This is derived
from Exception rather than StandardError, since this is not considered an error in its normal
application. New in version 2.2.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an
exec statement, in a call to the built-in function eval() or input(), or when reading the initial
script or standard input (also interactively).

Instances of this class have atttributes filename, lineno, offset and text for easier access to the
details. str() of the exception instance returns only the message.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to
cause it to abandon all hope. The associated value is a string indicating what went wrong (in
low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report
the version of the Python interpreter (sys.version; it is also printed at the start of an interactive
Python session), the exact error message (the exception’s associated value) and if possible the
source of the program that triggered the error.

2.3. Built-in Exceptions 29

exception SystemExit
This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter
exits; no stack traceback is printed. If the associated value is a plain integer, it specifies the system
exit status (passed to C’s exit () function); if it is None, the exit status is zero; if it has another
type (such as a string), the object’s value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting
to None). Also, this exception derives directly from Exception and not StandardError, since it is
not technically an error.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of
try statements) can be executed, and so that a debugger can execute a script without running the
risk of losing control. The os._exit () function can be used if it is absolutely positively necessary
to exit immediately (for example, in the child process after a call to fork()).

exception TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The
associated value is a string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been
bound to that variable. This is a subclass of NameError. New in version 2.0.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.
New in version 2.0.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but
an inappropriate value, and the situation is not described by a more precise exception such as
IndexError.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond
to an errno value. The errno and strerror values are created from the return values of the
GetLastError() and FormatMessage () functions from the Windows Platform API. This is a sub-
class of 0SError. New in version 2.0.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value
is a string indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

30 Chapter 2. Built-in Functions, Types, and Exceptions

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter
and its interaction with its environment. Here’s an overview:

sys
gc

weakref
fpectl
atexit
types
UserDict
UserList
UserString
operator
inspect
traceback
linecache
pickle
cPickle

copy_reg
shelve

copy
marshal
warnings
imp
code
codeop
pprint
repr
new
site
user

__builtin__

__main_ _

Access system-specific parameters and functions.

Interface to the cycle-detecting garbage collector.

Support for weak references and weak dictionaries.

Provide control for floating point exception handling.
Register and execute cleanup functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.
Extract information and source code from live objects.
Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version of pickle, but not subclassable.

Register pickle support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Issue warning messages and control their disposition.
Access the implementation of the import statement.

Base classes for interactive Python interpreters.

Compile (possibly incomplete) Python code.

Data pretty printer

Alternate repr () implementation with size limits.

Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions
that interact strongly with the interpreter. It is always available.

argv

The list of command line arguments passed to a Python script. argv[0] is the script name (it is
operating system dependent whether this is a full pathname or not). If the command was executed
using the -c command line option to the interpreter, argv[0] is set to the string >-c’. If no script
name was passed to the Python interpreter, argv has zero length.

31

byteorder

An indicator of the native byte order. This will have the value ’big’ on big-endian (most-
signigicant byte first) platforms, and ’1ittle’ on little-endian (least-significant byte first) plat-
forms. New in version 2.0.

builtin_module_names

A tuple of strings giving the names of all modules that are compiled into this Python interpreter.
(This information is not available in any other way — modules.keys() only lists the imported
modules.)

copyright

A string containing the copyright pertaining to the Python interpreter.

dllhandle

Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value)

If walue is not None, this function prints it to sys.stdout, and saves it in __builtin__._.

sys.displayhook is called on the result of evaluating an expression entered in an interactive
Python session. The display of these values can be customized by assigning another one-argument
function to sys.displayhook.

excepthook (type, value, traceback)

This function prints out a given traceback and exception to sys.stderr.

When an exception is raised and uncaught, the interpreter calls sys.excepthook with three argu-
ments, the exception class, exception instance, and a traceback object. In an interactive session
this happens just before control is returned to the prompt; in a Python program this happens just
before the program exits. The handling of such top-level exceptions can be customized by assigning
another three-argument function to sys.excepthook.

__displayhook__
__excepthook__

These objects contain the original values of displayhook and excepthook at the start of the
program. They are saved so that displayhook and excepthook can be restored in case they
happen to get replaced with broken objects.

exc_info()

This function returns a tuple of three values that give information about the exception that is
currently being handled. The information returned is specific both to the current thread and to
the current stack frame. If the current stack frame is not handling an exception, the information
is taken from the calling stack frame, or its caller, and so on until a stack frame is found that is
handling an exception. Here, “handling an exception” is defined as “executing or having executed
an except clause.” For any stack frame, only information about the most recently handled exception
is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is
returned. Otherwise, the values returned are (type, wvalue, traceback). Their meaning is: type
gets the exception type of the exception being handled (a string or class object); value gets the
exception parameter (its associated value or the second argument to raise, which is always a class
instance if the exception type is a class object); traceback gets a traceback object (see the Reference
Manual) which encapsulates the call stack at the point where the exception originally occurred.

Warning: Assigning the traceback return value to a local variable in a function that is handling an
exception will cause a circular reference. This will prevent anything referenced by a local variable
in the same function or by the traceback from being garbage collected. Since most functions
don’t need access to the traceback, the best solution is to use something like exctype, value =
sys.exc_info () [:2] to extract only the exception type and value. If you do need the traceback,
make sure to delete it after use (best done with a try ... finally statement) or to call exc_info ()
in a function that does not itself handle an exception. Note: Beginning with Python 2.2, such
cycles are automatically reclaimed when garbage collection is enabled and they become unreachable,
but it remains more efficient to avoid creating cycles.

exc_type

32

Chapter 3. Python Runtime Services

exc_value
exc_traceback
Deprecated since release 1.5. Use exc_info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe
in a multi-threaded program. When no exception is being handled, exc_type is set to None and
the other two are undefined.

exec_prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are in-
stalled; by default, this is also ’ /usr/local’. This can be set at build time with the --exec-prefix
argument to the configure script. Specifically, all configuration files (e.g. the ‘pyconfig.h’ header
file) are installed in the directory exec_prefix + ’/lib/pythonuversion/config’, and shared li-
brary modules are installed in exec_prefix + ’/1lib/pythonversion/lib-dynload’, where ver-
ston is equal to version[:3].

executable
A string giving the name of the executable binary for the Python interpreter, on systems where
this makes sense.

exit([arg])

Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions
specified by finally clauses of try statements are honored, and it is possible to intercept the exit
attempt at an outer level. The optional argument arg can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an integer, zero is considered “successful
termination” and any nonzero value is considered “abnormal termination” by shells and the like.
Most systems require it to be in the range 0-127, and produce undefined results otherwise. Some
systems have a convention for assigning specific meanings to specific exit codes, but these are
generally underdeveloped; UNIX programs generally use 2 for command line syntax errors and 1
for all other kind of errors. If another type of object is passed, None is equivalent to passing zero,
and any other object is printed to sys.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to
specify a clean-up action at program exit. When set, it should be a parameterless function. This
function will be called when the interpreter exits. Only one function may be installed in this way;
to allow multiple functions which will be called at termination, use the atexit module. Note:
The exit function is not called when the program is killed by a signal, when a Python fatal internal
error is detected, or when os._exit () is called.

getdefaultencoding()
Return the name of the current default string encoding used by the Unicode implementation. New
in version 2.0.

getdlopenflags ()
Return the current value of the flags that are used for dlopen() calls. The flag constants are
defined in the d1 and DLFCN modules. Availability: UNIX. New in version 2.2.

getrefcount (object)
Return the reference count of the object. The count returned is generally one higher than you
might expect, because it includes the (temporary) reference as an argument to getrefcount ().

getrecursionlimit ()
Return the current value of the recursion limit, the maximum depth of the Python interpreter
stack. This limit prevents infinite recursion from causing an overflow of the C stack and crashing
Python. It can be set by setrecursionlimit().

_getframe([depth])
Return a frame object from the call stack. If optional integer depth is given, return the frame
object that many calls below the top of the stack. If that is deeper than the call stack, ValueError
is raised. The default for depth is zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

3.1. sys — System-specific parameters and functions 33

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each ver-
sion, including proper support for non-production releases. For example, to test that the Python
interpreter is at least version 1.5.2, use:

if sys.hexversion >= 0x010502F0:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called ‘hexversion’ since it only really looks meaningful when viewed as the result of passing
it to the built-in hex() function. The version_info value may be used for a more human-friendly
encoding of the same information. New in version 1.5.2.

last_type

last_value

last_traceback
These three variables are not always defined; they are set when an exception is not handled and
the interpreter prints an error message and a stack traceback. Their intended use is to allow
an interactive user to import a debugger module and engage in post-mortem debugging without
having to re-execute the command that caused the error. (Typical use is ‘import pdb; pdb.pm()’
to enter the post-mortem debugger; see chapter 9, “The Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return values from exc_info() above.
(Since there is only one interactive thread, thread-safety is not a concern for these variables, unlike
for exc_type etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2*¥*31-1.
The largest negative integer is -maxint-1 — the asymmetry results from the use of 2’s complement
binary arithmetic.

maxunicode
An integer giving the largest supported code point for a Unicode character. The value of this
depends on the configuration option that specifies whether Unicode characters are stored as UCS-2
or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This
can be manipulated to force reloading of modules and other tricks. Note that removing a module
from this dictionary is not the same as calling reload () on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, or an installation-dependent default.

The first item of this list, path[0], is the directory containing the script that was used to invoke
the Python interpreter. If the script directory is not available (e.g. if the interpreter is invoked
interactively or if the script is read from standard input), path[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is
inserted before the entries inserted as a result of PYTHONPATH.

platform
This string contains a platform identifier, e.g. >sunos5’ or ’linux1’. This can be used to append
platform-specific components to path, for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are
installed; by default, this is the string ’/usr/local’. This can be set at build time with the
--prefix argument to the configure script. The main collection of Python library modules is
installed in the directory prefix + ’/1lib/pythonversion’ while the platform independent header

34 Chapter 3. Python Runtime Services

files (all except ‘pyconfig.h’) are stored in prefix + ’/include/pythonuversion’, where version is
equal to version[:3].

psi

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if
the interpreter is in interactive mode. Their initial values in this case are >>>> ? and ’... . If
a non-string object is assigned to either variable, its str() is re-evaluated each time the interpreter
prepares to read a new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter
checks for periodic things such as thread switches and signal handlers. The default is 10, meaning
the check is performed every 10 Python virtual instructions. Setting it to a larger value may
increase performance for programs using threads. Setting it to a value <= 0 checks every virtual
instruction, maximizing responsiveness as well as overhead.

setdefaultencoding(name)
Set the current default string encoding used by the Unicode implementation. If name does not
match any available encoding, LookupError is raised. This function is only intended to be used by
the site module implementation and, where needed, by sitecustomize. Once used by the site
module, it is removed from the sys module’s namespace. New in version 2.0.

setdlopenflags(n)

Set the flags used by the interpreter for dlopen() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a
module, if called as sys.setdlopenflags(0). To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD_NOW | d1.RTLD_GLOBAL). Symbolic names for the flag modules
can be either found in the d1 module, or in the DLFCN module. If DLFCN is not available, it can be
generated from °/usr/include/dlfcn.h’ using the h2py script. Availability: UNIX. New in version
2.2.

setprofile(profilefunc)

Set the system’s profile function, which allows you to implement a Python source code profiler
in Python. See chapter 10 for more information on the Python profiler. The system’s profile
function is called similarly to the system’s trace function (see settrace()), but it isn’t called for
each executed line of code (only on call and return, but the return event is reported even when
an exception has been set). The function is thread-specific, but there is no way for the profiler to
know about context switches between threads, so it does not make sense to use this in the presence
of multiple threads. Also, its return value is not used, so it can simply return None.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stack to limit. This limit prevents infinite
recursion from causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when
she has a program that requires deep recursion and a platform that supports a higher limit. This
should be done with care, because a too-high limit can lead to a crash.

settrace (tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in
Python. See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is
thread-specific; for a debugger to support multiple threads, it must be registered using settrace()
for each thread being debugged.

stdin

stdout

stderr
File objects corresponding to the interpreter’s standard input, output and error streams. stdin is
used for all interpreter input except for scripts but including calls to input() and raw_input().
stdout is used for the output of print and expression statements and for the prompts of input ()
and raw_input (). The interpreter’s own prompts and (almost all of) its error messages go to
stderr. stdout and stderr needn’t be built-in file objects: any object is acceptable as long as it

3.1. sys — System-specific parameters and functions 35

has a write() method that takes a string argument. (Changing these objects doesn’t affect the
standard I/O streams of processes executed by os.popen(), os.system() or the exec*() family
of functions in the os module.)

__stdin__

__stdout__

__stderr__
These objects contain the original values of stdin, stderr and stdout at the start of the program.
They are used during finalization, and could be useful to restore the actual files to known working
file objects in case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of
traceback information printed when an unhandled exception occurs. The default is 1000. When
set to 0 or less, all traceback information is suppressed and only the exception type and value are
printed.

version
A string containing the version number of the Python interpreter plus additional information
on the build number and compiler used. It has a value of the form ’wversion #build_number,
build_date, build_time) [compiler]’. The first three characters are used to identify the version
in the installation directories (where appropriate on each platform). An example:

>>> import sys
>>> sys.version
’1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

version_info
A tuple containing the five components of the version number: major, minor, micro, release-
level, and serial. All values except releaselevel are integers; the release level is >alpha’, ’beta’,
’candidate’, or final’. The version_info value corresponding to the Python version 2.0 is
(2, 0, 0, ’final’, 0). New in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to
the warnings module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string
resource 1000 in the Python DLL. The value is normally the first three characters of version. It
is provided in the sys module for informational purposes; modifying this value has no effect on the
registry keys used by Python. Availability: Windows.

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector
(enabled by default). If this was not enabled, an ImportError is raised by attempts to import this
module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the
collector, tune the collection frequency, and set debugging options. It also provides access to unreachable
objects that the collector found but cannot free. Since the collector supplements the reference counting
already used in Python, you can disable the collector if you are sure your program does not create
reference cycles. Automatic collection can be disabled by calling gc.disable(). To debug a leaking
program call gc.set_debug(gc.DEBUG_LEAK).

The gc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable()

36 Chapter 3. Python Runtime Services

Disable automatic garbage collection.

isenabled()
Returns true if automatic collection is enabled.

collect()
Run a full collection. All generations are examined and the number of unreachable objects found
is returned.

set_debug(flags)
Set the garbage collection debugging flags. Debugging information will be written to sys.stderr.
See below for a list of debugging flags which can be combined using bit operations to control
debugging.

get_debug()
Return the debugging flags currently set.

get_objects()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version
2.2.

setfthreshold(thresholdO[, threshold1 [, threshold,?]])
Set the garbage collection thresholds (the collection frequency). Setting threshold0 to zero disables
collection.

The GC classifies objects into three generations depending on how many collection sweeps they
have survived. New objects are placed in the youngest generation (generation 0). If an object
survives a collection it is moved into the next older generation. Since generation 2 is the oldest
generation, objects in that generation remain there after a collection. In order to decide when
to run, the collector keeps track of the number object allocations and deallocations since the last
collection. When the number of allocations minus the number of deallocations exceeds threshold0,
collection starts. Initially only generation O is examined. If generation O has been examined more
than threshold! times since generation 1 has been examined, then generation 1 is examined as well.
Similarly, threshold2 controls the number of collections of generation 1 before collecting generation
2.

get_threshold()
Return the current collection thresholds as a tuple of (threshold0, thresholdl, threshold2).

get_referrers(*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those
containers which support garbage collection; extension types which do refer to other objects but
do not support garbage collection will not be found. New in version 2.2.

The following variable is provided for read-only access (you can mutate its value but should not rebind
it):

garbage

A list of objects which the collector found to be unreachable but could not be freed (uncollectable
objects). By default, this list contains only objects with __del__() methods.! Objects that
have __del__ () methods and are part of a reference cycle cause the entire reference cycle to be
uncollectable, including objects not necessarily in the cycle but reachable only from it. Python
doesn’t collect such cycles automatically because, in general, it isn’t possible for Python to guess
a safe order in which to run the __del__ () methods. If you know a safe order, you can force the
issue by examining the garbage list, and explicitly breaking cycles due to your objects within the
list. Note that these objects are kept alive even so by virtue of being in the garbage list, so they
should be removed from garbage too. For example, after breaking cycles, do del gc.garbagel[:]
to empty the list. It’s generally better to avoid the issue by not creating cycles containing objects
with __del__ () methods, and garbage can be examined in that case to verify that no such cycles
are being created.

If DEBUG_SAVEALL is set, then all unreachable objects will be added to this list rather than freed.

1Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only those with __del__()
methods.

3.2. gc — Garbage Collector interface 37

The following constants are provided for use with set_debug():

DEBUG_STATS
Print statistics during collection. This information can be useful when tuning the collection fre-
quency.

DEBUG_COLLECTABLE
Print information on collectable objects found.

DEBUG_UNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be
freed by the collector). These objects will be added to the garbage list.

DEBUG_INSTANCES
‘When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTABLE is set, print information about instance ob-
jects found.

DEBUG_OBJECTS
When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTABLE is set, print information about objects other
than instance objects found.

DEBUG_SAVEALL
When set, all unreachable objects found will be appended to garbage rather than being freed. This
can be useful for debugging a leaking program.

DEBUG_LEAK
The debugging flags necessary for the collector to print information about a leak-
ing program (equal to DEBUG_COLLECTABLE | DEBUG_UNCOLLECTABLE | DEBUG_INSTANCES |
DEBUG_OBJECTS | DEBUG_SAVEALL).

3.3 weakref — Weak references

New in version 2.1.
The weakref module allows the Python programmer to create weak references to objects.

In the discussion which follows, the term referent means the object which is referred to by a weak
reference.

XXX — need to say more here!

Not all objects can be weakly referenced; those objects which do include class instances, functions
written in Python (but not in C), and methods (both bound and unbound). Extension types can easily
be made to support weak references; see section 3.3.3, “Weak References in Extension Types,” for more
information.

ref (object [, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference
object if the referent is still alive; if the referent is no longer alive, calling the reference object will
cause None to be returned. If callback is provided, it will be called when the object is about to
be finalized; the weak reference object will be passed as the only parameter to the callback; the
referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered
for each weak reference will be called from the most recently registered callback to the oldest
registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propa-
gated; they are handled in exactly the same way as exceptions raised from an object’s __del__ ()
method.

Weak references are hashable if the object is hashable. They will maintain their hash value even
after the object was deleted. If hash() is called the first time only after the object was deleted, the
call will raise TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two

38 Chapter 3. Python Runtime Services

references have the same equality relationship as their referents (regardless of the callback). If
either referent has been deleted, the references are equal only if the reference objects are the same
object.

proxy(object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most
contexts instead of requiring the explicit dereferencing used with weak reference objects. The
returned object will have a type of either ProxyType or CallableProxyType, depending on whether
object is callable. Proxy objects are not hashable regardless of the referent; this avoids a number of
problems related to their fundamentally mutable nature, and prevent their use as dictionary keys.
callback is the same as the parameter of the same name to the ref () function.

getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class WeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there
is no longer a strong reference to the key. This can be used to associate additional data with an
object owned by other parts of an application without adding attributes to those objects. This can
be especially useful with objects that override attribute accesses.

class WeakValueDictionary([dz’ct])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no
strong reference to the value exists any more.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object
is a proxy without being dependent on naming both proxy types.

exception ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This
is the same as the standard ReferenceError exception.

See Also:

PEP 0205, “Weak References’
The proposal and rationale for this feature, including links to earlier implementations and infor-
mation about similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still
exists, by calling it:

>>> import weakref
>>> class Object:
pass

>>> o = Object()
>>> r = weakref.ref (o)
>>> 02 = r()

3.3. weakref — Weak references 39

>>> o is 02
1

If the referent no longer exists, calling the reference object returns None:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expression ref () is not None.
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o=1r0
if o is None:
referent has been garbage collected
print "Object has been allocated; can’t frobnicate."
else:
print "Object is still live!"
o.do_something_useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can
cause a weak reference to become invalidated before the weak reference is called; the idiom shown above
is safe in threaded applications as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen
before. The IDs of the objects can then be used in other data structures without forcing the objects to
remain alive, but the objects can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism
without incurring the overhead on those objects which do not benefit by weak referencing (such as
numbers).

For an object to be weakly referencable, the extension must include a PyObject* field in the instance
structure for the use of the weak reference mechanism; it must be initialized to NULL by the object’s
constructor. It must also set the tp_weaklistoffset field of the corresponding type object to the offset
of the field. Also, it needs to add Py_TPFLAGS_HAVE_WEAKREFS to the tp_flags slot. For example, the
instance type is defined with the following structure:

typedef struct {
PyObject_HEAD
PyClassObject *in_class; /* The class object */
PyObject xin_dict; /* A dictionary */

40 Chapter 3. Python Runtime Services

PyObject xin_weakreflist; /* List of weak references */
} PyInstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject PyInstance_Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"module.instance",

/* Lots of stuff omitted for brevity... */

Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_WEAKREFS /* tp_flags */

0, /* tp_doc */

0, /* tp_traverse */

0, /* tp_clear */

0, /* tp_richcompare */

offsetof (PyInstanceObject, in_weakreflist), /* tp_weaklistoffset */
};

The type constructor is responsible for initializing the weak reference list to NULL:

static PyObject *
instance_new() {
/* Other initialization stuff omitted for brevity */

self->in_weakreflist = NULL;

return (PyObject *) self;
}

The only further addition is that the destructor needs to call the weak reference manager to clear any
weak references. This should be done before any other parts of the destruction have occurred, but is

only required if the weak reference list is non-NULL:

static void
instance_dealloc(PyInstanceObject *inst)

{
/* Allocate temporaries if needed, but do not begin
destruction just yet.
*/
if (inst->in_weakreflist != NULL)
PyObject_ClearWeakRefs ((PyObject *) inst);
/* Proceed with object destruction normally. */
}

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard.
On any real computer, some floating point operations produce results that cannot be expressed as a

normal floating point value. For example, try

>>> import math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)

3.4. fpectl — Floating point exception control

41

nan

(The example above will work on many platforms. DEC Alpha may be one exception.) ”Inf” is a special,
non-numeric value in IEEE-754 that stands for ”infinity”, and "nan” means "not a number.” Note that,
other than the non-numeric results, nothing special happened when you asked Python to carry out those
calculations. That is in fact the default behaviour prescribed in the IEEE-754 standard, and if it works
for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where
the faulty operation was attempted. The fpectl module is for use in that situation. It provides control
over floating point units from several hardware manufacturers, allowing the user to turn on the generation
of SIGFPE whenever any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation
occurs. In tandem with a pair of wrapper macros that are inserted into the C code comprising your
python system, SIGFPE is trapped and converted into the Python FloatingPointError exception.

The fpectl module defines the following functions and may raise the given exception:

turnon_sigfpe()
Turn on the generation of SIGFPE, and set up an appropriate signal handler.

turnoff_sigfpe()
Reset default handling of floating point exceptions.

exception FloatingPointError
After turnon_sigfpe() has been executed, a floating point operation that raises one of the IEEE-
754 exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard
Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operation of the fpectl module.

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by O PASS
FloatingPointError: Division by zero
[more output from test elided]

>>> import math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in 7

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a
per-architecture basis. You may have to modify fpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECT and PyFPE_END_PROTECT be inserted into your code in an appropriate fash-
ion. Python itself has been modified to support the fpectl module, but many other codes of interest to
numerical analysts have not.

The fpectl module is not thread-safe.
See Also:

42 Chapter 3. Python Runtime Services

Some files in the source distribution may be interesting in learning more about how this module op-
erates. The include file ‘Include/pyfpe.h’ discusses the implementation of this module at some length.
‘Modules/fpetestmodule.c’ gives several examples of use. Many additional examples can be found in
‘Objects/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

The atexit module defines a single function to register cleanup functions. Functions thus registered are
automatically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal,
when a Python fatal internal error is detected, or when os._exit () is called.

This is an alternate interface to the functionality provided by the sys.exitfunc variable.

Note: This module is unlikely to work correctly when used with other code that sets sys.exitfunc.
In particular, other core Python modules are free to use atexit without the programmer’s knowledge.
Authors who use sys.exitfunc should convert their code to use atexit instead. The simplest way to
convert code that sets sys.exitfunc is to import atexit and register the function that had been bound
to sys.exitfunc.

register(func[, *args [, **kargs]])
Register func as a function to be executed at termination. Any optional arguments that are to be
passed to func must be passed as arguments to register().

At normal program termination (for instance, if sys.exit() is called or the main module’s exe-
cution completes), all functions registered are called in last in, first out order. The assumption is
that lower level modules will normally be imported before higher level modules and thus must be
cleaned up later.

See Also:

Module readline (section 7.16):
Useful example of atexit to read and write readline history files.

3.56.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it
is imported and save the counter’s updated value automatically when the program terminates without
relying on the application making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter").read())
except IOError:

_count = 0

def incrcounter(n):
global _count

_count = _count + n

def savecounter():
open("/tmp/counter", "w").write("}d" % _count)

import atexit
atexit.register(savecounter)

3.6 types — Names for all built-in types

3.5. atexit — Exit handlers 43

This module defines names for all object types that are used by the standard Python interpreter, but
not for the types defined by various extension modules. It is safe to use ‘from types import *’ — the
module does not export any names besides the ones listed here. New names exported by future versions
of this module will all end in ‘Type’.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type of None.

TypeType
The type of type objects (such as returned by type()).

IntType
The type of integers (e.g. 1).

LongType
The type of long integers (e.g. 1L).

FloatType
The type of floating point numbers (e.g. 1.0).

ComplexType
The type of complex numbers (e.g. 1.0j). This is not defined if Python was built without complex
number support.

StringType
The type of character strings (e.g. ’Spam’).
UnicodeType

The type of Unicode character strings (e.g. w’Spam’). This is not defined if Python was built
without Unicode support.

TupleType
The type of tuples (e.g. (1, 2, 3, ’Spam’)).
ListType
The type of lists (e.g. [0, 1, 2, 3]).
DictType
The type of dictionaries (e.g. {’Bacon’: 1, ’Ham’: 0}).
DictionaryType
An alternate name for DictType.

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name for FunctionType.

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version
2.2.

CodeType
The type for code objects such as returned by compile().

ClassType

44 Chapter 3. Python Runtime Services

The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name for MethodType.

BuiltinFunctionType
The type of built-in functions like 1len() or sys.exit().

BuiltinMethodType
An alternate name for BuiltinFunction.

ModuleType
The type of modules.

FileType
The type of open file objects such as sys.stdout.

XRangeType
The type of range objects returned by xrange ().

SliceType
The type of objects returned by slice().

EllipsisType
The type of E1lipsis.

TracebackType
The type of traceback objects such as found in sys.exc_traceback.

FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

BufferType
The type of buffer objects created by the buffer () function.

StringTypes
A sequence containing StringType and UnicodeType used to facilitate easier checking for any
string object. Using this is more portable than using a sequence of the two string types constructed
elsewhere since it only contains UnicodeType if it has been built in the running version of Python.
For example: isinstance(s, types.StringTypes). New in version 2.2.

3.7 UserDict — Class wrapper for dictionary objects

Note: This module is available for backward compatibility only. If you are writing code that does not
need to work with versions of Python earlier than Python 2.2, please consider subclassing directly from
the built-in dict type.

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class
for your own dictionary-like classes, which can inherit from them and override existing methods or add
new ones. In this way one can add new behaviors to dictionaries.

The UserDict module defines the UserDict class:

class UserDict([z’m’tialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is
accessible via the data attribute of UserDict instances. If initialdata is provided, data is initialized
with its contents; note that a reference to initialdata will not be kept, allowing it be used used for
other purposes.

In addition to supporting the methods and operations of mappings (see section 2.2.7), UserDict instances

3.7. UserDict — Class wrapper for dictionary objects 45

provide the following attribute:

data
A real dictionary used to store the contents of the UserDict class.

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not
need to work with versions of Python earlier than Python 2.2, please consider subclassing directly from
the built-in 1list type.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your
own list-like classes, which can inherit from them and override existing methods or add new ones. In
this way one can add new behaviors to lists.

The UserList module defines the UserList class:

class UserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible
via the data attribute of UserList instances. The instance’s contents are initially set to a copy
of list, defaulting to the empty list [1. list can be either a regular Python list, or an instance of
UserList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see section 2.2.6), UserList
instances provide the following attribute:

data
A real Python list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be
called with either no arguments or one argument. List operations which return a new sequence attempt
to create an instance of the actual implementation class. To do so, it assumes that the constructor can
be called with a single parameter, which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported
by this class will need to be overridden; please consult the sources for information about the methods
which need to be provided in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with
no parameters, and offer a mutable data attribute. Earlier versions of Python did not attempt to create
instances of the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you
are writing code that does not need to work with versions of Python earlier than Python 2.2, please
consider subclassing directly from the built-in str type instead of using UserString (there is no built-in
equivalent to MutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your
own string-like classes, which can inherit from them and override existing methods or add new ones. In
this way one can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects;
this is especially the case for MutableString.

The UserString module defines the following classes:

class UserString([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular
string or Unicode string object, which is accessible via the data attribute of UserString instances.
The instance’s contents are initially set to a copy of sequence. sequence can be either a r