Python Tutorial
Release 2.2.2

Guido van Rossum

Fred L. Drake, Jr., editor

October 14, 2002

PythonLabs
Email: python-docs@python.org

Copyright(© 2001 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together with its

interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most
platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python Web sitettp://www.python.org/, and can be freely distributed. The same site also contains
distributions of and pointers to many free third party Python modules, programs and tools, and additional documenta-
tion.

The Python interpreter is easily extended with new functions and data types implemented in+t@ (or @ther
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system. It
helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the tutorial
can be read off-line as well.

For a description of standard objects and modules, seByttien Library Referencdocument. ThéPython Refer-
ence Manuapives a more formal definition of the language. To write extensions in Ctdr, €@adExtending and
Embedding the Python Interpretand Python/C API ReferenceThere are also several books covering Python in
depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs, and you
will be ready to learn more about the various Python library modules describedRythen Library Reference

CONTENTS

Whetting Your Appetite 1
1.1 Where FromHere. 2
Using the Python Interpreter 3
2.1 Invoking the Interpreter. L e 3
2.2 Thelnterpreterand Its Environment. e 4
An Informal Introduction to Python 7
3.1 UsingPythonasaCalculator 7
3.2 First Steps Towards Programming 0 i i e e e e e e 15
More Control Flow Tools 17
4.1 if Statements. e e e 17
4.2 for StatementS. L e 17
4.3 Therange() Function. e e e e 18
4.4 break andcontinue Statements, anelse Clausesonloops 18
4.5 pass Statements 19
4.6 Defining Functions L e e 19
4.7 More onDefining Functions e 21
Data Structures 25
5.1 MoreonListS e e 25
5.2 Thedel statement L e 28
5.3 Tuplesand SEqQUENCES. e e e e e e 29
5.4 Dictionaries e e e e e 30
5.5 Looping Techniques 31
56 Moreon Conditions. e 31
5.7 Comparing Sequences and Other Types. i i ittt 32
Modules 33
6.1 MoreonModules L e 34
6.2 Standard Modules. L e e 35
6.3 Thedir() Function e e e 36
6.4 Packages. 37
Input and Output 41
7.1 FancierOutput Formatting. 0 e e e e e 41
7.2 Readingand Writing Files 43
Errors and Exceptions a7

10

8.1 Syntax Errors e e 47
8.2 EXCEPLIONS. o o e e e e e e a7
8.3 Handling EXCEpLioONS 48
8.4 Raising Exceptions. e 50
8.5 User-defined EXceptions. e e 50
8.6 Defining Clean-up ACLIONS i i e e e e e e e e 51
Classes 53
9.1 A Word About Terminology. e e e e 53
9.2 PythonScopesand Name Spaces i i i i i e e e 54
9.3 AFirstLookat Classes. o e 55
9.4 RandomRemarks. e e 57
9.5 Inheritance. L e 58
9.6 Private Variables. 60
9.7 Oddsand ENnds o e e 60
What Now? 63
Interactive Input Editing and History Substitution 65
Al LineEditing 65
A.2 History Substitution L e e 65
A3 KeyBindings e e 65
A4 COMMENTAIY. o o e e e e e e e e e e e e e e e e 67
Floating Point Arithmetic: Issues and Limitations 69
B.1 Representation Error e e 71
History and License 73
C.1 Historyofthesoftware e 73
C.2 Terms and conditions for accessing or otherwise using Python 73

CHAPTER
ONE

Whetting Your Appetite

If you ever wrote a large shell script, you probably know this feeling: you'd love to add yet another feature, but it's
already so slow, and so big, and so complicated; or the feature involves a system call or other function that is only
accessible from C ... Usually the problem at hand isn't serious enough to warrant rewriting the script in C; perhaps
the problem requires variable-length strings or other data types (like sorted lists of file names) that are easy in the shell
but lots of work to implement in C, or perhaps you're not sufficiently familiar with C.

Another situation: perhaps you have to work with several C libraries, and the usual C write/compile/test/re-compile
cycle is too slow. You need to develop software more quickly. Possibly perhaps you've written a program that could
use an extension language, and you don't want to design a language, write and debug an interpreter for it, then tie it
into your application.

In such cases, Python may be just the language for you. Python is simple to use, but it is a real programming language,
offering much more structure and support for large programs than the shell has. On the other hand, it also offers much
more error checking than C, and, beingeay-high-level languagét has high-level data types built in, such as flexible
arrays and dictionaries that would cost you days to implement efficiently in C. Because of its more general data types
Python is applicable to a much larger problem domain #vakor evenPerl, yet many things are at least as easy in
Python as in those languages.

Python allows you to split up your program in modules that can be reused in other Python programs. It comes with a
large collection of standard modules that you can use as the basis of your programs — or as examples to start learning
to program in Python. There are also built-in modules that provide things like file 1/0, system calls, sockets, and even
interfaces to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions during bottom-up program development.
It is also a handy desk calculator.

Python allows writing very compact and readable programs. Programs written in Python are typically much shorter
than equivalent C or €+ programs, for several reasons:

¢ the high-level data types allow you to express complex operations in a single statement;

e statement grouping is done by indentation instead of begin/end brackets;

e no variable or argument declarations are necessary.

Python isextensible if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you can
link the Python interpreter into an application written in C and use it as an extension or command language for that
application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do with
nasty reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

1.1 Where From Here

Now that you are all excited about Python, you'll want to examine it in some more detail. Since the best way to learn
a language is using it, you are invited here to do so.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.
The rest of the tutorial introduces various features of the Python language and system through examples, beginning

with simple expressions, statements and data types, through functions and modules, and finally touching upon ad-
vanced concepts like exceptions and user-defined classes.

2 Chapter 1. Whetting Your Appetite

CHAPTER
TWO

Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed asst/local/bin/python’ on those machines where it is available; putting
‘fusr/local/bin’ in your UNIX shell’'s search path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other places are
possible; check with your local Python guru or system administrator. (Bugr/jocal/python’ is a popular alternative
location.)

Typing an end-of-file characte€Cfntrol-D on UNix, Control-Z on DOS or Windows) at the primary prompt
causes the interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the
following commands:import sys; sys.exit() ’

The interpreter’s line-editing features usually aren’t very sophisticated. @x ,Uvhoever installed the interpreter

may have enabled support for the GNU readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is supported is typing Control-P to the
first Python prompt you get. If it beeps, you have command line editing; see Appendix A for an introduction to the
keys. If nothing appears to happen, offf is echoed, command line editing isn’'t available; you'll only be able to use
backspace to remove characters from the current line.

The interpreter operates somewhat like theixJshell: when called with standard input connected to a tty device, it
reads and executes commands interactively; when called with a file name argument or with a file as standard input, it
reads and executessaript from that file.

A third way of starting the interpreter ipython -c command[arg] ... ', which executes the statement(s) in
commanganalogous to the shell’s option. Since Python statements often contain spaces or other characters that are
special to the shell, it is best to quatemmandn its entirety with double quotes.

Note that there is a difference betwegython file ' and ‘python <file . In the latter case, input requests

from the program, such as callsitgput() andraw_input() , are satisfied fronfile. Since this file has already

been read until the end by the parser before the program starts executing, the program will encounter end-of-file
immediately. In the former case (which is usually what you want) they are satisfied from whatever file or device is
connected to standard input of the Python interpreter.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passirighefore the script. (This does not work if the script is read from standard input, for the
same reason as explained in the previous paragraph.)

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are passed to the script in the
variablesys.argv , which is a list of strings. Its length is at least one; when no script and no arguments are given,
sys.argv[0] is an empty string. When the script name is givefy'as (meaning standard inpugys.argv[0]

is setto’~ . When-c commands used,sys.argv[0] is set to’-c’ . Options found afterc commandare not
consumed by the Python interpreter’s option processing but leftsrargv for the command to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to inéeiractive modeln this mode it prompts for the
next command with therimary prompt usually three greater-than signs¥> ’); for continuation lines it prompts
with the secondary promptby default three dots (.). The interpreter prints a welcome message stating its
version number and a copyright notice before printing the first prompt:

python

Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sunosb5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look astatement:

>>> the_world_is flat = 1
>>> if the_world_is_flat:
print "Be careful not to fall off!"

Be careful not to fall off!

2.2 The Interpreter and Its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns
to the primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack trace.
(Exceptions handled by aexcept clause in a@ry statement are not errors in this context.) Some errors are un-
conditionally fatal and cause an exit with a nonzero exit; this applies to internal inconsistencies and some cases of
running out of memory. All error messages are written to the standard error stream; normal output from the executed
commands is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels the input and
returns to the primary promptTyping an interrupt while a command is executing raisesgboardinterrupt
exception, which may be handled byrg statement.

2.2.2 Executable Python Scripts

On BSD’ish WNIx systems, Python scripts can be made directly executable, like shell scripts, by putting the line

#! [usr/bin/env python

1A problem with the GNU Readline package may prevent this.

4 Chapter 2. Using the Python Interpreter

(assuming that the interpreter is on the user's PATH) at the beginning of the script and giving the file an executable
mode. The#! ' must be the first two characters of the file. Note that the hash, or pound, charétterused to start
a comment in Python.

2.2.3 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed every time the
interpreter is started. You can do this by setting an environment variable named PYTHONSTARTUP to the name of a
file containing your start-up commands. This is similar to tpheofile’ feature of the Wix shells.

This file is only read in interactive sessions, not when Python reads commands from a script, and nédevhigh *

is given as the explicit source of commands (which otherwise behaves like an interactive session). It is executed in
the same namespace where interactive commands are executed, so that objects that it defines or imports can be used
without qualification in the interactive session. You can also change the preggpsl andsys.ps2 in thisfile.

If you want to read an additional start-up file from the current directory, you can program this in the global start-
up file using code likeif os.path.isfile(’.pythonrc.py’): execfile(.pythonrc.py’) If
you want to use the startup file in a script, you must do this explicitly in the script:

import os

filename = os.environ.get(PYTHONSTARTUP’)

if filename and os.path.isfile(filename):
execfile(filename)

2.2. The Interpreter and Its Environment 5

CHAPTER
THREE

An Informal Introduction to Python

In the following examples, input and output are distinguished by the presence or absence of prempts dhd

‘... "): to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do
not begin with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example
means you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments in
Python start with the hash charactér, ‘and extend to the end of the physical line. A comment may appear at the start

of a line or following whitespace or code, but not within a string literal. A hash character within a string literal is just

a hash character.

Some examples:

this is the first comment

SPAM = 1 # and this is the second comment
... and now a third!

STRING = "# This is not a comment."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prempt, . (It shouldn’t
take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operatars- , * and/ work just like in most other languages (for example, Pascal or
C); parentheses can be used for grouping. For example:

>>> 242

4

>>> # This is a comment

. 242

4

>>> 242 # and a comment on the same line as code
4

>>> (50-5*6)/4

5

>>> # Integer division returns the floor:

.. 1/3

2

>>> 7/-3
-3

Like in C, the equal sign €’) is used to assign a value to a variable. The value of an assignment is not written:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>>
>>>
0
>>> y
0

>>> 7
0

X=y=2z=0 # Zero x, y and z
X

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 3 * 375/ 15
7.5

>>> 7.0/ 2

3.5

Complex numbers are also supported; imaginary numbers are written with a suffixasf*J’. Complex numbers
with a nonzero real component are written @eal+imag) ’, or can be created with theomplex(real, imag’
function.

>>> 1 * 1J

(-1+0j)

>>> 1j * complex(0,1)
(-1+0j)

>>> 3+1j*3

(3+3))

>>> (3+1))*3

(9+3))

>>> (1+2))/(1+1])
(1.5+0.5))

Complex numbers are always represented as two floating point numbers, the real and imaginary part. To extract these
parts from a complex numbeyusezreal andzimag .

>>> 3=1.5+0.5j
>>> a.real

15

>>> a.imag
0.5

The conversion functions to floating point and integdwat() , int() andlong()) don't work for complex
numbers — there is no one correct way to convert a complex number to a real numbeabd{s® to get its
magnitude (as a float) arreal to get its real part.

8 Chapter 3. An Informal Introduction to Python

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: can’t convert complex to float; use e.g. abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0
>>>

In interactive mode, the last printed expression is assigned to the variali@is means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price + _
113.0625

>>> round(_, 2)
113.06

>>>

This variable should be treated as read-only by the user. Don't explicitly assign a value to it — you would create an
independent local variable with the same name masking the built-in variable with its magic behavior.

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be enclosed
in single quotes or double quotes:

>>> 'spam eggs’
'spam eggs’

>>> 'doesn\'t’
"doesn’t"

>>> "doesn't"
"doesn't"

>>> "Yes," he said.’
"Yes," he said.’

>>> "\"Yes\" he said."
"Yes," he said.’

>>> "|sn\'t," she said.’
"Isn\'t," she said.’

String literals can span multiple lines in several ways. Continuation lines can be used, with a backslash as the last
character on the line indicating that the next line is a logical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant.”

print hello

3.1. Using Python as a Calculator 9

Note that newlines would still need to be embedded in the string Wisinthe newline following the trailing backslash
is discarded. This example would print the following:

This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is significant.

If we make the string literal a “raw” string, however, ttre sequences are not converted to newlines, but the backslash
at the end of the line, and the newline character in the source, are both included in the string as data. Thus, the example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print hello

would print;

This is a rather long string containing\n\
several lines of text much as you would do in C.

Or, strings can be surrounded in a pair of matching triple-qudtés:or’” . End of lines do not need to be escaped
when using triple-quotes, but they will be included in the string.

print ™"

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

produces the following output:

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

The interpreter prints the result of string operations in the same way as they are typed for input: inside quotes, and with
guotes and other funny characters escaped by backslashes, to show the precise value. The string is enclosed in double
guotes if the string contains a single quote and no double quotes, else it's enclosed in single quotesin(The
statement, described later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with-tbperator, and repeated with

>>> word = 'Help’ + A’

>>> word

"HelpA’

>>> <’ + word*s + >’
'<HelpAHelpAHelpAHelpAHelpA>’

Two string literals next to each other are automatically concatenated; the first line above could also have been written
‘word = 'Help’ A’ " this only works with two literals, not with arbitrary string expressions:

>>> jmport string

>>> 'str’ 'ing’ # <- This is ok
'string’

>>> string.strip(’str’) + 'ing’ # <- This is ok
'string’

10 Chapter 3. An Informal Introduction to Python

>>> string.strip('str’) 'ing’ # <- This is invalid
File "<stdin>", line 1, in ?
string.strip(’str’) 'ing’

SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has subscript (index) 0. There is no
separate character type; a character is simply a string of size one. Like in Icon, substrings can be specified with the
slice notation two indices separated by a colon.

>>> word[4]
"
>>> word[0:2]
He’
>>> word[2:4]
1|p1
Unlike a C string, Python strings cannot be changed. Assigning to an indexed position in the string results in an error:

>>> word[0] = X’
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn’t support item assignment
>>> word[:1] = ’'Splat’
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn’t support slice assignment

However, creating a new string with the combined content is easy and efficient:

>>> %’ + word[1:]
'xelpA’

>>> 'Splat’ + word[4]
'SplatA’

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size
of the string being sliced.

>>> word[:2] # The first two characters
‘He'
>>> word[2:] # All but the first two characters
1|pA!
Here’s a useful invariant of slice operatiors§i] + Ji:] equalss.

>>> word[:2] + word[2:]
'HelpA’
>>> word[:3] + word[3:]
'HelpA’

Degenerate slice indices are handled gracefully: an index that is too large is replaced by the string size, an upper bound
smaller than the lower bound returns an empty string.

>>> word[1:100]
‘elpA’
>>> word[10:]

”

3.1. Using Python as a Calculator 11

>>> word[2:1]

”

Indices may be negative numbers, to start counting from the right. For example:

>>> word[-1] # The last character

A

>>> word[-2] # The last-but-one character

o

>>> word[-2:] # The last two characters

‘DA’

>>> word[:-2] # All but the last two characters
Hel

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[-0] # (since -0 equals 0)
H

Out-of-range negative slice indices are truncated, but don't try this for single-element (non-slice) indices:

>>> word[-100:]

'HelpA’

>>> word[-10] # error

Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: string index out of range

The best way to remember how slices work is to think of the indices as poimitwgeercharacters, with the left edge
of the first character numbered 0. Then the right edge of the last character of a siminhavhcters has index for
example:

S S S S
[Hlelllpl|A]

S S S

o 1 2 3 4 5
5 4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the second row gives the corresponding
negative indices. The slice froimo j consists of all characters between the edges labeladj, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For example,
the length ofword[1:3] is 2.

The built-in functionlen() returns the length of a string:

>>> s = ’supercalifragilisticexpialidocious’
>>> len(s)
34

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the programmer: the Unicode object. It
can be used to store and manipulate Unicode datahfge&wvww.unicode.org/) and integrates well with the existing
string objects providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every script used in modern and ancient
texts. Previously, there were only 256 possible ordinals for script characters and texts were typically bound to a

12 Chapter 3. An Informal Introduction to Python

code page which mapped the ordinals to script characters. This lead to very much confusion especially with respect
to internationalization (usually written ael8n ' — ‘i’ + 18 characters +r’) of software. Unicode solves these
problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u'Hello World "
u’Hello World "

The small U’ in front of the quote indicates that an Unicode string is supposed to be created. If you want to include
special characters in the string, you can do so by using the Pithmode-Escapencoding. The following example
shows how:

>>> u'Hello\u0020World "
u'Hello World "

The escape sequentgd020 indicates to insert the Unicode character with the ordinal value 0x0020 (the space
character) at the given position.

Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If you have
literal strings in the standard Latin-1 encoding that is used in many Western countries, you will find it convenient that
the lower 256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You have to prefix the opening quote with
'ur’ to have Python use thRaw-Unicode-Escapencoding. It will only apply the aboveiIXXXX conversion if there
is an uneven number of backslashes in front of the small 'u’.

>>> ur'Hello\u0020World
u'Hello World "

>>> ur'Hello\u0020World "
u’Hello\\Wu0020World "

The raw mode is most useful when you have to enter lots of backslashes, as can be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways of creating Unicode strings on the
basis of a known encoding.

The built-in functionunicode() provides access to all registered Unicode codecs (COders and DECoders). Some
of the more well known encodings which these codecs can convdratirel, ASCI, UTF-8, andUTF-16. The latter

two are variable-length encodings that store each Unicode character in one or more bytes. The default encoding is
normally set to ASCII, which passes through characters in the range 0 to 127 and rejects any other characters with an
error. When a Unicode string is printed, written to a file, or converted stif) , conversion takes place using this
default encoding.

>>> u"abc"
u'abc’
>>> str(u"abc")
‘abc’
>>> u"aol"
u'\xed\xfe\xfc’
>>> str(u"aou”)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
UnicodeError: ASCII encoding error: ordinal not in range(128)

To convert a Unicode string into an 8-bit string using a specific encoding, Unicode objects prowadeaate()
method that takes one argument, the name of the encoding. Lowercase names for encodings are preferred.

3.1. Using Python as a Calculator 13

>>> y"aou".encode('utf-8’)
"\xc3\xad\xc3\xb6\xc3\xbc’

If you have data in a specific encoding and want to produce a corresponding Unicode string from it, you can use the
unicode() function with the encoding name as the second argument.

>>> unicode("\xc3\xa4\xc3\xb6\xc3\xbc’, 'utf-8’)
u\xe4\xf6\xfc’

3.1.4 Lists

Python knows a number @ompoundiata types, used to group together other values. The most versatildist,the
which can be written as a list of comma-separated values (items) between square brackets. List items need not all have
the same type.

>>> a = ['spam’, 'eggs’, 100, 1234]
>>> a
['spam’, 'eggs’, 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

>>> a[0]

‘'spam’

>>> g[3]

1234

>>> g[-2]

100

>>> g[l:-1]

['eggs’, 100]

>>> g[:2] + [bacon’, 2*2]
['spam’, 'eggs’, 'bacon’, 4]
>>> 3*g[:3] + ['Boe!’]
[spam’, 'eggs’, 100, 'spam’, 'eggs’, 100, 'spam’, 'eggs’, 100, 'Boe!]

Unlike strings, which aremmutable it is possible to change individual elements of a list:

>>> 3
['spam’, 'eggs’, 100, 1234]
>>> g[2] = a[2] + 23
>>> g

['spam’, 'eggs’, 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list:

>>> # Replace some items:
. af0:2] = [1, 12]

>>> a

[1, 12, 123, 1234]

>>> # Remove some:
.al0:2] =

>>> a

[123, 1234]

>>> # Insert some:

14 Chapter 3. An Informal Introduction to Python

. a[l:1] = [bletch’, 'xyzzy’]

>>> a

[123, ’bletch’, 'xyzzy’, 1234]

>>> g[i0] = a # Insert (a copy of) itself at the beginning
>>> a

[123, ’bletch’, 'xyzzy’, 1234, 123, ’'bletch’, 'xyzzy', 1234]

The built-in functionlen() also applies to lists:

>>> len(a)
8

It is possible to nest lists (create lists containing other lists), for example:

>>> q = [2, 3]
>>>p = [1, q, 4]
>>> len(p)

3

>>> p[1]

(2, 3]

>>> p[1][0]

2

>>> p[l].append(’xtra’) # See section 5.1
>>>p

[1, [2, 3, 'xtra’], 4]
>>>

[2, 3, 'xtra’]

Note that in the last examplp[1l] andq really refer to the same object! We’ll come backotgect semantickter.
3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of tirébonacciseries as follows:

>>> # Fibonacci series:
. # the sum of two elements defines the next

.a, b=01
>>> while b < 10:
print b
a, b = b, atb
1
1
2
3
5
8

This example introduces several new features.

e The first line contains aultiple assignmenthe variables andb simultaneously get the new values 0 and 1.
On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place. The right-hand side expressions are evaluated from the left to the
right.

3.2. First Steps Towards Programming 15

e Thewhile loop executes as long as the condition (hére< 10) remains true. In Python, like in C, any non-
zero integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test used in the example is a simple
comparison. The standard comparison operators are written the same as(ie<3:than)> (greater thanj=
(equal to) <= (less than or equal to¥= (greater than or equal to) atrd (not equal to).

e Thebodyof the loop isindented indentation is Python’s way of grouping statements. Python does not (yet!)
provide an intelligent input line editing facility, so you have to type a tab or space(s) for each indented line.
In practice you will prepare more complicated input for Python with a text editor; most text editors have an
auto-indent facility. When a compound statement is entered interactively, it must be followed by a blank line to
indicate completion (since the parser cannot guess when you have typed the last line). Note that each line within
a basic block must be indented by the same amount.

e Theprint statement writes the value of the expression(s) it is given. It differs from just writing the expression
you want to write (as we did earlier in the calculator examples) in the way it handles multiple expressions and
strings. Strings are printed without quotes, and a space is inserted between items, so you can format things
nicely, like this:

>>> | = 256*256
>>> print 'The value of i is’, i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>>a, b =01

>>> while b < 1000:
print b,
a, b = b, atb

11235813 21