
Python/C API Reference Manual
Release 2.3.4

Guido van Rossum
Fred L. Drake, Jr., editor

May 20, 2004

PythonLabs
Email: docs@python.org

Copyright c© 2001, 2002, 2003 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion toExtending and Embedding the Python Interpreter, which describes the general
principles of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. I hope that it is nevertheless useful. I will continue
to work on it, and release new versions from time to time, independent from Python source code releases.

CONTENTS

1 Introduction 1
1.1 Include Files . 1
1.2 Objects, Types and Reference Counts. 2
1.3 Exceptions . 5
1.4 Embedding Python . 7

2 The Very High Level Layer 9

3 Reference Counting 11

4 Exception Handling 13
4.1 Standard Exceptions. 16
4.2 Deprecation of String Exceptions. 17

5 Utilities 19
5.1 Operating System Utilities . 19
5.2 Process Control . 19
5.3 Importing Modules . 20
5.4 Data marshalling support. 22
5.5 Parsing arguments and building values. 23

6 Abstract Objects Layer 29
6.1 Object Protocol . 29
6.2 Number Protocol . 32
6.3 Sequence Protocol. 35
6.4 Mapping Protocol . 37
6.5 Iterator Protocol . 38
6.6 Buffer Protocol . 38

7 Concrete Objects Layer 41
7.1 Fundamental Objects. 41
7.2 Numeric Objects. 42
7.3 Sequence Objects. 46
7.4 Mapping Objects . 58
7.5 Other Objects . 60

8 Initialization, Finalization, and Threads 69
8.1 Thread State and the Global Interpreter Lock. 72
8.2 Profiling and Tracing . 76
8.3 Advanced Debugger Support. 77

9 Memory Management 79
9.1 Overview . 79
9.2 Memory Interface . 80

i

9.3 Examples . 80

10 Object Implementation Support 83
10.1 Allocating Objects on the Heap. 83
10.2 Common Object Structures. 84
10.3 Type Objects. 86
10.4 Mapping Object Structures. 98
10.5 Number Object Structures. 98
10.6 Sequence Object Structures. 98
10.7 Buffer Object Structures. 98
10.8 Supporting the Iterator Protocol. 99
10.9 Supporting Cyclic Garbage Collection. 99

A Reporting Bugs 103

B History and License 105
B.1 History of the software. 105
B.2 Terms and conditions for accessing or otherwise using Python. 106

Index 109

ii

CHAPTER

ONE

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the
Python/C API. There are two fundamentally different reasons for using the Python/C API. The first reason is to
write extension modulesfor specific purposes; these are C modules that extend the Python interpreter. This is
probably the most common use. The second reason is to use Python as a component in a larger application; this
technique is generally referred to asembeddingPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well.
There are several tools that automate the process to some extent. While people have embedded Python in other
applications since its early existence, the process of embedding Python is less straightforward than writing an
extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headers:<stdio.h> , <string.h> , <errno.h> ,
<limits.h> , and<stdlib.h> (if available).

Warning: Since Python may define some pre-processor definitions which affect the standard headers on
some systems, youmustinclude ‘Python.h’ before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of
the prefixes ‘Py’ or ‘ Py’. Names beginning with ‘Py’ are for internal use by the Python implementation and
should not be used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin with ‘Py’ or ‘ Py’. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional names begin-
ning with one of these prefixes.

The header files are typically installed with Python. On UNIX , these are located in the directories
‘prefix/include/pythonversion/’ and ‘exec prefix/include/pythonversion/’, where prefix and execprefix are defined
by the corresponding parameters to Python’sconfigurescript andversionis sys.version[:3] . On Windows,
the headers are installed in ‘prefix/include’, where prefix is the installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Donot
place the parent directories on the search path and then use ‘#include <python2.3/Python.h> ’; this will

1

break on multi-platform builds since the platform independent headers under prefix include the platform specific
headers from execprefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the
entry points to beextern "C" , so there is no need to do anything special to use the API from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of typePyObject* . This
type is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types
are treated the same way by the Python language in most situations (e.g., assignments, scope rules, and argument
passing), it is only fitting that they should be represented by a single C type. Almost all Python objects live on
the heap: you never declare an automatic or static variable of typePyObject , only pointer variables of type
PyObject* can be declared. The sole exception are the type objects; since these must never be deallocated, they
are typically staticPyTypeObject objects.

All Python objects (even Python integers) have atypeand areference count. An object’s type determines what
kind of object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in the
Python Reference Manual). For each of the well-known types there is a macro to check whether an object is of
that type; for instance, ‘PyList Check(a) ’ is true if (and only if) the object pointed to bya is a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When an object’s reference
count becomes zero, the object is deallocated. If it contains references to other objects, their reference count
is decremented. Those other objects may be deallocated in turn, if this decrement makes their reference count
become zero, and so on. (There’s an obvious problem with objects that reference each other here; for now, the
solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macroPy INCREF() to
increment an object’s reference count by one, andPy DECREF() to decrement it by one. ThePy DECREF()
macro is considerably more complex than the incref one, since it must check whether the reference count becomes
zero and then cause the object’s deallocator to be called. The deallocator is a function pointer contained in the
object’s type structure. The type-specific deallocator takes care of decrementing the reference counts for other
objects contained in the object if this is a compound object type, such as a list, as well as performing any additional
finalization that’s needed. There’s no chance that the reference count can overflow; at least as many bits are used
to hold the reference count as there are distinct memory locations in virtual memory (assumingsizeof(long)
>= sizeof(char*)). Thus, the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an
object. In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes
down by one when the variable goes out of scope. However, these two cancel each other out, so at the end the
reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from being
deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to increment the reference count temporarily.
An important situation where this arises is in objects that are passed as arguments to C functions in an extension
module that are called from Python; the call mechanism guarantees to hold a reference to every argument for the
duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing
its reference count. Some other operation might conceivably remove the object from the list, decrementing its
reference count and possible deallocating it. The real danger is that innocent-looking operations may invoke
arbitrary Python code which could do this; there is a code path which allows control to flow back to the user from
aPy DECREF(), so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with ‘PyObject ’,
‘PyNumber ’, ‘ PySequence ’ or ‘ PyMapping ’). These operations always increment the reference count

2 Chapter 1. Introduction

of the object they return. This leaves the caller with the responsibility to callPy DECREF() when they are done
with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms ofownership of ref-
erences. Ownership pertains to references, never to objects (objects are not owned: they are always shared).
”Owning a reference” means being responsible for calling PyDECREF on it when the reference is no longer
needed. Ownership can also be transferred, meaning that the code that receives ownership of the reference then
becomes responsible for eventually decref’ing it by callingPy DECREF() or Py XDECREF() when it’s no
longer needed –or passing on this responsibility (usually to its caller). When a function passes ownership of a
reference on to its caller, the caller is said to receive anewreference. When no ownership is transferred, the caller
is said toborrow the reference. Nothing needs to be done for a borrowed reference.

Conversely, when a calling function passes it a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not. Few functions steal references; the two notable exceptions are
PyList SetItem() andPyTuple SetItem() , which steal a reference to the item (but not to the tuple
or list into which the item is put!). These functions were designed to steal a reference because of a common
idiom for populating a tuple or list with newly created objects; for example, the code to create the tuple(1,
2, "three") could look like this (forgetting about error handling for the moment; a better way to code this is
shown below):

PyObject *t;

t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyInt_FromLong(1L));
PyTuple_SetItem(t, 1, PyInt_FromLong(2L));
PyTuple_SetItem(t, 2, PyString_FromString("three"));

Incidentally, PyTuple SetItem() is the only way to set tuple items;PySequence SetItem() and
PyObject SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written usingPyList New() andPyList SetItem() . Such
code can also usePySequence SetItem() ; this illustrates the difference between the two (the extra
Py DECREF() calls):

PyObject *l, *x;

l = PyList_New(3);
x = PyInt_FromLong(1L);
PySequence_SetItem(l, 0, x); Py_DECREF(x);
x = PyInt_FromLong(2L);
PySequence_SetItem(l, 1, x); Py_DECREF(x);
x = PyString_FromString("three");
PySequence_SetItem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice, you will rarely
use these ways of creating and populating a tuple or list. There’s a generic function,Py BuildValue() , that
can create most common objects from C values, directed by aformat string. For example, the above two blocks
of code could be replaced by the following (which also takes care of the error checking):

PyObject *t, *l;

t = Py_BuildValue("(iis)", 1, 2, "three");
l = Py_BuildValue("[iis]", 1, 2, "three");

1.2. Objects, Types and Reference Counts 3

It is much more common to usePyObject SetItem() and friends with items whose references you are
only borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour
regarding reference counts is much saner, since you don’t have to increment a reference count so you can give
a reference away (“have it be stolen”). For example, this function sets all items of a list (actually, any mutable
sequence) to a given item:

int
set_all(PyObject *target, PyObject *item)
{

int i, n;

n = PyObject_Length(target);
if (n < 0)

return -1;
for (i = 0; i < n; i++) {

if (PyObject_SetItem(target, i, item) < 0)
return -1;

}
return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a referece to an object give
you ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly,
and the reference you get is the only reference to the object. Therefore, the generic functions that return object
references, likePyObject GetItem() andPySequence GetItem() , always return a new reference (the
caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you
call only — the plumage(the type of the object passed as an argument to the function)doesn’t enter into it!Thus,
if you extract an item from a list usingPyList GetItem() , you don’t own the reference — but if you obtain
the same item from the same list usingPySequence GetItem() (which happens to take exactly the same
arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
usingPyList GetItem() , and once usingPySequence GetItem() .

long
sum_list(PyObject *list)
{

int i, n;
long total = 0;
PyObject *item;

n = PyList_Size(list);
if (n < 0)

return -1; /* Not a list */
for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can’t fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);

}
return total;

}

4 Chapter 1. Introduction

long
sum_sequence(PyObject *sequence)
{

int i, n;
long total = 0;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)

return -1; /* Has no length */
for (i = 0; i < n; i++) {

item = PySequence_GetItem(sequence, i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))

total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */

}
return total;

}

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int , long , double andchar* . A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type, and another is used to describe the value of a
complex number. These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled
exceptions are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the
top-level interpreter, where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can
raise exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a
function encounters an error, it sets an exception, discards any object references that it owns, and returns an error
indicator — usuallyNULLor -1 . A few functions return a Boolean true/false result, with false indicating an error.
Very few functions return no explicit error indicator or have an ambiguous return value, and require explicit testing
for errors withPyErr Occurred() .

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded
application). A thread can be in one of two states: an exception has occurred, or not. The function
PyErr Occurred() can be used to check for this: it returns a borrowed reference to the exception type object
when an exception has occurred, andNULLotherwise. There are a number of functions to set the exception state:
PyErr SetString() is the most common (though not the most general) function to set the exception state,
andPyErr Clear() clears the exception state.

The full exception state consists of three objects (all of which can beNULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python objectssys.exc type ,
sys.exc value , andsys.exc traceback ; however, they are not the same: the Python objects represent
the last exception being handled by a Pythontry . . . except statement, while the C level exception state only
exists while an exception is being passed on between C functions until it reaches the Python bytecode interpreter’s
main loop, which takes care of transferring it tosys.exc type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the functionsys.exc info() , which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception

1.3. Exceptions 5

will save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents
common bugs in exception handling code caused by an innocent-looking function overwriting the exception being
handled; it also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames
in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the
called function raised an exception, and if so, pass the exception state on to its caller. It should discard any
object references that it owns, and return an error indicator, but it shouldnot set another exception — that would
overwrite the exception that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in thesum sequence() example
above. It so happens that that example doesn’t need to clean up any owned references when it detects an error.
The following example function shows some error cleanup. First, to remind you why you like Python, we show
the equivalent Python code:

def incr_item(dict, key):
try:

item = dict[key]
except KeyError:

item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

6 Chapter 1. Introduction

int
incr_item(PyObject *dict, PyObject *key)
{

/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {

/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))

goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(0L);
if (item == NULL)

goto error;
}
const_one = PyInt_FromLong(1L);
if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)

goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */
}

This example represents an endorsed use of thegoto statement in C! It illustrates the use of
PyErr ExceptionMatches() and PyErr Clear() to handle specific exceptions, and the use of
Py XDECREF() to dispose of owned references that may beNULL (note the ‘X’ in the name;Py DECREF()
would crash when confronted with aNULLreference). It is important that the variables used to hold owned refer-
ences are initialized toNULL for this to work; likewise, the proposed return value is initialized to-1 (failure) and
only set to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to
worry about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the
interpreter can only be used after the interpreter has been initialized.

The basic initialization function isPy Initialize() . This initializes the table of loaded modules, and creates
the fundamental modules builtin , main , sys , andexceptions . It also initializes the module

1.4. Embedding Python 7

search path (sys.path).

Py Initialize() does not set the “script argument list” (sys.argv). If this variable is needed by Python
code that will be executed later, it must be set explicitly with a call toPySys SetArgv(argc, argv) subse-
quent to the call toPy Initialize() .

On most systems (in particular, on UNIX and Windows, although the details are slightly different),
Py Initialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory named ‘lib/python2.3’ relative to the parent directory
where the executable named ‘python’ is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in ‘/usr/local/bin/python’, it will assume that the libraries are in
‘ /usr/local/lib/python2.3’. (In fact, this particular path is also the “fallback” location, used when no executable file
named ‘python’ is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by callingPy SetProgramName(file) before calling
Py Initialize() . Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in
front of the standard path. An application that requires total control has to provide its own implementation of
Py GetPath() , Py GetPrefix() , Py GetExecPrefix() , andPy GetProgramFullPath() (all
defined in ‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make
another call toPy Initialize()) or the application is simply done with its use of Python and wants to
free all memory allocated by Python. This can be accomplished by callingPy Finalize() . The function
Py IsInitialized() returns true if Python is currently in the initialized state. More information about these
functions is given in a later chapter.

8 Chapter 1. Introduction

CHAPTER

TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not
let you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py eval input , Py file input , andPy single input . These are described following the functions
which accept them as parameters.

Note also that several of these functions takeFILE* parameters. On particular issue which needs to be handled
carefully is that theFILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken
thatFILE* parameters are only passed to these functions if it is certain that they were created by the same library
that the Python runtime is using.

int Py Main (int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python.
The argc and argv parameters should be prepared exactly as those which are passed to a C program’s
main() function. It is important to note that the argument list may be modified (but the contents of
the strings pointed to by the argument list are not). The return value will be the integer passed to the
sys.exit() function, 1 if the interpreter exits due to an exception, or2 if the parameter list does not
represent a valid Python command line.

int PyRun AnyFile (FILE *fp, char *filename)
If fp refers to a file associated with an interactive device (console or terminal input or UNIX

pseudo-terminal), return the value ofPyRun InteractiveLoop() , otherwise return the result of
PyRun SimpleFile() . If filenameis NULL, this function uses"???" as the filename.

int PyRun SimpleString (char *command)
Executes the Python source code fromcommandin the main module. If main does not already
exist, it is created. Returns0 on success or-1 if an exception was raised. If there was an error, there is no
way to get the exception information.

int PyRun SimpleFile (FILE *fp, char *filename)
Similar to PyRun SimpleString() , but the Python source code is read fromfp instead of an in-
memory string.filenameshould be the name of the file.

int PyRun InteractiveOne (FILE *fp, char *filename)
Read and execute a single statement from a file associated with an interactive device. Iffilenameis NULL,
"???" is used instead. The user will be prompted usingsys.ps1 and sys.ps2 . Returns0 when
the input was executed successfully,-1 if there was an exception, or an error code from the ‘errcode.h’
include file distributed as part of Python if there was a parse error. (Note that ‘errcode.h’ is not included by
‘Python.h’, so must be included specifically if needed.)

int PyRun InteractiveLoop (FILE *fp, char *filename)
Read and execute statements from a file associated with an interactive device untilEOF is reached. If
filenameis NULL, "???" is used instead. The user will be prompted usingsys.ps1 andsys.ps2 .
Returns0 at EOF.

struct node* PyParser SimpleParseString (char *str, int start)
Parse Python source code fromstr using the start tokenstart. The result can be used to create a code object

9

which can be evaluated efficiently. This is useful if a code fragment must be evaluated many times.

struct node* PyParser SimpleParseFile (FILE *fp, char *filename, int start)
Similar toPyParser SimpleParseString() , but the Python source code is read fromfp instead of
an in-memory string.filenameshould be the name of the file.

PyObject* PyRun String (char *str, int start, PyObject *globals, PyObject *locals)
Return value:New reference.
Execute Python source code fromstr in the context specified by the dictionariesglobalsand locals. The
parameterstart specifies the start token that should be used to parse the source code.

Returns the result of executing the code as a Python object, orNULL if an exception was raised.

PyObject* PyRun File (FILE *fp, char *filename, int start, PyObject *globals, PyObject *locals)
Return value:New reference.
Similar toPyRun String() , but the Python source code is read fromfp instead of an in-memory string.
filenameshould be the name of the file.

PyObject* Py CompileString (char *str, char *filename, int start)
Return value:New reference.
Parse and compile the Python source code instr, returning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and should bePy eval input ,
Py file input , or Py single input . The filename specified byfilenameis used to construct the
code object and may appear in tracebacks orSyntaxError exception messages. This returnsNULL if the
code cannot be parsed or compiled.

int Py eval input
The start symbol from the Python grammar for isolated expressions; for use with
Py CompileString() .

int Py file input
The start symbol from the Python grammar for sequences of statements as read from a file or other source;
for use withPy CompileString() . This is the symbol to use when compiling arbitrarily long Python
source code.

int Py single input
The start symbol from the Python grammar for a single statement; for use withPy CompileString() .
This is the symbol used for the interactive interpreter loop.

10 Chapter 2. The Very High Level Layer

CHAPTER

THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void Py INCREF(PyObject *o)
Increment the reference count for objecto. The object must not beNULL; if you aren’t sure that it isn’t
NULL, usePy XINCREF() .

void Py XINCREF(PyObject *o)
Increment the reference count for objecto. The object may beNULL, in which case the macro has no effect.

void Py DECREF(PyObject *o)
Decrement the reference count for objecto. The object must not beNULL; if you aren’t sure that it isn’t
NULL, usePy XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function
(which must not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class
instance with a del () method is deallocated). While exceptions in such code are not propagated, the
executed code has free access to all Python global variables. This means that any object that is reachable
from a global variable should be in a consistent state beforePy DECREF() is invoked. For example, code
to delete an object from a list should copy a reference to the deleted object in a temporary variable, update
the list data structure, and then callPy DECREF() for the temporary variable.

void Py XDECREF(PyObject *o)
Decrement the reference count for objecto. The object may beNULL, in which case the macro has no
effect; otherwise the effect is the same as forPy DECREF(), and the same warning applies.

The following functions or macros are only for use within the interpreter core:Py Dealloc() ,
Py ForgetReference() , Py NewReference() , as well as the global variablePy RefTotal .

11

12

CHAPTER

FOUR

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to under-
stand some of the basics of Python exception handling. It works somewhat like the UNIX errno variable: there
is a global indicator (per thread) of the last error that occurred. Most functions don’t clear this on success, but will
set it to indicate the cause of the error on failure. Most functions also return an error indicator, usuallyNULL if
they are supposed to return a pointer, or-1 if they return an integer (exception: thePyArg *() functions return
1 for success and0 for failure).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it shouldnot continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C
API may not behave as intended and may fail in mysterious ways.

The error indicator consists of three Python objects corresponding to the Python variablessys.exc type ,
sys.exc value andsys.exc traceback . API functions exist to interact with the error indicator in vari-
ous ways. There is a separate error indicator for each thread.

void PyErr Print ()
Print a standard traceback tosys.stderr and clear the error indicator. Call this function only when the
error indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr Occurred ()
Return value:Borrowed reference.
Test whether the error indicator is set. If set, return the exceptiontype(the first argument to the last call to
one of thePyErr Set*() functions or toPyErr Restore()). If not set, returnNULL. You do not
own a reference to the return value, so you do not need toPy DECREF() it. Note: Do not compare the
return value to a specific exception; usePyErr ExceptionMatches() instead, shown below. (The
comparison could easily fail since the exception may be an instance instead of a class, in the case of a class
exception, or it may the a subclass of the expected exception.)

int PyErr ExceptionMatches (PyObject *exc)
Equivalent to ‘PyErr GivenExceptionMatches(PyErr Occurred(), exc) ’. This should only
be called when an exception is actually set; a memory access violation will occur if no exception has been
raised.

int PyErr GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if thegivenexception matches the exception inexc. If exc is a class object, this also returns
true whengivenis an instance of a subclass. Ifexcis a tuple, all exceptions in the tuple (and recursively in
subtuples) are searched for a match. Ifgivenis NULL, a memory access violation will occur.

void PyErr NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned byPyErr Fetch() below can be “unnormalized”,
meaning that* excis a class object but* val is not an instance of the same class. This function can be used
to instantiate the class in that case. If the values are already normalized, nothing happens. The delayed
normalization is implemented to improve performance.

void PyErr Clear ()

13

Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables toNULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object may beNULL even when the type object is not.Note: This function is
normally only used by code that needs to handle exceptions or by code that needs to save and restore the
error indicator temporarily.

void PyErr Restore (PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the
objects areNULL, the error indicator is cleared. Do not pass aNULLtype and non-NULLvalue or traceback.
The exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules
will cause subtle problems later.) This call takes away a reference to each object: you must own a reference
to each object before the call and after the call you no longer own these references. (If you don’t understand
this, don’t use this function. I warned you.)Note: This function is normally only used by code that needs to
save and restore the error indicator temporarily; usePyErr Fetch() to save the current exception state.

void PyErr SetString (PyObject *type, char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type;
it is normally one of the standard exceptions, e.g.PyExc RuntimeError . You need not increment its
reference count. The second argument is an error message; it is converted to a string object.

void PyErr SetObject (PyObject *type, PyObject *value)
This function is similar toPyErr SetString() but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr Format (PyObject *exception, const char *format, ...)
Return value:AlwaysNULL.
This function sets the error indicator and returnsNULL. exceptionshould be a Python exception (class,
not an instance). format should be a string, containing format codes, similar toprintf() . The
width.precision before a format code is parsed, but the width part is ignored.

Character Meaning
‘c ’ Character, as anint parameter
‘d’ Number in decimal, as anint parameter
‘x ’ Number in hexadecimal, as anint parameter
‘s ’ A string, as achar * parameter
‘p’ A hex pointer, as avoid * parameter

An unrecognized format character causes all the rest of the format string to be copied as-is to the result
string, and any extra arguments discarded.

void PyErr SetNone (PyObject *type)
This is a shorthand for ‘PyErr SetObject(type, Py None) ’.

int PyErr BadArgument ()
This is a shorthand for ‘PyErr SetString(PyExc TypeError, message) ’, wheremessageindi-
cates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr NoMemory()
Return value:AlwaysNULL.
This is a shorthand for ‘PyErr SetNone(PyExc MemoryError) ’; it returnsNULLso an object allo-
cation function can write ‘return PyErr NoMemory(); ’ when it runs out of memory.

PyObject* PyErr SetFromErrno (PyObject *type)
Return value:AlwaysNULL.
This is a convenience function to raise an exception when a C library function has returned an error
and set the C variableerrno . It constructs a tuple object whose first item is the integererrno value
and whose second item is the corresponding error message (gotten fromstrerror()), and then calls
‘PyErr SetObject(type, object) ’. On UNIX , when theerrno value isEINTR, indicating an inter-
rupted system call, this callsPyErr CheckSignals() , and if that set the error indicator, leaves it set
to that. The function always returnsNULL, so a wrapper function around a system call can write ‘return
PyErr SetFromErrno(type); ’ when the system call returns an error.

14 Chapter 4. Exception Handling

PyObject* PyErr SetFromErrnoWithFilename (PyObject *type, char *filename)
Return value:AlwaysNULL.
Similar to PyErr SetFromErrno() , with the additional behavior that iffilenameis not NULL, it is
passed to the constructor oftypeas a third parameter. In the case of exceptions such asIOError and
OSError , this is used to define thefilename attribute of the exception instance.

PyObject* PyErr SetFromWindowsErr (int ierr)
Return value:AlwaysNULL.
This is a convenience function to raiseWindowsError . If called with ierr of 0, the error code returned
by a call toGetLastError() is used instead. It calls the Win32 functionFormatMessage() to re-
trieve the Windows description of error code given byierr or GetLastError() , then it constructs a tuple
object whose first item is theierr value and whose second item is the corresponding error message (got-
ten fromFormatMessage()), and then calls ‘PyErr SetObject(PyExc WindowsError, object) ’.
This function always returnsNULL. Availability: Windows.

PyObject* PyErr SetExcFromWindowsErr (PyObject *type, int ierr)
Similar toPyErr SetFromWindowsErr() , with an additional parameter specifying the exception type
to be raised. Availability: Windows. New in version 2.3.

PyObject* PyErr SetFromWindowsErrWithFilename (int ierr, char *filename)
Return value:AlwaysNULL.
Similar toPyErr SetFromWindowsErr() , with the additional behavior that iffilenameis notNULL,
it is passed to the constructor ofWindowsError as a third parameter. Availability: Windows.

PyObject* PyErr SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, char *file-
name)

Similar toPyErr SetFromWindowsErrWithFilename() , with an additional parameter specifying
the exception type to be raised. Availability: Windows. New in version 2.3.

void PyErr BadInternalCall ()
This is a shorthand for ‘PyErr SetString(PyExc TypeError, message) ’, wheremessageindi-
cates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

int PyErr Warn(PyObject *category, char *message)
Issue a warning message. Thecategoryargument is a warning category (see below) orNULL; themessage
argument is a message string.

This function normally prints a warning message tosys.stderr; however, it is also possible that the user
has specified that warnings are to be turned into errors, and in that case this will raise an exception. It
is also possible that the function raises an exception because of a problem with the warning machinery
(the implementation imports thewarnings module to do the heavy lifting). The return value is0 if no
exception is raised, or-1 if an exception is raised. (It is not possible to determine whether a warning
message is actually printed, nor what the reason is for the exception; this is intentional.) If an exception is
raised, the caller should do its normal exception handling (for example,Py DECREF() owned references
and return an error value).

Warning categories must be subclasses ofWarning ; the default warning category isRuntimeWarning .
The standard Python warning categories are available as global variables whose names are
‘PyExc ’ followed by the Python exception name. These have the typePyObject* ;
they are all class objects. Their names arePyExc Warning , PyExc UserWarning ,
PyExc DeprecationWarning , PyExc SyntaxWarning , PyExc RuntimeWarning , and
PyExc FutureWarning . PyExc Warning is a subclass ofPyExc Exception ; the other warning
categories are subclasses ofPyExc Warning .

For information about warning control, see the documentation for thewarnings module and the-W option
in the command line documentation. There is no C API for warning control.

int PyErr WarnExplicit (PyObject *category, char *message, char *filename, int lineno, char *module,
PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrap-
per around the Python functionwarnings.warn explicit() , see there for more information. The
moduleandregistryarguments may be set toNULL to get the default effect described there.

int PyErr CheckSignals ()

15

This function interacts with Python’s signal handling. It checks whether a signal has been sent to the
processes and if so, invokes the corresponding signal handler. If thesignal module is supported, this
can invoke a signal handler written in Python. In all cases, the default effect forSIGINT is to raise the
KeyboardInterrupt exception. If an exception is raised the error indicator is set and the function re-
turns1; otherwise the function returns0. The error indicator may or may not be cleared if it was previously
set.

void PyErr SetInterrupt ()
This function simulates the effect of aSIGINT signal arriving — the next time
PyErr CheckSignals() is called, KeyboardInterrupt will be raised. It may be called
without holding the interpreter lock.

PyObject* PyErr NewException (char *name, PyObject *base, PyObject *dict)
Return value:New reference.
This utility function creates and returns a new exception object. Thenameargument must be the name of
the new exception, a C string of the formmodule.class . The baseanddict arguments are normally
NULL. This creates a class object derived from the root for all exceptions, the built-in nameException
(accessible in C asPyExc Exception). The module attribute of the new class is set to the first
part (up to the last dot) of thenameargument, and the class name is set to the last part (after the last dot).
Thebaseargument can be used to specify an alternate base class. Thedict argument can be used to specify
a dictionary of class variables and methods.

void PyErr WriteUnraisable (PyObject *obj)
This utility function prints a warning message tosys.stderr when an exception has been set but it is
impossible for the interpreter to actually raise the exception. It is used, for example, when an exception
occurs in an del () method.

The function is called with a single argumentobj that identifies the context in which the unraisable exception
occurred. The repr ofobj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose names are ‘PyExc ’ followed by the
Python exception name. These have the typePyObject* ; they are all class objects. For completeness, here are
all the variables:

16 Chapter 4. Exception Handling

C Name Python Name Notes
PyExc Exception Exception (1)
PyExc StandardError StandardError (1)
PyExc ArithmeticError ArithmeticError (1)
PyExc LookupError LookupError (1)
PyExc AssertionError AssertionError
PyExc AttributeError AttributeError
PyExc EOFError EOFError
PyExc EnvironmentError EnvironmentError (1)
PyExc FloatingPointError FloatingPointError
PyExc IOError IOError
PyExc ImportError ImportError
PyExc IndexError IndexError
PyExc KeyError KeyError
PyExc KeyboardInterrupt KeyboardInterrupt
PyExc MemoryError MemoryError
PyExc NameError NameError
PyExc NotImplementedError NotImplementedError
PyExc OSError OSError
PyExc OverflowError OverflowError
PyExc ReferenceError ReferenceError (2)
PyExc RuntimeError RuntimeError
PyExc SyntaxError SyntaxError
PyExc SystemError SystemError
PyExc SystemExit SystemExit
PyExc TypeError TypeError
PyExc ValueError ValueError
PyExc WindowsError WindowsError (3)
PyExc ZeroDivisionError ZeroDivisionError

Notes:

(1) This is a base class for other standard exceptions.

(2) This is the same asweakref.ReferenceError .

(3) Only defined on Windows; protect code that uses this by testing that the preprocessor macroMS WINDOWS
is defined.

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived fromException .

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also
change in a future release.

4.2. Deprecation of String Exceptions 17

18

CHAPTER

FIVE

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Utilities

int Py FdIsInteractive (FILE *fp, char *filename)
Return true (nonzero) if the standard I/O filefp with namefilenameis deemed interactive. This is the case
for files for which ‘isatty(fileno(fp)) ’ is true. If the global flagPy InteractiveFlag is true,
this function also returns true if thefilenamepointer isNULL or if the name is equal to one of the strings
’<stdin>’ or ’???’ .

long PyOS GetLastModificationTime (char *filename)
Return the time of last modification of the filefilename. The result is encoded in the same way as the
timestamp returned by the standard C library functiontime() .

void PyOS AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the
Python interpreter will continue to be used. If a new executable is loaded into the new process, this function
does not need to be called.

int PyOS CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available when
USE STACKCHECKis defined (currently on Windows using the Microsoft Visual C++ compiler and on the
Macintosh).USE CHECKSTACKwill be defined automatically; you should never change the definition in
your own code.

PyOS sighandler t PyOS getsig (int i)
Return the current signal handler for signali. This is a thin wrapper around eithersigaction() or
signal() . Do not call those functions directly!PyOS sighandler t is a typedef alias forvoid
(*)(int) .

PyOS sighandler t PyOS setsig (int i, PyOS sighandler t h)
Set the signal handler for signali to beh; return the old signal handler. This is a thin wrapper around either
sigaction() or signal() . Do not call those functions directly!PyOS sighandler t is a typedef
alias forvoid (*)(int) .

5.2 Process Control

void Py FatalError (const char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be
invoked when a condition is detected that would make it dangerous to continue using the Python interpreter;
e.g., when the object administration appears to be corrupted. On UNIX , the standard C library function
abort() is called which will attempt to produce a ‘core’ file.

19

void Py Exit (int status)
Exit the current process. This callsPy Finalize() and then calls the standard C library function
exit(status) .

int Py AtExit (void (*func) ())
Register a cleanup function to be called byPy Finalize() . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successful,Py AtExit() returns0; on failure, it returns-1 . The cleanup function registered last is
called first. Each cleanup function will be called at most once. Since Python’s internal finallization will
have completed before the cleanup function, no Python APIs should be called byfunc.

5.3 Importing Modules

PyObject* PyImport ImportModule (char *name)
Return value:New reference.
This is a simplified interface toPyImport ImportModuleEx() below, leaving theglobalsandlocals
arguments set toNULL. When thenameargument contains a dot (when it specifies a submodule of a pack-
age), thefromlist argument is set to the list[’*’] so that the return value is the named module rather than
the top-level package containing it as would otherwise be the case. (Unfortunately, this has an additional
side effect whennamein fact specifies a subpackage instead of a submodule: the submodules specified in
the package’s all variable are loaded.) Return a new reference to the imported module, orNULL
with an exception set on failure (the module may still be created in this case — examinesys.modules to
find out).

PyObject* PyImport ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)

Return value:New reference.
Import a module. This is best described by referring to the built-in Python functionimport () , as
the standard import () function calls this function directly.

The return value is a new reference to the imported module or top-level package, orNULLwith an exception
set on failure (the module may still be created in this case). Like forimport () , the return value when
a submodule of a package was requested is normally the top-level package, unless a non-emptyfromlistwas
given.

PyObject* PyImport Import (PyObject *name)
Return value:New reference.
This is a higher-level interface that calls the current “import hook function”. It invokes theimport ()
function from the builtins of the current globals. This means that the import is done using what-
ever import hooks are installed in the current environment, e.g. byrexec or ihooks .

PyObject* PyImport ReloadModule (PyObject *m)
Return value:New reference.
Reload a module. This is best described by referring to the built-in Python functionreload() , as the
standardreload() function calls this function directly. Return a new reference to the reloaded module,
or NULLwith an exception set on failure (the module still exists in this case).

PyObject* PyImport AddModule (char *name)
Return value:Borrowed reference.
Return the module object corresponding to a module name. Thenameargument may be of the form
package.module). First check the modules dictionary if there’s one there, and if not, create a new
one and insert it in the modules dictionary. ReturnNULL with an exception set on failure.Note: This
function does not load or import the module; if the module wasn’t already loaded, you will get an empty
module object. UsePyImport ImportModule() or one of its variants to import a module. Package
structures implied by a dotted name fornameare not created if not already present.

PyObject* PyImport ExecCodeModule (char *name, PyObject *co)
Return value:New reference.
Given a module name (possibly of the formpackage.module) and a code object read from a Python
bytecode file or obtained from the built-in functioncompile() , load the module. Return a new reference
to the module object, orNULLwith an exception set if an error occurred (the module may still be created

20 Chapter 5. Utilities

in this case). This function would reload the module if it was already imported. Ifnamepoints to a dotted
name of the formpackage.module , any package structures not already created will still not be created.

long PyImport GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. ‘.pyc’ and ‘.pyo’ files). The magic number should
be present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport GetModuleDict ()
Return value:Borrowed reference.
Return the dictionary used for the module administration (a.k.a.sys.modules). Note that this is a per-
interpreter variable.

void PyImport Init ()
Initialize the import mechanism. For internal use only.

void PyImport Cleanup ()
Empty the module table. For internal use only.

void PyImport Fini ()
Finalize the import mechanism. For internal use only.

PyObject* PyImport FindExtension (char *, char *)
For internal use only.

PyObject* PyImport FixupExtension (char *, char *)
For internal use only.

int PyImport ImportFrozenModule (char *name)
Load a frozen module namedname. Return1 for success,0 if the module is not found, and-1 with
an exception set if the initialization failed. To access the imported module on a successful load, use
PyImport ImportModule() . (Note the misnomer — this function would reload the module if it
was already imported.)

struct frozen
This is the structure type definition for frozen module descriptors, as generated by thefreezeutility (see
‘Tools/freeze/’ in the Python source distribution). Its definition, found in ‘Include/import.h’, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

};

struct frozen* PyImport FrozenModules
This pointer is initialized to point to an array ofstruct frozen records, terminated by one whose
members are allNULLor zero. When a frozen module is imported, it is searched in this table. Third-party
code could play tricks with this to provide a dynamically created collection of frozen modules.

int PyImport AppendInittab (char *name, void (*initfunc)(void))
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
PyImport ExtendInittab() , returning-1 if the table could not be extended. The new module
can be imported by the namename, and uses the functioninitfuncas the initialization function called on the
first attempted import. This should be called beforePy Initialize() .

struct inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name
and initialization function for a module built into the interpreter. Programs which embed Python may use
an array of these structures in conjunction withPyImport ExtendInittab() to provide additional
built-in modules. The structure is defined in ‘Include/import.h’ as:

struct _inittab {
char *name;
void (*initfunc)(void);

};

5.3. Importing Modules 21

int PyImport ExtendInittab (struct inittab *newtab)
Add a collection of modules to the table of built-in modules. Thenewtabarray must end with a sentinel entry
which containsNULL for thename field; failure to provide the sentinel value can result in a memory fault.
Returns0 on success or-1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called beforePy Initialize() .

5.4 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as themarshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

void PyMarshal WriteLongToFile (long value, FILE *file)
Marshal along integer,value, to file. This will only write the least-significant 32 bits ofvalue; regardless
of the size of the nativelong type.

void PyMarshal WriteObjectToFile (PyObject *value, FILE *file)
Marshal a Python object,value, to file.

PyObject* PyMarshal WriteObjectToString (PyObject *value)
Return value:New reference.
Return a string object containing the marshalled representation ofvalue.

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that’s relevant), but it’s not clear that negative values won’t be handled properly when there’s
no error. What’s the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal ReadLongFromFile (FILE *file)
Return a Clong from the data stream in aFILE* opened for reading. Only a 32-bit value can be read in
using this function, regardless of the native size oflong .

int PyMarshal ReadShortFromFile (FILE *file)
Return a Cshort from the data stream in aFILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size ofshort .

PyObject* PyMarshal ReadObjectFromFile (FILE *file)
Return value:New reference.
Return a Python object from the data stream in aFILE* opened for reading. On error, sets the appropriate
exception (EOFError or TypeError) and returnsNULL.

PyObject* PyMarshal ReadLastObjectFromFile (FILE *file)
Return value:New reference.
Return a Python object from the data stream in aFILE* opened for reading. Unlike
PyMarshal ReadObjectFromFile() , this function assumes that no further objects will be read from
the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won’t be reading anything else from the file. On error, sets the appropriate exception (EOFError
or TypeError) and returnsNULL.

PyObject* PyMarshal ReadObjectFromString (char *string, int len)
Return value:New reference.
Return a Python object from the data stream in a character buffer containinglen bytes pointed to bystring.
On error, sets the appropriate exception (EOFError or TypeError) and returnsNULL.

22 Chapter 5. Utilities

5.5 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available inExtending and Embedding the Python Interpreter.

The first three of these functions described, PyArg ParseTuple() ,
PyArg ParseTupleAndKeywords() , and PyArg Parse() , all use format strings which are used
to tell the function about the expected arguments. The format strings use the same syntax for each of these
functions.

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually
a single character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not
a parenthesized sequence normally corresponds to a single address argument to these functions. In the following
description, the quoted form is the format unit; the entry in (round) parentheses is the Python object type that
matches the format unit; and the entry in [square] brackets is the type of the C variable(s) whose address should
be passed.

‘s ’ (string or Unicode object) [char *] Convert a Python string or Unicode object to a C pointer to a character
string. You must not provide storage for the string itself; a pointer to an existing string is stored into the
character pointer variable whose address you pass. The C string is NUL-terminated. The Python string
must not contain embedded NUL bytes; if it does, aTypeError exception is raised. Unicode objects are
converted to C strings using the default encoding. If this conversion fails, aUnicodeError is raised.

‘s# ’ (string, Unicode or any read buffer compatible object) [char *, int] This variant on ‘s ’ stores into two C
variables, the first one a pointer to a character string, the second one its length. In this case the Python string
may contain embedded null bytes. Unicode objects pass back a pointer to the default encoded string version
of the object if such a conversion is possible. All other read-buffer compatible objects pass back a reference
to the raw internal data representation.

‘z ’ (string or None) [char *] Like ‘s ’, but the Python object may also beNone, in which case the C pointer is
set toNULL.

‘z# ’ (string or None or any read buffer compatible object) [char *, int] This is to ‘s# ’ as ‘z ’ is to ‘s ’.

‘u’ (Unicode object) [Py UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated
buffer of 16-bit Unicode (UTF-16) data. As with ‘s ’, there is no need to provide storage for the Unicode
data buffer; a pointer to the existing Unicode data is stored into thePy UNICODEpointer variable whose
address you pass.

‘u# ’ (Unicode object) [Py UNICODE *, int] This variant on ‘u’ stores into two C variables, the first one a
pointer to a Unicode data buffer, the second one its length. Non-Unicode objects are handled by interpreting
their read-buffer pointer as pointer to aPy UNICODEarray.

‘es ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
This variant on ‘s ’ is used for encoding Unicode and objects convertible to Unicode into a character buffer.
It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be achar* which points
to the name of an encoding as a NUL-terminated string, orNULL, in which case the default encoding is
used. An exception is raised if the named encoding is not known to Python. The second argument must be a
char** ; the value of the pointer it references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.

PyArg ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this
buffer and adjust*buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem Free() to free the allocated buffer after use.

‘et ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same as ‘es ’ except that 8-bit string objects are passed through without recoding them. Instead, the
implementation assumes that the string object uses the encoding passed in as parameter.

5.5. Parsing arguments and building values 23

‘es# ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer length]
This variant on ‘s# ’ is used for encoding Unicode and objects convertible to Unicode into a character
buffer. Unlike the ‘es ’ format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and must be achar* which points to the name of
an encoding as a NUL-terminated string, orNULL, in which case the default encoding is used. An exception
is raised if the named encoding is not known to Python. The second argument must be achar** ; the value
of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument. The third argument must be a pointer to an integer;
the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points aNULL pointer, the function will allocate a buffer of the needed size, copy the encoded
data into this buffer and set*buffer to reference the newly allocated storage. The caller is responsible for
callingPyMem Free() to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer),PyArg ParseTuple() will use
this location as the buffer and interpret the initial value of*buffer lengthas the buffer size. It will then copy
the encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, aValueError
will be set.

In both cases,*buffer lengthis set to the length of the encoded data without the trailing NUL byte.

‘et# ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same as ‘es# ’ except that string objects are passed through without recoding them. Instead, the implemen-
tation assumes that the string object uses the encoding passed in as parameter.

‘b’ (integer) [char] Convert a Python integer to a tiny int, stored in a Cchar .

‘B’ (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char . New in version 2.3.

‘h’ (integer) [short int] Convert a Python integer to a Cshort int .

‘H’ (integer) [unsigned short int] Convert a Python integer to a Cunsigned short int , without overflow
checking. New in version 2.3.

‘ i ’ (integer) [int] Convert a Python integer to a plain Cint .

‘ I ’ (integer) [unsigned int] Convert a Python integer to a Cunsigned int , without overflow checking. New
in version 2.3.

‘ l ’ (integer) [long int] Convert a Python integer to a Clong int .

‘k ’ (integer) [unsigned long] Convert a Python integer to a Cunsigned long without overflow checking.
New in version 2.3.

‘L’ (integer) [PY LONG LONG] Convert a Python integer to a Clong long . This format is only available
on platforms that supportlong long (or int64 on Windows).

‘K’ (integer) [unsigned PY LONG LONG] Convert a Python integer to a Cunsigned long long with-
out overflow checking. This format is only available on platforms that supportunsigned long long
(or unsigned int64 on Windows). New in version 2.3.

‘c ’ (string of length 1) [char] Convert a Python character, represented as a string of length 1, to a Cchar .

‘ f ’ (float) [float] Convert a Python floating point number to a Cfloat .

‘d’ (float) [double] Convert a Python floating point number to a Cdouble .

‘D’ (complex) [Py complex] Convert a Python complex number to a CPy complex structure.

‘O’ (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program
thus receives the actual object that was passed. The object’s reference count is not increased. The pointer
stored is notNULL.

24 Chapter 5. Utilities

‘O! ’ (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to ‘O’, but
takes two C arguments: the first is the address of a Python type object, the second is the address of the C
variable (of typePyObject*) into which the object pointer is stored. If the Python object does not have
the required type,TypeError is raised.

‘O&’ (object) [converter, anything] Convert a Python object to a C variable through aconverterfunction. This
takes two arguments: the first is a function, the second is the address of a C variable (of arbitrary type),
converted tovoid * . Theconverterfunction in turn is called as follows:

status = converter(object, address);

whereobject is the Python object to be converted andaddressis thevoid* argument that was passed to
thePyArg Parse*() function. The returnedstatusshould be1 for a successful conversion and0 if the
conversion has failed. When the conversion fails, theconverterfunction should raise an exception.

‘S’ (string) [PyStringObject *] Like ‘O’ but requires that the Python object is a string object. Raises
TypeError if the object is not a string object. The C variable may also be declared asPyObject* .

‘U’ (Unicode string) [PyUnicodeObject *] Like ‘O’ but requires that the Python object is a Unicode object.
RaisesTypeError if the object is not a Unicode object. The C variable may also be declared as
PyObject* .

‘ t# ’ (read-only character buffer) [char *, int] Like ‘s# ’, but accepts any object which implements the read-
only buffer interface. Thechar* variable is set to point to the first byte of the buffer, and theint is set
to the length of the buffer. Only single-segment buffer objects are accepted;TypeError is raised for all
others.

‘w’ (read-write character buffer) [char *] Similar to ‘s ’, but accepts any object which implements the read-
write buffer interface. The caller must determine the length of the buffer by other means, or use ‘w#’
instead. Only single-segment buffer objects are accepted;TypeError is raised for all others.

‘w#’ (read-write character buffer) [char *, int] Like ‘s# ’, but accepts any object which implements the read-
write buffer interface. Thechar * variable is set to point to the first byte of the buffer, and theint is set
to the length of the buffer. Only single-segment buffer objects are accepted;TypeError is raised for all
others.

‘ (items) ’ (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in items. The C arguments must correspond to the individual format units initems. Format units for
sequences may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual
parameters, not an arbitrary sequence. Code which previously causedTypeError to be raised here may
now proceed without an exception. This is not expected to be a problem for existing code.

It is possible to pass Python long integers where integers are requested; however no proper range checking is done
— the most significant bits are silently truncated when the receiving field is too small to receive the value (actually,
the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They
are:

‘ | ’ Indicates that the remaining arguments in the Python argument list are optional. The C variables correspond-
ing to optional arguments should be initialized to their default value — when an optional argument is not
specified,PyArg ParseTuple() does not touch the contents of the corresponding C variable(s).

‘ : ’ The list of format units ends here; the string after the colon is used as the function name in error messages
(the “associated value” of the exception thatPyArg ParseTuple() raises).

‘ ; ’ The list of format units ends here; the string after the semicolon is used as the error messageinsteadof the
default error message. Clearly, ‘: ’ and ‘; ’ mutually exclude each other.

Note that any Python object references which are provided to the caller areborrowedreferences; do not decrement
their reference count!

5.5. Parsing arguments and building values 25

Additional arguments passed to these functions must be addresses of variables whose type is determined by the
format string; these are used to store values from the input tuple. There are a few cases, as described in the list of
format units above, where these parameters are used as input values; they should match what is specified for the
corresponding format unit in that case.

For the conversion to succeed, thearg object must match the format and the format must be exhausted. On success,
thePyArg Parse*() functions return true, otherwise they return false and raise an appropriate exception.

int PyArg ParseTuple (PyObject *args, char *format, ...)
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg ParseTupleAndKeywords (PyObject *args, PyObject *kw, char *format, char *keywords[],
...)

Parse the parameters of a function that takes both positional and keyword parameters into local variables.
Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg Parse (PyObject *args, char *format, ...)
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use
theMETH OLDARGSparameter parsing method. This is not recommended for use in parameter parsing in
new code, and most code in the standard interpreter has been modified to no longer use this for that purpose.
It does remain a convenient way to decompose other tuples, however, and may continue to be used for that
purpose.

int PyArg UnpackTuple (PyObject *args, char *name, int min, int max, ...)
A simpler form of parameter retrieval which does not use a format string to specify the types of the argu-
ments. Functions which use this method to retrieve their parameters should be declared asMETH VARARGS
in function or method tables. The tuple containing the actual parameters should be passed asargs; it must
actually be a tuple. The length of the tuple must be at leastmin and no more thanmax; min andmaxmay
be equal. Additional arguments must be passed to the function, each of which should be a pointer to a
PyObject* variable; these will be filled in with the values fromargs; they will contain borrowed refer-
ences. The variables which correspond to optional parameters not given byargswill not be filled in; these
should be initialized by the caller. This function returns true on success and false ifargs is not a tuple or
contains the wrong number of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for theweakref helper module for
weak references:

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;
PyObject *callback = NULL;
PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);

}
return result;

}

The call to PyArg UnpackTuple() in this example is entirely equivalent to this call to
PyArg ParseTuple() :

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

New in version 2.2.

PyObject* Py BuildValue (char *format, ...)
Return value:New reference.
Create a new value based on a format string similar to those accepted by thePyArg Parse*() family of
functions and a sequence of values. Returns the value orNULL in the case of an error; an exception will be
raised ifNULL is returned.

26 Chapter 5. Utilities

Py BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two
or more format units. If the format string is empty, it returnsNone; if it contains exactly one format unit,
it returns whatever object is described by that format unit. To force it to return a tuple of size 0 or one,
parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, as for the ‘s ’ and ‘s# ’
formats, the required data is copied. Buffers provided by the caller are never referenced by the objects
created byPy BuildValue() . In other words, if your code invokesmalloc() and passes the allocated
memory toPy BuildValue() , your code is responsible for callingfree() for that memory once
Py BuildValue() returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the
Python object type that the format unit will return; and the entry in [square] brackets is the type of the C
value(s) to be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such
as ‘s# ’). This can be used to make long format strings a tad more readable.

‘s ’ (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointer isNULL,
None is used.

‘s# ’ (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointer is
NULL, the length is ignored andNone is returned.

‘z ’ (string or None) [char *] Same as ‘s ’.

‘z# ’ (string or None) [char *, int] Same as ‘s# ’.

‘u’ (Unicode string) [Py UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2) data to a
Python Unicode object. If the Unicode buffer pointer isNULL, None is returned.

‘u# ’ (Unicode string) [Py UNICODE *, int] Convert a Unicode (UCS-2) data buffer and its length to a
Python Unicode object. If the Unicode buffer pointer isNULL, the length is ignored andNone is
returned.

‘ i ’ (integer) [int] Convert a plain Cint to a Python integer object.

‘b’ (integer) [char] Same as ‘i ’.

‘h’ (integer) [short int] Same as ‘i ’.

‘ l ’ (integer) [long int] Convert a Clong int to a Python integer object.

‘c ’ (string of length 1) [char] Convert a Cint representing a character to a Python string of length 1.

‘d’ (float) [double]Convert a Cdouble to a Python floating point number.

‘ f ’ (float) [float] Same as ‘d’.

‘D’ (complex) [Py complex *]Convert a CPy complex structure to a Python complex number.

‘O’ (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incre-
mented by one). If the object passed in is aNULLpointer, it is assumed that this was caused because
the call producing the argument found an error and set an exception. Therefore,Py BuildValue()
will return NULLbut won’t raise an exception. If no exception has been raised yet,SystemError is
set.

‘S’ (object) [PyObject *] Same as ‘O’.

‘U’ (object) [PyObject *] Same as ‘O’.

‘N’ (object) [PyObject *] Same as ‘O’, except it doesn’t increment the reference count on the object. Useful
when the object is created by a call to an object constructor in the argument list.

‘O&’ (object) [converter, anything]Convertanythingto a Python object through aconverterfunction. The
function is called withanything (which should be compatible withvoid *) as its argument and
should return a “new” Python object, orNULL if an error occurred.

‘ (items) ’ (tuple) [matching-items]Convert a sequence of C values to a Python tuple with the same number
of items.

‘ [items] ’ (list) [matching-items]Convert a sequence of C values to a Python list with the same number of
items.

‘ { items} ’ (dictionary) [matching-items]Convert a sequence of C values to a Python dictionary. Each pair
of consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, theSystemError exception is set andNULLreturned.

5.5. Parsing arguments and building values 27

28

CHAPTER

SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object
types (e.g. all numerical types, or all sequence types). When used on object types for which they do not apply,
they will raise a Python exception.

6.1 Object Protocol

int PyObject Print (PyObject *o, FILE *fp, int flags)
Print an objecto, on file fp. Returns-1 on error. The flags argument is used to enable certain printing
options. The only option currently supported isPy PRINT RAW; if given, thestr() of the object is
written instead of therepr() .

int PyObject HasAttrString (PyObject *o, char *attr name)
Returns1 if o has the attributeattr name, and0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr name) ’. This function always succeeds.

PyObject* PyObject GetAttrString (PyObject *o, char *attr name)
Return value:New reference.
Retrieve an attribute namedattr namefrom objecto. Returns the attribute value on success, orNULL on
failure. This is the equivalent of the Python expression ‘o. attr name’.

int PyObject HasAttr (PyObject *o, PyObject *attrname)
Returns1 if o has the attributeattr name, and0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr name) ’. This function always succeeds.

PyObject* PyObject GetAttr (PyObject *o, PyObject *attrname)
Return value:New reference.
Retrieve an attribute namedattr namefrom objecto. Returns the attribute value on success, orNULL on
failure. This is the equivalent of the Python expression ‘o. attr name’.

int PyObject SetAttrString (PyObject *o, char *attr name, PyObject *v)
Set the value of the attribute namedattr name, for objecto, to the valuev. Returns-1 on failure. This is
the equivalent of the Python statement ‘o. attr name = v’.

int PyObject SetAttr (PyObject *o, PyObject *attrname, PyObject *v)
Set the value of the attribute namedattr name, for objecto, to the valuev. Returns-1 on failure. This is
the equivalent of the Python statement ‘o. attr name = v’.

int PyObject DelAttrString (PyObject *o, char *attr name)
Delete attribute namedattr name, for objecto. Returns-1 on failure. This is the equivalent of the Python
statement: ‘del o. attr name’.

int PyObject DelAttr (PyObject *o, PyObject *attrname)
Delete attribute namedattr name, for objecto. Returns-1 on failure. This is the equivalent of the Python
statement ‘del o. attr name’.

PyObject* PyObject RichCompare (PyObject *o1, PyObject *o2, int opid)
Return value:New reference.
Compare the values ofo1 ando2 using the operation specified byopid, which must be one ofPy LT,

29

Py LE, Py EQ, Py NE, Py GT, or Py GE, corresponding to<, <=, ==, != , >, or >= respectively. This
is the equivalent of the Python expression ‘o1 op o2’, whereop is the operator corresponding toopid.
Returns the value of the comparison on success, orNULLon failure.

int PyObject RichCompareBool (PyObject *o1, PyObject *o2, int opid)
Compare the values ofo1 ando2 using the operation specified byopid, which must be one ofPy LT,
Py LE, Py EQ, Py NE, Py GT, or Py GE, corresponding to<, <=, ==, != , >, or >= respectively.
Returns-1 on error,0 if the result is false,1 otherwise. This is the equivalent of the Python expression ‘o1
op o2’, whereop is the operator corresponding toopid.

int PyObject Cmp(PyObject *o1, PyObject *o2, int *result)
Compare the values ofo1 ando2 using a routine provided byo1, if one exists, otherwise with a routine
provided byo2. The result of the comparison is returned inresult. Returns-1 on failure. This is the
equivalent of the Python statement ‘result = cmp(o1, o2) ’.

int PyObject Compare(PyObject *o1, PyObject *o2)
Compare the values ofo1 ando2 using a routine provided byo1, if one exists, otherwise with a routine
provided byo2. Returns the result of the comparison on success. On error, the value returned is undefined;
usePyErr Occurred() to detect an error. This is equivalent to the Python expression ‘cmp(o1, o2) ’.

PyObject* PyObject Repr (PyObject *o)
Return value:New reference.
Compute a string representation of objecto. Returns the string representation on success,NULLon failure.
This is the equivalent of the Python expression ‘repr(o) ’. Called by therepr() built-in function and
by reverse quotes.

PyObject* PyObject Str (PyObject *o)
Return value:New reference.
Compute a string representation of objecto. Returns the string representation on success,NULLon failure.
This is the equivalent of the Python expression ‘str(o) ’. Called by thestr() built-in function and by
theprint statement.

PyObject* PyObject Unicode (PyObject *o)
Return value:New reference.
Compute a Unicode string representation of objecto. Returns the Unicode string representation on suc-
cess,NULL on failure. This is the equivalent of the Python expression ‘unicode(o) ’. Called by the
unicode() built-in function.

int PyObject IsInstance (PyObject *inst, PyObject *cls)
Returns1 if inst is an instance of the classcls or a subclass ofcls, or 0 if not. On error, returns-1 and
sets an exception. Ifcls is a type object rather than a class object,PyObject IsInstance() returns
1 if inst is of typecls. If cls is a tuple, the check will be done against every entry incls. The result will
be1 when at least one of the checks returns1, otherwise it will be0. If inst is not a class instance andcls
is neither a type object, nor a class object, nor a tuple,inst must have a class attribute — the class
relationship of the value of that attribute withclswill be used to determine the result of this function. New
in version 2.1. Changed in version 2.2: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of exten-
sions to the class system may want to be aware of. IfAandBare class objects,B is a subclass ofA if it inherits from
A either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the
class relationship of the two objects. When testing ifB is a subclass ofA, if A is B, PyObject IsSubclass()
returns true. IfA andB are different objects,B’s bases attribute is searched in a depth-first fashion forA
— the presence of the bases attribute is considered sufficient for this determination.

int PyObject IsSubclass (PyObject *derived, PyObject *cls)
Returns1 if the classderivedis identical to or derived from the classcls, otherwise returns0. In case of
an error, returns-1 . If cls is a tuple, the check will be done against every entry incls. The result will be1
when at least one of the checks returns1, otherwise it will be0. If eitherderivedor cls is not an actual class
object (or tuple), this function uses the generic algorithm described above. New in version 2.1. Changed
in version 2.3: Older versions of Python did not support a tuple as the second argument.

int PyCallable Check (PyObject *o)
Determine if the objecto is callable. Return1 if the object is callable and0 otherwise. This function always

30 Chapter 6. Abstract Objects Layer

succeeds.

PyObject* PyObject Call (PyObject *callable object, PyObject *args, PyObject *kw)
Call a callable Python objectcallable object, with arguments given by the tupleargs, and named argu-
ments given by the dictionarykw. If no named arguments are needed,kw may beNULL. args must not
be NULL, use an empty tuple if no arguments are needed. Returns the result of the call on success, or
NULLon failure. This is the equivalent of the Python expression ‘apply(callable object, args, kw) ’
or ‘callable object(* args, ** kw) ’. New in version 2.2.

PyObject* PyObject CallObject (PyObject *callable object, PyObject *args)
Return value:New reference.
Call a callable Python objectcallable object, with arguments given by the tupleargs. If no arguments are
needed, thenargsmay beNULL. Returns the result of the call on success, orNULLon failure. This is the
equivalent of the Python expression ‘apply(callable object, args) ’ or ‘ callable object(* args) ’.

PyObject* PyObject CallFunction (PyObject *callable, char *format, ...)
Return value:New reference.
Call a callable Python objectcallable, with a variable number of C arguments. The C arguments are de-
scribed using aPy BuildValue() style format string. The format may beNULL, indicating that no
arguments are provided. Returns the result of the call on success, orNULLon failure. This is the equivalent
of the Python expression ‘apply(callable, args) ’ or ‘ callable(* args) ’.

PyObject* PyObject CallMethod (PyObject *o, char *method, char *format, ...)
Return value:New reference.
Call the method namedmethodof objecto with a variable number of C arguments. The C arguments are
described by aPy BuildValue() format string. The format may beNULL, indicating that no arguments
are provided. Returns the result of the call on success, orNULL on failure. This is the equivalent of the
Python expression ‘o. method(args) ’.

PyObject* PyObject CallFunctionObjArgs (PyObject *callable, ...,NULL)
Return value:New reference.
Call a callable Python objectcallable, with a variable number ofPyObject* arguments. The arguments
are provided as a variable number of parameters followed byNULL. Returns the result of the call on success,
or NULLon failure. New in version 2.2.

PyObject* PyObject CallMethodObjArgs (PyObject *o, PyObject *name, ...,NULL)
Return value:New reference.
Calls a method of the objecto, where the name of the method is given as a Python string object inname.
It is called with a variable number ofPyObject* arguments. The arguments are provided as a variable
number of parameters followed byNULL. Returns the result of the call on success, orNULL on failure.
New in version 2.2.

int PyObject Hash(PyObject *o)
Compute and return the hash value of an objecto. On failure, return-1 . This is the equivalent of the Python
expression ‘hash(o) ’.

int PyObject IsTrue (PyObject *o)
Returns1 if the objecto is considered to be true, and0 otherwise. This is equivalent to the Python expression
‘not not o’. On failure, return-1 .

int PyObject Not (PyObject *o)
Returns0 if the objecto is considered to be true, and1 otherwise. This is equivalent to the Python expression
‘not o’. On failure, return-1 .

PyObject* PyObject Type (PyObject *o)
Return value:New reference.
Wheno is non-NULL, returns a type object corresponding to the object type of objecto. On failure, raises
SystemError and returnsNULL. This is equivalent to the Python expressiontype(o) . This function
increments the reference count of the return value. There’s really no reason to use this function instead of
the common expressiono->ob type , which returns a pointer of typePyTypeObject* , except when
the incremented reference count is needed.

int PyObject TypeCheck (PyObject *o, PyTypeObject *type)
Return true if the objecto is of typetypeor a subtype oftype. Both parameters must be non-NULL. New in

6.1. Object Protocol 31

version 2.2.

int PyObject Length (PyObject *o)
int PyObject Size (PyObject *o)

Return the length of objecto. If the objecto provides either the sequence and mapping protocols, the
sequence length is returned. On error,-1 is returned. This is the equivalent to the Python expression
‘ len(o) ’.

PyObject* PyObject GetItem (PyObject *o, PyObject *key)
Return value:New reference.
Return element ofo corresponding to the objectkeyor NULLon failure. This is the equivalent of the Python
expression ‘o[key] ’.

int PyObject SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the objectkey to the valuev. Returns-1 on failure. This is the equivalent of the Python statement
‘o[key] = v’.

int PyObject DelItem (PyObject *o, PyObject *key)
Delete the mapping forkeyfrom o. Returns-1 on failure. This is the equivalent of the Python statement
‘del o[key] ’.

int PyObject AsFileDescriptor (PyObject *o)
Derives a file-descriptor from a Python object. If the object is an integer or long integer, its value is returned.
If not, the object’sfileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Returns-1 on failure.

PyObject* PyObject Dir (PyObject *o)
Return value:New reference.
This is equivalent to the Python expression ‘dir(o) ’, returning a (possibly empty) list of strings appropri-
ate for the object argument, orNULL if there was an error. If the argument isNULL, this is like the Python
‘dir() ’, returning the names of the current locals; in this case, if no execution frame is active thenNULL
is returned butPyErr Occurred() will return false.

PyObject* PyObject GetIter (PyObject *o)
Return value:New reference.
This is equivalent to the Python expression ‘iter(o) ’. It returns a new iterator for the object argument,
or the object itself if the object is already an iterator. RaisesTypeError and returnsNULL if the object
cannot be iterated.

6.2 Number Protocol

int PyNumber Check (PyObject *o)
Returns1 if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber Add(PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of addingo1 ando2, or NULLon failure. This is the equivalent of the Python expression
‘o1 + o2’.

PyObject* PyNumber Subtract (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of subtractingo2 from o1, or NULL on failure. This is the equivalent of the Python
expression ‘o1 - o2’.

PyObject* PyNumber Multiply (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of multiplyingo1 and o2, or NULL on failure. This is the equivalent of the Python
expression ‘o1 * o2’.

PyObject* PyNumber Divide (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of dividingo1by o2, or NULLon failure. This is the equivalent of the Python expression
‘o1 / o2’.

32 Chapter 6. Abstract Objects Layer

PyObject* PyNumber FloorDivide (PyObject *o1, PyObject *o2)
Return value:New reference.
Return the floor ofo1 divided byo2, or NULL on failure. This is equivalent to the “classic” division of
integers. New in version 2.2.

PyObject* PyNumber TrueDivide (PyObject *o1, PyObject *o2)
Return value:New reference.
Return a reasonable approximation for the mathematical value ofo1 divided byo2, or NULL on failure.
The return value is “approximate” because binary floating point numbers are approximate; it is not possible
to represent all real numbers in base two. This function can return a floating point value when passed two
integers. New in version 2.2.

PyObject* PyNumber Remainder (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the remainder of dividingo1 by o2, or NULL on failure. This is the equivalent of the Python
expression ‘o1 % o2’.

PyObject* PyNumber Divmod (PyObject *o1, PyObject *o2)
Return value:New reference.
See the built-in functiondivmod() . ReturnsNULLon failure. This is the equivalent of the Python expres-
sion ‘divmod(o1, o2) ’.

PyObject* PyNumber Power (PyObject *o1, PyObject *o2, PyObject *o3)
Return value:New reference.
See the built-in functionpow() . ReturnsNULLon failure. This is the equivalent of the Python expression
‘pow(o1, o2, o3) ’, whereo3 is optional. Ifo3 is to be ignored, passPy None in its place (passing
NULL for o3would cause an illegal memory access).

PyObject* PyNumber Negative (PyObject *o)
Return value:New reference.
Returns the negation ofo on success, orNULLon failure. This is the equivalent of the Python expression
‘ - o’.

PyObject* PyNumber Positive (PyObject *o)
Return value:New reference.
Returnso on success, orNULLon failure. This is the equivalent of the Python expression ‘+o’.

PyObject* PyNumber Absolute (PyObject *o)
Return value:New reference.
Returns the absolute value ofo, or NULL on failure. This is the equivalent of the Python expression
‘abs(o) ’.

PyObject* PyNumber Invert (PyObject *o)
Return value:New reference.
Returns the bitwise negation ofo on success, orNULL on failure. This is the equivalent of the Python
expression ‘̃ o’.

PyObject* PyNumber Lshift (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of left shiftingo1 by o2 on success, orNULL on failure. This is the equivalent of the
Python expression ‘o1 << o2’.

PyObject* PyNumber Rshift (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of right shiftingo1 by o2 on success, orNULL on failure. This is the equivalent of the
Python expression ‘o1 >> o2’.

PyObject* PyNumber And(PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the “bitwise and” ofo1ando2on success andNULLon failure. This is the equivalent of the Python
expression ‘o1 & o2’.

PyObject* PyNumber Xor (PyObject *o1, PyObject *o2)
Return value:New reference.

6.2. Number Protocol 33

Returns the “bitwise exclusive or” ofo1 by o2 on success, orNULLon failure. This is the equivalent of the
Python expression ‘o1 ˆ o2’.

PyObject* PyNumber Or(PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the “bitwise or” ofo1 ando2 on success, orNULLon failure. This is the equivalent of the Python
expression ‘o1 | o2’.

PyObject* PyNumber InPlaceAdd (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of addingo1ando2, orNULLon failure. The operation is donein-placewheno1supports
it. This is the equivalent of the Python statement ‘o1 += o2’.

PyObject* PyNumber InPlaceSubtract (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of subtractingo2 from o1, or NULLon failure. The operation is donein-placewheno1
supports it. This is the equivalent of the Python statement ‘o1 -= o2’.

PyObject* PyNumber InPlaceMultiply (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of multiplyingo1 ando2, or NULL on failure. The operation is donein-placewheno1
supports it. This is the equivalent of the Python statement ‘o1 *= o2’.

PyObject* PyNumber InPlaceDivide (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of dividingo1by o2, orNULLon failure. The operation is donein-placewheno1supports
it. This is the equivalent of the Python statement ‘o1 /= o2’.

PyObject* PyNumber InPlaceFloorDivide (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the mathematical of dividingo1 by o2, or NULL on failure. The operation is donein-placewhen
o1supports it. This is the equivalent of the Python statement ‘o1 //= o2’. New in version 2.2.

PyObject* PyNumber InPlaceTrueDivide (PyObject *o1, PyObject *o2)
Return value:New reference.
Return a reasonable approximation for the mathematical value ofo1 divided byo2, or NULL on failure.
The return value is “approximate” because binary floating point numbers are approximate; it is not possible
to represent all real numbers in base two. This function can return a floating point value when passed two
integers. The operation is donein-placewheno1supports it. New in version 2.2.

PyObject* PyNumber InPlaceRemainder (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the remainder of dividingo1 by o2, or NULL on failure. The operation is donein-placewheno1
supports it. This is the equivalent of the Python statement ‘o1 %= o2’.

PyObject* PyNumber InPlacePower (PyObject *o1, PyObject *o2, PyObject *o3)
Return value:New reference.
See the built-in functionpow() . ReturnsNULLon failure. The operation is donein-placewheno1supports
it. This is the equivalent of the Python statement ‘o1 **= o2’ when o3 isPy None, or an in-place variant
of ‘pow(o1, o2, o3) ’ otherwise. Ifo3 is to be ignored, passPy None in its place (passingNULL for
o3would cause an illegal memory access).

PyObject* PyNumber InPlaceLshift (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of left shiftingo1 by o2 on success, orNULLon failure. The operation is donein-place
wheno1supports it. This is the equivalent of the Python statement ‘o1 <<= o2’.

PyObject* PyNumber InPlaceRshift (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the result of right shiftingo1 by o2 on success, orNULLon failure. The operation is donein-place
wheno1supports it. This is the equivalent of the Python statement ‘o1 >>= o2’.

PyObject* PyNumber InPlaceAnd (PyObject *o1, PyObject *o2)
Return value:New reference.

34 Chapter 6. Abstract Objects Layer

Returns the “bitwise and” ofo1 ando2 on success andNULL on failure. The operation is donein-place
wheno1supports it. This is the equivalent of the Python statement ‘o1 &= o2’.

PyObject* PyNumber InPlaceXor (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the “bitwise exclusive or” ofo1 by o2 on success, orNULL on failure. The operation is done
in-placewheno1supports it. This is the equivalent of the Python statement ‘o1 ˆ= o2’.

PyObject* PyNumber InPlaceOr (PyObject *o1, PyObject *o2)
Return value:New reference.
Returns the “bitwise or” ofo1 ando2 on success, orNULLon failure. The operation is donein-placewhen
o1supports it. This is the equivalent of the Python statement ‘o1 |= o2’.

int PyNumber Coerce (PyObject **p1, PyObject **p2)
This function takes the addresses of two variables of typePyObject* . If the objects pointed to by* p1
and* p2 have the same type, increment their reference count and return0 (success). If the objects can be
converted to a common numeric type, replace*p1 and*p2 by their converted value (with ’new’ reference
counts), and return0. If no conversion is possible, or if some other error occurs, return-1 (failure) and
don’t increment the reference counts. The callPyNumber Coerce(&o1, &o2) is equivalent to the
Python statement ‘o1, o2 = coerce(o1, o2) ’.

PyObject* PyNumber Int (PyObject *o)
Return value:New reference.
Returns theo converted to an integer object on success, orNULL on failure. If the argument is outside
the integer range a long object will be returned instead. This is the equivalent of the Python expression
‘ int(o) ’.

PyObject* PyNumber Long (PyObject *o)
Return value:New reference.
Returns theo converted to a long integer object on success, orNULLon failure. This is the equivalent of the
Python expression ‘long(o) ’.

PyObject* PyNumber Float (PyObject *o)
Return value:New reference.
Returns theo converted to a float object on success, orNULLon failure. This is the equivalent of the Python
expression ‘float(o) ’.

6.3 Sequence Protocol

int PySequence Check (PyObject *o)
Return1 if the object provides sequence protocol, and0 otherwise. This function always succeeds.

int PySequence Size (PyObject *o)
Returns the number of objects in sequenceo on success, and-1 on failure. For objects that do not provide
sequence protocol, this is equivalent to the Python expression ‘len(o) ’.

int PySequence Length (PyObject *o)
Alternate name forPySequence Size() .

PyObject* PySequence Concat (PyObject *o1, PyObject *o2)
Return value:New reference.
Return the concatenation ofo1ando2on success, andNULLon failure. This is the equivalent of the Python
expression ‘o1 + o2’.

PyObject* PySequence Repeat (PyObject *o, int count)
Return value:New reference.
Return the result of repeating sequence objecto counttimes, orNULLon failure. This is the equivalent of
the Python expression ‘o * count’.

PyObject* PySequence InPlaceConcat (PyObject *o1, PyObject *o2)
Return value:New reference.
Return the concatenation ofo1 ando2 on success, andNULL on failure. The operation is donein-place
wheno1supports it. This is the equivalent of the Python expression ‘o1 += o2’.

6.3. Sequence Protocol 35

PyObject* PySequence InPlaceRepeat (PyObject *o, int count)
Return value:New reference.
Return the result of repeating sequence objecto counttimes, orNULL on failure. The operation is done
in-placewheno supports it. This is the equivalent of the Python expression ‘o *= count’.

PyObject* PySequence GetItem (PyObject *o, int i)
Return value:New reference.
Return theith element ofo, or NULLon failure. This is the equivalent of the Python expression ‘o[i] ’.

PyObject* PySequence GetSlice (PyObject *o, int i1, int i2)
Return value:New reference.
Return the slice of sequence objecto betweeni1 and i2, or NULLon failure. This is the equivalent of the
Python expression ‘o[i1: i2] ’.

int PySequence SetItem (PyObject *o, int i, PyObject *v)
Assign objectv to theith element ofo. Returns-1 on failure. This is the equivalent of the Python statement
‘o[i] = v’. This functiondoes notsteal a reference tov.

int PySequence DelItem (PyObject *o, int i)
Delete theith element of objecto. Returns-1 on failure. This is the equivalent of the Python statement
‘del o[i] ’.

int PySequence SetSlice (PyObject *o, int i1, int i2, PyObject *v)
Assign the sequence objectv to the slice in sequence objecto from i1 to i2. This is the equivalent of the
Python statement ‘o[i1: i2] = v’.

int PySequence DelSlice (PyObject *o, int i1, int i2)
Delete the slice in sequence objecto from i1 to i2. Returns-1 on failure. This is the equivalent of the
Python statement ‘del o[i1: i2] ’.

PyObject* PySequence Tuple (PyObject *o)
Return value:New reference.
Returns theo as a tuple on success, andNULL on failure. This is equivalent to the Python expression
‘ tuple(o) ’.

int PySequence Count (PyObject *o, PyObject *value)
Return the number of occurrences ofvalue in o, that is, return the number of keys for whicho[key] ==
value. On failure, return-1 . This is equivalent to the Python expression ‘o.count(value) ’.

int PySequence Contains (PyObject *o, PyObject *value)
Determine ifo containsvalue. If an item ino is equal tovalue, return1, otherwise return0. On error, return
-1 . This is equivalent to the Python expression ‘value in o’.

int PySequence Index (PyObject *o, PyObject *value)
Return the first indexi for which o[i] == value. On error, return-1 . This is equivalent to the Python
expression ‘o.index(value) ’.

PyObject* PySequence List (PyObject *o)
Return value:New reference.
Return a list object with the same contents as the arbitrary sequenceo. The returned list is guaranteed to be
new.

PyObject* PySequence Tuple (PyObject *o)
Return value:New reference.
Return a tuple object with the same contents as the arbitrary sequenceo. If o is a tuple, a new reference will
be returned, otherwise a tuple will be constructed with the appropriate contents.

PyObject* PySequence Fast (PyObject *o, const char *m)
Return value:New reference.
Returns the sequenceo as a tuple, unless it is already a tuple or list, in which caseo is returned. Use
PySequence Fast GET ITEM() to access the members of the result. ReturnsNULLon failure. If the
object is not a sequence, raisesTypeError with m as the message text.

PyObject* PySequence Fast GET ITEM(PyObject *o, int i)
Return value:Borrowed reference.

36 Chapter 6. Abstract Objects Layer

Return theith element ofo, assuming thato was returned byPySequence Fast() , o is notNULL, and
that i is within bounds.

PyObject* PySequence ITEM(PyObject *o, int i)
Return value:New reference.
Return theith element ofo or NULLon failure. Macro form ofPySequence GetItem() but without
checking thatPySequence Check(o) is true and without adjustment for negative indices. New in
version 2.3.

int PySequence Fast GET SIZE (PyObject *o)
Returns the length ofo, assuming thato was returned byPySequence Fast() and that
o is not NULL. The size can also be gotten by callingPySequence Size() on o, but
PySequence Fast GET SIZE() is faster because it can assumeo is a list or tuple.

6.4 Mapping Protocol

int PyMapping Check (PyObject *o)
Return1 if the object provides mapping protocol, and0 otherwise. This function always succeeds.

int PyMapping Length (PyObject *o)
Returns the number of keys in objecto on success, and-1 on failure. For objects that do not provide
mapping protocol, this is equivalent to the Python expression ‘len(o) ’.

int PyMapping DelItemString (PyObject *o, char *key)
Remove the mapping for objectkeyfrom the objecto. Return-1 on failure. This is equivalent to the Python
statement ‘del o[key] ’.

int PyMapping DelItem (PyObject *o, PyObject *key)
Remove the mapping for objectkeyfrom the objecto. Return-1 on failure. This is equivalent to the Python
statement ‘del o[key] ’.

int PyMapping HasKeyString (PyObject *o, char *key)
On success, return1 if the mapping object has the keykeyand0 otherwise. This is equivalent to the Python
expression ‘o.has key(key) ’. This function always succeeds.

int PyMapping HasKey(PyObject *o, PyObject *key)
Return1 if the mapping object has the keykeyand0 otherwise. This is equivalent to the Python expression
‘o.has key(key) ’. This function always succeeds.

PyObject* PyMapping Keys (PyObject *o)
Return value:New reference.
On success, return a list of the keys in objecto. On failure, returnNULL. This is equivalent to the Python
expression ‘o.keys() ’.

PyObject* PyMapping Values (PyObject *o)
Return value:New reference.
On success, return a list of the values in objecto. On failure, returnNULL. This is equivalent to the Python
expression ‘o.values() ’.

PyObject* PyMapping Items (PyObject *o)
Return value:New reference.
On success, return a list of the items in objecto, where each item is a tuple containing a key-value pair. On
failure, returnNULL. This is equivalent to the Python expression ‘o.items() ’.

PyObject* PyMapping GetItemString (PyObject *o, char *key)
Return value:New reference.
Return element ofo corresponding to the objectkeyor NULLon failure. This is the equivalent of the Python
expression ‘o[key] ’.

int PyMapping SetItemString (PyObject *o, char *key, PyObject *v)
Map the objectkeyto the valuev in objecto. Returns-1 on failure. This is the equivalent of the Python
statement ‘o[key] = v’.

6.4. Mapping Protocol 37

6.5 Iterator Protocol

New in version 2.2.

There are only a couple of functions specifically for working with iterators.

int PyIter Check (PyObject *o)
Return true if the objecto supports the iterator protocol.

PyObject* PyIter Next (PyObject *o)
Return value:New reference.
Return the next value from the iterationo. If the object is an iterator, this retrieves the next value from the
iteration, and returnsNULL with no exception set if there are no remaining items. If the object is not an
iterator,TypeError is raised, or if there is an error in retrieving the item, returnsNULLand passes along
the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter(obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while (item = PyIter_Next(iterator)) {
/* do something with item */
...
/* release reference when done */
Py_DECREF(item);

}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

6.6 Buffer Protocol

int PyObject AsCharBuffer (PyObject *obj, const char **buffer, int *bufferlen)
Returns a pointer to a read-only memory location useable as character- based input. Theobj argument must
support the single-segment character buffer interface. On success, returns0, setsbuffer to the memory
location andbuffer len to the buffer length. Returns-1 and sets aTypeError on error. New in version
1.6.

int PyObject AsReadBuffer (PyObject *obj, const char **buffer, int *bufferlen)
Returns a pointer to a read-only memory location containing arbitrary data. Theobj argument must support
the single-segment readable buffer interface. On success, returns0, setsbuffer to the memory location and
buffer len to the buffer length. Returns-1 and sets aTypeError on error. New in version 1.6.

int PyObject CheckReadBuffer (PyObject *o)
Returns1 if o supports the single-segment readable buffer interface. Otherwise returns0. New in version
2.2.

int PyObject AsWriteBuffer (PyObject *obj, char **buffer, int *buffer len)
Returns a pointer to a writeable memory location. Theobj argument must support the single-segment,

38 Chapter 6. Abstract Objects Layer

character buffer interface. On success, returns0, setsbuffer to the memory location andbuffer len to the
buffer length. Returns-1 and sets aTypeError on error. New in version 1.6.

6.6. Buffer Protocol 39

40

CHAPTER

SEVEN

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type
is not a good idea; if you receive an object from a Python program and you are not sure that it has the right type,
you must perform a type check first; for example, to check that an object is a dictionary, usePyDict Check() .
The chapter is structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed
in, many of them do not check forNULLbeing passed instead of a valid object. AllowingNULL to be passed in
can cause memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton objectNone.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType Type
This is the type object for type objects; it is the same object astypes.TypeType in the Python layer.

int PyType Check (PyObject *o)
Returns true if the objecto is a type object, including instances of types derived from the standard type
object. Returns false in all other cases.

int PyType CheckExact (PyObject *o)
Returns true if the objecto is a type object, but not a subtype of the standard type object. Returns false in
all other cases. New in version 2.2.

int PyType HasFeature (PyObject *o, int feature)
Returns true if the type objecto sets the featurefeature. Type features are denoted by single bit flags.

int PyType IS GC(PyObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS HAVE GC. New in version 2.0.

int PyType IsSubtype (PyTypeObject *a, PyTypeObject *b)
Returns true ifa is a subtype ofb. New in version 2.2.

PyObject* PyType GenericAlloc (PyTypeObject *type, int nitems)
Return value:New reference.
New in version 2.2.

PyObject* PyType GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value:New reference.
New in version 2.2.

41

int PyType Ready (PyTypeObject *type)
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Returns0 on success, or returns-1 and sets
an exception on error. New in version 2.2.

7.1.2 The None Object

Note that thePyTypeObject for None is not directly exposed in the Python/C API. SinceNone is a singleton,
testing for object identity (using ‘==’ in C) is sufficient. There is noPyNone Check() function for the same
reason.

PyObject* Py None
The PythonNone object, denoting lack of value. This object has no methods. It needs to be treated just like
any other object with respect to reference counts.

7.2 Numeric Objects

7.2.1 Plain Integer Objects

PyIntObject
This subtype ofPyObject represents a Python integer object.

PyTypeObject PyInt Type
This instance ofPyTypeObject represents the Python plain integer type. This is the same object as
types.IntType .

int PyInt Check (PyObject* o)
Returns true ifo is of typePyInt Type or a subtype ofPyInt Type . Changed in version 2.2: Allowed
subtypes to be accepted.

int PyInt CheckExact (PyObject* o)
Returns true ifo is of typePyInt Type , but not a subtype ofPyInt Type . New in version 2.2.

PyObject* PyInt FromString (char *str, char **pend, int base)
Return a newPyIntObject or PyLongObject based on the string value instr, which is interpreted
according to the radix inbase. If pend is non-NULL, * pendwill point to the first character instr which
follows the representation of the number. Ifbaseis 0, the radix will be determined based on the leading
characters ofstr: if str starts with’0x’ or ’0X’ , radix 16 will be used; ifstr starts with’0’ , radix 8 will
be used; otherwise radix 10 will be used. Ifbaseis not0, it must be between2 and36 , inclusive. Leading
spaces are ignored. If there are no digits,ValueError will be raised. If the string represents a number too
large to be contained within the machine’slong int type and overflow warnings are being suppressed, a
PyLongObject will be returned. If overflow warnings are not being suppressed,NULLwill be returned
in this case.

PyObject* PyInt FromLong (long ival)
Return value:New reference.
Creates a new integer object with a value ofival.

The current implementation keeps an array of integer objects for all integers between-1 and100 , when
you create an int in that range you actually just get back a reference to the existing object. So it should be
possible to change the value of1. I suspect the behaviour of Python in this case is undefined. :-)

long PyInt AsLong (PyObject *io)
Will first attempt to cast the object to aPyIntObject , if it is not already one, and then return its value.

long PyInt AS LONG(PyObject *io)
Returns the value of the objectio. No error checking is performed.

unsigned long PyInt AsUnsignedLongMask (PyObject *io)
Will first attempt to cast the object to aPyIntObject or PyLongObject , if it is not already one, and
then return its value as unsigned long. This function does not check for overflow. New in version 2.3.

42 Chapter 7. Concrete Objects Layer

unsigned long PyInt AsUnsignedLongLongMask (PyObject *io)
Will first attempt to cast the object to aPyIntObject or PyLongObject , if it is not already one, and
then return its value as unsigned long long, without checking for overflow. New in version 2.3.

long PyInt GetMax()
Returns the system’s idea of the largest integer it can handle (LONG MAX, as defined in the system header
files).

7.2.2 Long Integer Objects

PyLongObject
This subtype ofPyObject represents a Python long integer object.

PyTypeObject PyLong Type
This instance ofPyTypeObject represents the Python long integer type. This is the same object as
types.LongType .

int PyLong Check (PyObject *p)
Returns true if its argument is aPyLongObject or a subtype ofPyLongObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyLong CheckExact (PyObject *p)
Returns true if its argument is aPyLongObject , but not a subtype ofPyLongObject . New in version
2.2.

PyObject* PyLong FromLong (long v)
Return value:New reference.
Returns a newPyLongObject object fromv, or NULLon failure.

PyObject* PyLong FromUnsignedLong (unsigned long v)
Return value:New reference.
Returns a newPyLongObject object from a Cunsigned long , or NULLon failure.

PyObject* PyLong FromLongLong (long long v)
Return value:New reference.
Returns a newPyLongObject object from a Clong long , or NULLon failure.

PyObject* PyLong FromUnsignedLongLong (unsigned long long v)
Return value:New reference.
Returns a newPyLongObject object from a Cunsigned long long , or NULLon failure.

PyObject* PyLong FromDouble (double v)
Return value:New reference.
Returns a newPyLongObject object from the integer part ofv, or NULLon failure.

PyObject* PyLong FromString (char *str, char **pend, int base)
Return value:New reference.
Return a newPyLongObject based on the string value instr, which is interpreted according to the radix
in base. If pendis non-NULL, * pendwill point to the first character instr which follows the representation
of the number. Ifbaseis 0, the radix will be determined based on the leading characters ofstr: if str starts
with ’0x’ or ’0X’ , radix 16 will be used; ifstr starts with’0’ , radix 8 will be used; otherwise radix 10
will be used. Ifbaseis not0, it must be between2 and36 , inclusive. Leading spaces are ignored. If there
are no digits,ValueError will be raised.

PyObject* PyLong FromUnicode (Py UNICODE *u, int length, int base)
Return value:New reference.
Convert a sequence of Unicode digits to a Python long integer value. The first parameter,u, points to the
first character of the Unicode string,lengthgives the number of characters, andbaseis the radix for the
conversion. The radix must be in the range [2, 36]; if it is out of range,ValueError will be raised. New
in version 1.6.

PyObject* PyLong FromVoidPtr (void *p)
Return value:New reference.
Create a Python integer or long integer from the pointerp. The pointer value can be retrieved from the

7.2. Numeric Objects 43

resulting value usingPyLong AsVoidPtr() . New in version 1.5.2.

long PyLong AsLong (PyObject *pylong)
Returns a Clong representation of the contents ofpylong. If pylong is greater thanLONG MAX, an
OverflowError is raised.

unsigned long PyLong AsUnsignedLong (PyObject *pylong)
Returns a Cunsigned long representation of the contents ofpylong. If pylong is greater than
ULONGMAX, anOverflowError is raised.

long long PyLong AsLongLong (PyObject *pylong)
Return a Clong long from a Python long integer. Ifpylongcannot be represented as along long , an
OverflowError will be raised. New in version 2.2.

unsigned long long PyLong AsUnsignedLongLong (PyObject *pylong)
Return a Cunsigned long long from a Python long integer. Ifpylongcannot be represented as an
unsigned long long , anOverflowError will be raised if the value is positive, or aTypeError
will be raised if the value is negative. New in version 2.2.

unsigned long PyLong AsUnsignedLongMask (PyObject *io)
Return a Cunsigned long from a Python long integer, without checking for overflow. New in version
2.3.

unsigned long PyLong AsUnsignedLongLongMask (PyObject *io)
Return a Cunsigned long long from a Python long integer, without checking for overflow. New in
version 2.3.

double PyLong AsDouble (PyObject *pylong)
Returns a Cdouble representation of the contents ofpylong. If pylongcannot be approximately repre-
sented as adouble , anOverflowError exception is raised and-1.0 will be returned.

void* PyLong AsVoidPtr (PyObject *pylong)
Convert a Python integer or long integerpylong to a Cvoid pointer. If pylongcannot be converted, an
OverflowError will be raised. This is only assured to produce a usablevoid pointer for values created
with PyLong FromVoidPtr() . New in version 1.5.2.

7.2.3 Floating Point Objects

PyFloatObject
This subtype ofPyObject represents a Python floating point object.

PyTypeObject PyFloat Type
This instance ofPyTypeObject represents the Python floating point type. This is the same object as
types.FloatType .

int PyFloat Check (PyObject *p)
Returns true if its argument is aPyFloatObject or a subtype ofPyFloatObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyFloat CheckExact (PyObject *p)
Returns true if its argument is aPyFloatObject , but not a subtype ofPyFloatObject . New in
version 2.2.

PyObject* PyFloat FromString (PyObject *str, char **pend)
Creates aPyFloatObject object based on the string value instr, orNULLon failure. Thependargument
is ignored. It remains only for backward compatibility.

PyObject* PyFloat FromDouble (double v)
Return value:New reference.
Creates aPyFloatObject object fromv, or NULLon failure.

double PyFloat AsDouble (PyObject *pyfloat)
Returns a Cdouble representation of the contents ofpyfloat.

double PyFloat AS DOUBLE(PyObject *pyfloat)

44 Chapter 7. Concrete Objects Layer

Returns a Cdouble representation of the contents ofpyfloat, but without error checking.

7.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex
number value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do soby valuerather
than dereferencing them through pointers. This is consistent throughout the API.

Py complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;

} Py_complex;

Py complex Py c sum(Py complex left, Pycomplex right)
Return the sum of two complex numbers, using the CPy complex representation.

Py complex Py c diff (Py complex left, Pycomplex right)
Return the difference between two complex numbers, using the CPy complex representation.

Py complex Py c neg (Py complex complex)
Return the negation of the complex numbercomplex, using the CPy complex representation.

Py complex Py c prod (Py complex left, Pycomplex right)
Return the product of two complex numbers, using the CPy complex representation.

Py complex Py c quot (Py complex dividend, Pycomplex divisor)
Return the quotient of two complex numbers, using the CPy complex representation.

Py complex Py c pow(Py complex num, Pycomplex exp)
Return the exponentiation ofnumby exp, using the CPy complex representation.

Complex Numbers as Python Objects

PyComplexObject
This subtype ofPyObject represents a Python complex number object.

PyTypeObject PyComplex Type
This instance ofPyTypeObject represents the Python complex number type.

int PyComplex Check (PyObject *p)
Returns true if its argument is aPyComplexObject or a subtype ofPyComplexObject . Changed in
version 2.2: Allowed subtypes to be accepted.

int PyComplex CheckExact (PyObject *p)
Returns true if its argument is aPyComplexObject , but not a subtype ofPyComplexObject . New
in version 2.2.

PyObject* PyComplex FromCComplex (Py complex v)
Return value:New reference.
Create a new Python complex number object from a CPy complex value.

7.2. Numeric Objects 45

PyObject* PyComplex FromDoubles (double real, double imag)
Return value:New reference.
Returns a newPyComplexObject object fromreal andimag.

double PyComplex RealAsDouble (PyObject *op)
Returns the real part ofopas a Cdouble .

double PyComplex ImagAsDouble (PyObject *op)
Returns the imaginary part ofopas a Cdouble .

Py complex PyComplex AsCComplex (PyObject *op)
Returns thePy complex value of the complex numberop.

7.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

7.3.1 String Objects

These functions raiseTypeError when expecting a string parameter and are called with a non-string parameter.

PyStringObject
This subtype ofPyObject represents a Python string object.

PyTypeObject PyString Type
This instance ofPyTypeObject represents the Python string type; it is the same object as
types.TypeType in the Python layer. .

int PyString Check (PyObject *o)
Returns true if the objecto is a string object or an instance of a subtype of the string type. Changed in
version 2.2: Allowed subtypes to be accepted.

int PyString CheckExact (PyObject *o)
Returns true if the objecto is a string object, but not an instance of a subtype of the string type. New in
version 2.2.

PyObject* PyString FromString (const char *v)
Return value:New reference.
Returns a new string object with the valuev on success, andNULLon failure. The parameterv must not be
NULL; it will not be checked.

PyObject* PyString FromStringAndSize (const char *v, int len)
Return value:New reference.
Returns a new string object with the valuev and lengthlen on success, andNULLon failure. Ifv is NULL,
the contents of the string are uninitialized.

PyObject* PyString FromFormat (const char *format, ...)
Return value:New reference.
Takes a Cprintf() -style format string and a variable number of arguments, calculates the size of the
resulting Python string and returns a string with the values formatted into it. The variable arguments must
be C types and must correspond exactly to the format characters in theformatstring. The following format
characters are allowed:

46 Chapter 7. Concrete Objects Layer

Format Characters Type Comment
%% n/a The literal % character.
%c int A single character, represented as an C int.
%d int Exactly equivalent toprintf("%d") .
%ld long Exactly equivalent toprintf("%ld") .
%i int Exactly equivalent toprintf("%i") .
%x int Exactly equivalent toprintf("%x") .
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalent toprintf("%p") except that it is guaranteed to start with the literal0x regardless of what the platform’sprintf yields.

PyObject* PyString FromFormatV (const char *format, valist vargs)
Return value:New reference.
Identical toPyString FromFormat() except that it takes exactly two arguments.

int PyString Size (PyObject *string)
Returns the length of the string in string objectstring.

int PyString GET SIZE (PyObject *string)
Macro form ofPyString Size() but without error checking.

char* PyString AsString (PyObject *string)
Returns a NUL-terminated representation of the contents ofstring. The pointer refers to the internal buffer
of string, not a copy. The data must not be modified in any way, unless the string was just created using
PyString FromStringAndSize(NULL, size) . It must not be deallocated. Ifstring is a Unicode
object, this function computes the default encoding ofstring and operates on that. Ifstring is not a string
object at all,PyString AsString() returnsNULLand raisesTypeError .

char* PyString AS STRING(PyObject *string)
Macro form ofPyString AsString() but without error checking. Only string objects are supported;
no Unicode objects should be passed.

int PyString AsStringAndSize (PyObject *obj, char **buffer, int *length)
Returns a NUL-terminated representation of the contents of the objectobj through the output variables
bufferandlength.

The function accepts both string and Unicode objects as input. For Unicode objects it returns the default
encoded version of the object. Iflengthis NULL, the resulting buffer may not contain NUL characters; if it
does, the function returns-1 and aTypeError is raised.

The buffer refers to an internal string buffer ofobj, not a copy. The data must not be modified in any way,
unless the string was just created usingPyString FromStringAndSize(NULL, size) . It must not
be deallocated. Ifstring is a Unicode object, this function computes the default encoding ofstring and
operates on that. Ifstring is not a string object at all,PyString AsString() returnsNULLand raises
TypeError .

void PyString Concat (PyObject **string, PyObject *newpart)
Creates a new string object in*string containing the contents ofnewpartappended tostring; the caller will
own the new reference. The reference to the old value ofstring will be stolen. If the new string cannot be
created, the old reference tostring will still be discarded and the value of*string will be set toNULL; the
appropriate exception will be set.

void PyString ConcatAndDel (PyObject **string, PyObject *newpart)
Creates a new string object in*string containing the contents ofnewpartappended tostring. This version
decrements the reference count ofnewpart.

int PyString Resize (PyObject **string, int newsize)
A way to resize a string object even though it is “immutable”. Only use this to build up a brand new string
object; don’t use this if the string may already be known in other parts of the code. It is an error to call this
function if the refcount on the input string object is not one. Pass the address of an existing string object
as an lvalue (it may be written into), and the new size desired. On success,*string holds the resized string
object and0 is returned; the address in*string may differ from its input value. If the reallocation fails, the
original string object at*string is deallocated,*string is set toNULL, a memory exception is set, and-1 is
returned.

7.3. Sequence Objects 47

PyObject* PyString Format (PyObject *format, PyObject *args)
Return value:New reference.
Returns a new string object fromformatandargs. Analogous toformat % args. Theargsargument must
be a tuple.

void PyString InternInPlace (PyObject **string)
Intern the argument*string in place. The argument must be the address of a pointer variable pointing to
a Python string object. If there is an existing interned string that is the same as*string, it sets*string to
it (decrementing the reference count of the old string object and incrementing the reference count of the
interned string object), otherwise it leaves*string alone and interns it (incrementing its reference count).
(Clarification: even though there is a lot of talk about reference counts, think of this function as reference-
count-neutral; you own the object after the call if and only if you owned it before the call.)

PyObject* PyString InternFromString (const char *v)
Return value:New reference.
A combination ofPyString FromString() andPyString InternInPlace() , returning either
a new string object that has been interned, or a new (“owned”) reference to an earlier interned string object
with the same value.

PyObject* PyString Decode (const char *s, int size, const char *encoding, const char *errors)
Return value:New reference.
Creates an object by decodingsizebytes of the encoded buffers using the codec registered forencoding.
encodinganderrorshave the same meaning as the parameters of the same name in theunicode() built-in
function. The codec to be used is looked up using the Python codec registry. ReturnsNULL if an exception
was raised by the codec.

PyObject* PyString AsDecodedObject (PyObject *str, const char *encoding, const char *errors)
Return value:New reference.
Decodes a string object by passing it to the codec registered forencodingand returns the result as Python
object. encodingand errors have the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. ReturnsNULL if
an exception was raised by the codec.

PyObject* PyString Encode (const char *s, int size, const char *encoding, const char *errors)
Return value:New reference.
Encodes thechar buffer of the given size by passing it to the codec registered forencodingand returns a
Python object.encodinganderrorshave the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. ReturnsNULL if
an exception was raised by the codec.

PyObject* PyString AsEncodedObject (PyObject *str, const char *encoding, const char *errors)
Return value:New reference.
Encodes a string object using the codec registered forencodingand returns the result as Python object.
encodinganderrors have the same meaning as the parameters of the same name in the stringencode()
method. The codec to be used is looked up using the Python codec registry. ReturnsNULL if an exception
was raised by the codec.

7.3.2 Unicode Objects

These are the basic Unicode object types used for the Unicode implementation in Python:

Py UNICODE
This type represents a 16-bit unsigned storage type which is used by Python internally as basis for holding
Unicode ordinals. On platforms wherewchar t is available and also has 16-bits,Py UNICODEis a
typedef alias forwchar t to enhance native platform compatibility. On all other platforms,Py UNICODE
is a typedef alias forunsigned short .

PyUnicodeObject
This subtype ofPyObject represents a Python Unicode object.

PyTypeObject PyUnicode Type
This instance ofPyTypeObject represents the Python Unicode type.

48 Chapter 7. Concrete Objects Layer

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode Check (PyObject *o)
Returns true if the objecto is a Unicode object or an instance of a Unicode subtype. Changed in version
2.2: Allowed subtypes to be accepted.

int PyUnicode CheckExact (PyObject *o)
Returns true if the objecto is a Unicode object, but not an instance of a subtype. New in version 2.2.

int PyUnicode GET SIZE (PyObject *o)
Returns the size of the object.o has to be aPyUnicodeObject (not checked).

int PyUnicode GET DATA SIZE (PyObject *o)
Returns the size of the object’s internal buffer in bytes.o has to be aPyUnicodeObject (not checked).

Py UNICODE* PyUnicode AS UNICODE(PyObject *o)
Returns a pointer to the internalPy UNICODEbuffer of the object.o has to be aPyUnicodeObject
(not checked).

const char* PyUnicode AS DATA(PyObject *o)
Returns a pointer to the internal buffer of the object.o has to be aPyUnicodeObject (not checked).

Unicode provides many different character properties. The most often needed ones are available through these
macros which are mapped to C functions depending on the Python configuration.

int Py UNICODE ISSPACE(Py UNICODE ch)
Returns 1/0 depending on whetherch is a whitespace character.

int Py UNICODE ISLOWER(Py UNICODE ch)
Returns 1/0 depending on whetherch is a lowercase character.

int Py UNICODE ISUPPER(Py UNICODE ch)
Returns 1/0 depending on whetherch is an uppercase character.

int Py UNICODE ISTITLE (Py UNICODE ch)
Returns 1/0 depending on whetherch is a titlecase character.

int Py UNICODE ISLINEBREAK(Py UNICODE ch)
Returns 1/0 depending on whetherch is a linebreak character.

int Py UNICODE ISDECIMAL(Py UNICODE ch)
Returns 1/0 depending on whetherch is a decimal character.

int Py UNICODE ISDIGIT (Py UNICODE ch)
Returns 1/0 depending on whetherch is a digit character.

int Py UNICODE ISNUMERIC(Py UNICODE ch)
Returns 1/0 depending on whetherch is a numeric character.

int Py UNICODE ISALPHA(Py UNICODE ch)
Returns 1/0 depending on whetherch is an alphabetic character.

int Py UNICODE ISALNUM(Py UNICODE ch)
Returns 1/0 depending on whetherch is an alphanumeric character.

These APIs can be used for fast direct character conversions:

Py UNICODE Py UNICODE TOLOWER(Py UNICODE ch)
Returns the characterchconverted to lower case.

Py UNICODE Py UNICODE TOUPPER(Py UNICODE ch)
Returns the characterchconverted to upper case.

Py UNICODE Py UNICODE TOTITLE(Py UNICODE ch)
Returns the characterchconverted to title case.

int Py UNICODE TODECIMAL(Py UNICODE ch)
Returns the characterchconverted to a decimal positive integer. Returns-1 if this is not possible. Does not
raise exceptions.

7.3. Sequence Objects 49

int Py UNICODE TODIGIT (Py UNICODE ch)
Returns the characterchconverted to a single digit integer. Returns-1 if this is not possible. Does not raise
exceptions.

double Py UNICODE TONUMERIC(Py UNICODE ch)
Returns the characterch converted to a (positive) double. Returns-1.0 if this is not possible. Does not
raise exceptions.

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode FromUnicode (const Py UNICODE *u, int size)
Return value:New reference.
Create a Unicode Object from the PyUNICODE bufferu of the given size.u may beNULLwhich causes
the contents to be undefined. It is the user’s responsibility to fill in the needed data. The buffer is copied into
the new object. If the buffer is notNULL, the return value might be a shared object. Therefore, modification
of the resulting Unicode object is only allowed whenu is NULL.

Py UNICODE* PyUnicode AsUnicode (PyObject *unicode)
Return a read-only pointer to the Unicode object’s internalPy UNICODEbuffer,NULL if unicodeis not a
Unicode object.

int PyUnicode GetSize (PyObject *unicode)
Return the length of the Unicode object.

PyObject* PyUnicode FromEncodedObject (PyObject *obj, const char *encoding, const char *er-
rors)

Return value:New reference.
Coerce an encoded objectobj to an Unicode object and return a reference with incremented refcount.

Coercion is done in the following way:

1.Unicode objects are passed back as-is with incremented refcount.Note: These cannot be decoded;
passing a non-NULLvalue for encoding will result in aTypeError .

2.String and other char buffer compatible objects are decoded according to the given encoding and using
the error handling defined by errors. Both can beNULL to have the interface use the default values
(see the next section for details).

3.All other objects cause an exception.

The API returnsNULL if there was an error. The caller is responsible for decref’ing the returned objects.

PyObject* PyUnicode FromObject (PyObject *obj)
Return value:New reference.
Shortcut for PyUnicode FromEncodedObject(obj, NULL, "strict") which is used
throughout the interpreter whenever coercion to Unicode is needed.

If the platform supportswchar t and provides a header file wchar.h, Python can interface directly to this type
using the following functions. Support is optimized if Python’s ownPy UNICODEtype is identical to the system’s
wchar t .

PyObject* PyUnicode FromWideChar (const wchar t *w, int size)
Return value:New reference.
Create a Unicode object from thewchar t bufferw of the given size. ReturnsNULLon failure.

int PyUnicode AsWideChar (PyUnicodeObject *unicode, wchart *w, int size)
Copies the Unicode object contents into thewchar t buffer w. At most sizewchar t characters are
copied. Returns the number ofwchar t characters copied or -1 in case of an error.

Built-in Codecs

Python provides a set of builtin codecs which are written in C for speed. All of these codecs are directly usable
via the following functions.

Many of the following APIs take two arguments encoding and errors. These parameters encoding and errors have
the same semantics as the ones of the builtin unicode() Unicode object constructor.

50 Chapter 7. Concrete Objects Layer

Setting encoding toNULL causes the default encoding to be used which isASCII. The file system calls should
usePy FileSystemDefaultEncoding as the encoding for file names. This variable should be treated as
read-only: On some systems, it will be a pointer to a static string, on others, it will change at run-time, e.g. when
the application invokes setlocale.

Error handling is set by errors which may also be set toNULLmeaning to use the default handling defined for the
codec. Default error handling for all builtin codecs is “strict” (ValueError is raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for sim-
plicity.

These are the generic codec APIs:

PyObject* PyUnicode Decode (const char *s, int size, const char *encoding, const char *errors)
Return value:New reference.
Create a Unicode object by decodingsizebytes of the encoded strings. encodinganderrors have the same
meaning as the parameters of the same name in theunicode() builtin function. The codec to be used is
looked up using the Python codec registry. ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode Encode (const Py UNICODE *s, int size, const char *encoding, const char *er-
rors)

Return value:New reference.
Encodes thePy UNICODEbuffer of the given size and returns a Python string object.encodinganderrors
have the same meaning as the parameters of the same name in the Unicodeencode() method. The codec
to be used is looked up using the Python codec registry. ReturnsNULL if an exception was raised by the
codec.

PyObject* PyUnicode AsEncodedString (PyObject *unicode, const char *encoding, const char *er-
rors)

Return value:New reference.
Encodes a Unicode object and returns the result as Python string object.encodinganderrorshave the same
meaning as the parameters of the same name in the Unicodeencode() method. The codec to be used is
looked up using the Python codec registry. ReturnsNULL if an exception was raised by the codec.

These are the UTF-8 codec APIs:

PyObject* PyUnicode DecodeUTF8(const char *s, int size, const char *errors)
Return value:New reference.
Creates a Unicode object by decodingsizebytes of the UTF-8 encoded strings. ReturnsNULL if an
exception was raised by the codec.

PyObject* PyUnicode EncodeUTF8 (const Py UNICODE *s, int size, const char *errors)
Return value:New reference.
Encodes thePy UNICODEbuffer of the given size using UTF-8 and returns a Python string object. Returns
NULL if an exception was raised by the codec.

PyObject* PyUnicode AsUTF8String (PyObject *unicode)
Return value:New reference.
Encodes a Unicode objects using UTF-8 and returns the result as Python string object. Error handling is
“strict”. ReturnsNULL if an exception was raised by the codec.

These are the UTF-16 codec APIs:

PyObject* PyUnicode DecodeUTF16(const char *s, int size, const char *errors, int *byteorder)
Return value:New reference.
Decodeslengthbytes from a UTF-16 encoded buffer string and returns the corresponding Unicode object.
errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorderis non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

and then switches according to all byte order marks (BOM) it finds in the input data. BOMs are not copied
into the resulting Unicode string. After completion,*byteorderis set to the current byte order at the end of
input data.

7.3. Sequence Objects 51

If byteorderis NULL, the codec starts in native order mode.

ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode EncodeUTF16 (const Py UNICODE *s, int size, const char *errors, int byte-
order)

Return value:New reference.
Returns a Python string object holding the UTF-16 encoded value of the Unicode data ins. If byteorderis
not0, output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder is0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other
two modes, no BOM mark is prepended.

Note thatPy UNICODEdata is being interpreted as UTF-16 reduced to UCS-2. This trick makes it possible
to add full UTF-16 capabilities at a later point without comprimising the APIs.

ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode AsUTF16String (PyObject *unicode)
Return value:New reference.
Returns a Python string using the UTF-16 encoding in native byte order. The string always starts with a
BOM mark. Error handling is “strict”. ReturnsNULL if an exception was raised by the codec.

These are the “Unicode Escape” codec APIs:

PyObject* PyUnicode DecodeUnicodeEscape (const char *s, int size, const char *errors)
Return value:New reference.
Creates a Unicode object by decodingsizebytes of the Unicode-Escape encoded strings. ReturnsNULL if
an exception was raised by the codec.

PyObject* PyUnicode EncodeUnicodeEscape (const Py UNICODE *s, int size, const char *errors)
Return value:New reference.
Encodes thePy UNICODEbuffer of the given size using Unicode-Escape and returns a Python string
object. ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode AsUnicodeEscapeString (PyObject *unicode)
Return value:New reference.
Encodes a Unicode objects using Unicode-Escape and returns the result as Python string object. Error
handling is “strict”. ReturnsNULL if an exception was raised by the codec.

These are the “Raw Unicode Escape” codec APIs:

PyObject* PyUnicode DecodeRawUnicodeEscape (const char *s, int size, const char *errors)
Return value:New reference.
Creates a Unicode object by decodingsizebytes of the Raw-Unicode-Escape encoded strings. Returns
NULL if an exception was raised by the codec.

PyObject* PyUnicode EncodeRawUnicodeEscape (const Py UNICODE *s, int size, const char *er-
rors)

Return value:New reference.
Encodes thePy UNICODEbuffer of the given size using Raw-Unicode-Escape and returns a Python string
object. ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode AsRawUnicodeEscapeString (PyObject *unicode)
Return value:New reference.
Encodes a Unicode objects using Raw-Unicode-Escape and returns the result as Python string object. Error
handling is “strict”. ReturnsNULL if an exception was raised by the codec.

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are
accepted by the codecs during encoding.

PyObject* PyUnicode DecodeLatin1 (const char *s, int size, const char *errors)
Return value:New reference.
Creates a Unicode object by decodingsizebytes of the Latin-1 encoded strings. ReturnsNULL if an

52 Chapter 7. Concrete Objects Layer

exception was raised by the codec.

PyObject* PyUnicode EncodeLatin1 (const Py UNICODE *s, int size, const char *errors)
Return value:New reference.
Encodes thePy UNICODEbuffer of the given size using Latin-1 and returns a Python string object. Returns
NULL if an exception was raised by the codec.

PyObject* PyUnicode AsLatin1String (PyObject *unicode)
Return value:New reference.
Encodes a Unicode objects using Latin-1 and returns the result as Python string object. Error handling is
“strict”. ReturnsNULL if an exception was raised by the codec.

These are theASCII codec APIs. Only 7-bitASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode DecodeASCII (const char *s, int size, const char *errors)
Return value:New reference.
Creates a Unicode object by decodingsizebytes of theASCII encoded strings. ReturnsNULLif an exception
was raised by the codec.

PyObject* PyUnicode EncodeASCII (const Py UNICODE *s, int size, const char *errors)
Return value:New reference.
Encodes thePy UNICODEbuffer of the given size usingASCII and returns a Python string object. Returns
NULL if an exception was raised by the codec.

PyObject* PyUnicode AsASCIIString (PyObject *unicode)
Return value:New reference.
Encodes a Unicode objects usingASCII and returns the result as Python string object. Error handling is
“strict”. ReturnsNULL if an exception was raised by the codec.

These are the mapping codec APIs:

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done
to obtain most of the standard codecs included in theencodings package). The codec uses mapping to encode
and decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then
interpreted as Unicode ordinals) or None (meaning ”undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then
interpreted as Latin-1 ordinals) or None (meaning ”undefined mapping” and causing an error).

The mapping objects provided must only support thegetitem mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be
interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings
which map characters to different code points.

PyObject* PyUnicode DecodeCharmap (const char *s, int size, PyObject *mapping, const char *er-
rors)

Return value:New reference.
Creates a Unicode object by decodingsizebytes of the encoded strings using the givenmappingobject.
ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode EncodeCharmap (const Py UNICODE *s, int size, PyObject *mapping, const
char *errors)

Return value:New reference.
Encodes thePy UNICODEbuffer of the given size using the givenmappingobject and returns a Python
string object. ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value:New reference.
Encodes a Unicode objects using the givenmappingobject and returns the result as Python string object.
Error handling is “strict”. ReturnsNULL if an exception was raised by the codec.

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode TranslateCharmap (const Py UNICODE *s, int size, PyObject *table, const
char *errors)

7.3. Sequence Objects 53

Return value:New reference.
Translates aPy UNICODEbuffer of the given length by applying a character mappingtableto it and returns
the resulting Unicode object. ReturnsNULLwhen an exception was raised by the codec.

Themappingtable must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide the methodgetitem () interface; dictionaries and sequences work
well. Unmapped character ordinals (ones which cause aLookupError) are left untouched and are copied
as-is.

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS
converters to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The
target encoding is defined by the user settings on the machine running the codec.

PyObject* PyUnicode DecodeMBCS(const char *s, int size, const char *errors)
Return value:New reference.
Creates a Unicode object by decodingsizebytes of the MBCS encoded strings. ReturnsNULL if an
exception was raised by the codec.

PyObject* PyUnicode EncodeMBCS(const Py UNICODE *s, int size, const char *errors)
Return value:New reference.
Encodes thePy UNICODEbuffer of the given size using MBCS and returns a Python string object. Returns
NULL if an exception was raised by the codec.

PyObject* PyUnicode AsMBCSString (PyObject *unicode)
Return value:New reference.
Encodes a Unicode objects using MBCS and returns the result as Python string object. Error handling is
“strict”. ReturnsNULL if an exception was raised by the codec.

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in
the descriptions) and return Unicode objects or integers as appropriate.

They all returnNULLor -1 if an exception occurs.

PyObject* PyUnicode Concat (PyObject *left, PyObject *right)
Return value:New reference.
Concat two strings giving a new Unicode string.

PyObject* PyUnicode Split (PyObject *s, PyObject *sep, int maxsplit)
Return value:New reference.
Split a string giving a list of Unicode strings. If sep isNULL, splitting will be done at all whitespace
substrings. Otherwise, splits occur at the given separator. At mostmaxsplitsplits will be done. If negative,
no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode Splitlines (PyObject *s, int keepend)
Return value:New reference.
Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be one line
break. Ifkeependis 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode Translate (PyObject *str, PyObject *table, const char *errors)
Return value:New reference.
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide thegetitem () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause aLookupError) are left untouched and are copied as-is.

errorshas the usual meaning for codecs. It may beNULLwhich indicates to use the default error handling.

PyObject* PyUnicode Join (PyObject *separator, PyObject *seq)
Return value:New reference.

54 Chapter 7. Concrete Objects Layer

Join a sequence of strings using the given separator and return the resulting Unicode string.

PyObject* PyUnicode Tailmatch (PyObject *str, PyObject *substr, int start, int end, int direction)
Return value:New reference.
Return 1 ifsubstrmatchesstr[start:end] at the given tail end (direction== -1 means to do a prefix match,
direction== 1 a suffix match), 0 otherwise.

int PyUnicode Find (PyObject *str, PyObject *substr, int start, int end, int direction)
Return the first position ofsubstrin str[start:end] using the givendirection (direction== 1 means to do a
forward search,direction== -1 a backward search). The return value is the index of the first match; a value
of -1 indicates that no match was found, and-2 indicates that an error occurred and an exception has been
set.

int PyUnicode Count (PyObject *str, PyObject *substr, int start, int end)
Return the number of non-overlapping occurrences ofsubstr in str[start: end] . Returns-1 if an error
occurred.

PyObject* PyUnicode Replace (PyObject *str, PyObject *substr, PyObject *replstr, int maxcount)
Return value:New reference.
Replace at mostmaxcountoccurrences ofsubstrin str with replstr and return the resulting Unicode object.
maxcount== -1 means replace all occurrences.

int PyUnicode Compare(PyObject *left, PyObject *right)
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

PyObject* PyUnicode Format (PyObject *format, PyObject *args)
Return value:New reference.
Returns a new string object fromformatandargs; this is analogous toformat % args. Theargsargument
must be a tuple.

int PyUnicode Contains (PyObject *container, PyObject *element)
Checks whetherelementis contained incontainerand returns true or false accordingly.

elementhas to coerce to a one element Unicode string.-1 is returned if there was an error.

7.3.3 Buffer Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These functions
can be used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the buffer
interface to access the object data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The string object exposes the
character contents in the buffer interface’s byte-oriented form. An array can also expose its contents, but it should
be noted that array elements may be multi-byte values.

An example user of the buffer interface is the file object’swrite() method. Any object that can export a
series of bytes through the buffer interface can be written to a file. There are a number of format codes to
PyArg ParseTuple() that operate against an object’s buffer interface, returning data from the target object.

More information on the buffer interface is provided in the section “Buffer Object Structures” (section 10.7), under
the description forPyBufferProcs .

A “buffer object” is defined in the ‘bufferobject.h’ header (included by ‘Python.h’). These objects look very similar
to string objects at the Python programming level: they support slicing, indexing, concatenation, and some other
standard string operations. However, their data can come from one of two sources: from a block of memory, or
from another object which exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python program-
mer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory,
it is possible to expose any data to the Python programmer quite easily. The memory could be a large, constant
array in a C extension, it could be a raw block of memory for manipulation before passing to an operating system
library, or it could be used to pass around structured data in its native, in-memory format.

PyBufferObject
This subtype ofPyObject represents a buffer object.

7.3. Sequence Objects 55

PyTypeObject PyBuffer Type
The instance ofPyTypeObject which represents the Python buffer type; it is the same object as
types.BufferType in the Python layer..

int Py END OF BUFFER
This constant may be passed as thesize parameter to PyBuffer FromObject() or
PyBuffer FromReadWriteObject() . It indicates that the newPyBufferObject should
refer tobaseobject from the specifiedoffsetto the end of its exported buffer. Using this enables the caller
to avoid querying thebaseobject for its length.

int PyBuffer Check (PyObject *p)
Return true if the argument has typePyBuffer Type .

PyObject* PyBuffer FromObject (PyObject *base, int offset, int size)
Return value:New reference.
Return a new read-only buffer object. This raisesTypeError if basedoesn’t support the read-only buffer
protocol or doesn’t provide exactly one buffer segment, or it raisesValueError if offsetis less than zero.
The buffer will hold a reference to thebaseobject, and the buffer’s contents will refer to thebaseobject’s
buffer interface, starting as positionoffsetand extending forsizebytes. Ifsizeis Py END OF BUFFER,
then the new buffer’s contents extend to the length of thebaseobject’s exported buffer data.

PyObject* PyBuffer FromReadWriteObject (PyObject *base, int offset, int size)
Return value:New reference.
Return a new writable buffer object. Parameters and exceptions are similar to those for
PyBuffer FromObject() . If the baseobject does not export the writeable buffer protocol, then
TypeError is raised.

PyObject* PyBuffer FromMemory(void *ptr, int size)
Return value:New reference.
Return a new read-only buffer object that reads from a specified location in memory, with a specified size.
The caller is responsible for ensuring that the memory buffer, passed in asptr, is not deallocated while the re-
turned buffer object exists. RaisesValueError if sizeis less than zero. Note thatPy END OF BUFFER
maynotbe passed for thesizeparameter;ValueError will be raised in that case.

PyObject* PyBuffer FromReadWriteMemory (void *ptr, int size)
Return value:New reference.
Similar toPyBuffer FromMemory() , but the returned buffer is writable.

PyObject* PyBuffer New(int size)
Return value:New reference.
Returns a new writable buffer object that maintains its own memory buffer ofsizebytes.ValueError is
returned ifsizeis not zero or positive.

7.3.4 Tuple Objects

PyTupleObject
This subtype ofPyObject represents a Python tuple object.

PyTypeObject PyTuple Type
This instance ofPyTypeObject represents the Python tuple type; it is the same object as
types.TupleType in the Python layer..

int PyTuple Check (PyObject *p)
Return true ifp is a tuple object or an instance of a subtype of the tuple type. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyTuple CheckExact (PyObject *p)
Return true ifp is a tuple object, but not an instance of a subtype of the tuple type. New in version 2.2.

PyObject* PyTuple New(int len)
Return value:New reference.
Return a new tuple object of sizelen, or NULLon failure.

int PyTuple Size (PyObject *p)

56 Chapter 7. Concrete Objects Layer

Takes a pointer to a tuple object, and returns the size of that tuple.

int PyTuple GET SIZE (PyObject *p)
Return the size of the tuplep, which must be non-NULLand point to a tuple; no error checking is performed.

PyObject* PyTuple GetItem (PyObject *p, int pos)
Return value:Borrowed reference.
Returns the object at positionpos in the tuple pointed to byp. If pos is out of bounds, returnsNULL and
sets anIndexError exception.

PyObject* PyTuple GET ITEM(PyObject *p, int pos)
Return value:Borrowed reference.
Like PyTuple GetItem() , but does no checking of its arguments.

PyObject* PyTuple GetSlice (PyObject *p, int low, int high)
Return value:New reference.
Takes a slice of the tuple pointed to byp from low to highand returns it as a new tuple.

int PyTuple SetItem (PyObject *p, int pos, PyObject *o)
Inserts a reference to objecto at positionposof the tuple pointed to byp. It returns0 on success.Note:
This function “steals” a reference too.

void PyTuple SET ITEM(PyObject *p, int pos, PyObject *o)
Like PyTuple SetItem() , but does no error checking, and shouldonly be used to fill in brand new
tuples.Note: This function “steals” a reference too.

int PyTuple Resize (PyObject **p, int newsize)
Can be used to resize a tuple.newsizewill be the new length of the tuple. Because tuples aresupposedto
be immutable, this should only be used if there is only one reference to the object. Donot use this if the
tuple may already be known to some other part of the code. The tuple will always grow or shrink at the
end. Think of this as destroying the old tuple and creating a new one, only more efficiently. Returns0 on
success. Client code should never assume that the resulting value of* p will be the same as before calling
this function. If the object referenced by* p is replaced, the original* p is destroyed. On failure, returns-1
and sets* p to NULL, and raisesMemoryError or SystemError . Changed in version 2.2: Removed
unused third parameter,last is sticky.

7.3.5 List Objects

PyListObject
This subtype ofPyObject represents a Python list object.

PyTypeObject PyList Type
This instance ofPyTypeObject represents the Python list type. This is the same object as
types.ListType .

int PyList Check (PyObject *p)
Returns true ifp is a list object or an instance of a subtype of the list type. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyList CheckExact (PyObject *p)
Return true ifp is a list object, but not an instance of a subtype of the list type. New in version 2.2.

PyObject* PyList New(int len)
Return value:New reference.
Returns a new list of lengthlenon success, orNULLon failure.

int PyList Size (PyObject *list)
Returns the length of the list object inlist; this is equivalent to ‘len(list) ’ on a list object.

int PyList GET SIZE (PyObject *list)
Macro form ofPyList Size() without error checking.

PyObject* PyList GetItem (PyObject *list, int index)
Return value:Borrowed reference.
Returns the object at positionposin the list pointed to byp. If posis out of bounds, returnsNULLand sets

7.3. Sequence Objects 57

anIndexError exception.

PyObject* PyList GET ITEM(PyObject *list, int i)
Return value:Borrowed reference.
Macro form ofPyList GetItem() without error checking.

int PyList SetItem (PyObject *list, int index, PyObject *item)
Sets the item at indexindex in list to item. Returns0 on success or-1 on failure. Note: This function
“steals” a reference toitemand discards a reference to an item already in the list at the affected position.

void PyList SET ITEM(PyObject *list, int i, PyObject *o)
Macro form ofPyList SetItem() without error checking. This is normally only used to fill in new
lists where there is no previous content.Note: This function “steals” a reference toitem, and, unlike
PyList SetItem() , doesnotdiscard a reference to any item that it being replaced; any reference inlist
at positioni will be leaked.

int PyList Insert (PyObject *list, int index, PyObject *item)
Inserts the itemitem into list list in front of indexindex. Returns0 if successful; returns-1 and raises an
exception if unsuccessful. Analogous tolist.insert(index, item) .

int PyList Append (PyObject *list, PyObject *item)
Appends the objectitemat the end of listlist. Returns0 if successful; returns-1 and sets an exception if
unsuccessful. Analogous tolist.append(item) .

PyObject* PyList GetSlice (PyObject *list, int low, int high)
Return value:New reference.
Returns a list of the objects inlist containing the objectsbetween lowandhigh. ReturnsNULLand sets an
exception if unsuccessful. Analogous tolist[low: high] .

int PyList SetSlice (PyObject *list, int low, int high, PyObject *itemlist)
Sets the slice oflist betweenlow andhigh to the contents ofitemlist. Analogous tolist[low: high] =
itemlist. The itemlistmay beNULL, indicating the assignment of an empty list (slice deletion). Returns0
on success,-1 on failure.

int PyList Sort (PyObject *list)
Sorts the items oflist in place. Returns0 on success,-1 on failure. This is equivalent to ‘list.sort() ’.

int PyList Reverse (PyObject *list)
Reverses the items oflist in place. Returns0 on success,-1 on failure. This is the equivalent of
‘ list.reverse() ’.

PyObject* PyList AsTuple (PyObject *list)
Return value:New reference.
Returns a new tuple object containing the contents oflist; equivalent to ‘tuple(list) ’.

7.4 Mapping Objects

7.4.1 Dictionary Objects

PyDictObject
This subtype ofPyObject represents a Python dictionary object.

PyTypeObject PyDict Type
This instance ofPyTypeObject represents the Python dictionary type. This is exposed to Python pro-
grams astypes.DictType andtypes.DictionaryType .

int PyDict Check (PyObject *p)
Returns true ifp is a dict object or an instance of a subtype of the dict type. Changed in version 2.2:
Allowed subtypes to be accepted.

PyObject* PyDict New()
Return value:New reference.
Returns a new empty dictionary, orNULLon failure.

58 Chapter 7. Concrete Objects Layer

PyObject* PyDictProxy New(PyObject *dict)
Return value:New reference.
Return a proxy object for a mapping which enforces read-only behavior. This is normally used to create a
proxy to prevent modification of the dictionary for non-dynamic class types. New in version 2.2.

void PyDict Clear (PyObject *p)
Empties an existing dictionary of all key-value pairs.

PyObject* PyDict Copy(PyObject *p)
Return value:New reference.
Returns a new dictionary that contains the same key-value pairs asp. New in version 1.6.

int PyDict SetItem (PyObject *p, PyObject *key, PyObject *val)
Insertsvalueinto the dictionaryp with a key ofkey. keymust be hashable; if it isn’t,TypeError will be
raised. Returns0 on success or-1 on failure.

int PyDict SetItemString (PyObject *p, char *key, PyObject *val)
Insertsvalue into the dictionaryp usingkeyas a key.keyshould be achar* . The key object is created
usingPyString FromString(key) . Returns0 on success or-1 on failure.

int PyDict DelItem (PyObject *p, PyObject *key)
Removes the entry in dictionaryp with key key. keymust be hashable; if it isn’t,TypeError is raised.
Returns0 on success or-1 on failure.

int PyDict DelItemString (PyObject *p, char *key)
Removes the entry in dictionaryp which has a key specified by the stringkey. Returns0 on success or-1
on failure.

PyObject* PyDict GetItem (PyObject *p, PyObject *key)
Return value:Borrowed reference.
Returns the object from dictionaryp which has a keykey. ReturnsNULL if the keykeyis not present, but
withoutsetting an exception.

PyObject* PyDict GetItemString (PyObject *p, char *key)
Return value:Borrowed reference.
This is the same asPyDict GetItem() , butkeyis specified as achar* , rather than aPyObject* .

PyObject* PyDict Items (PyObject *p)
Return value:New reference.
Returns aPyListObject containing all the items from the dictionary, as in the dictinoary method
items() (see thePython Library Reference).

PyObject* PyDict Keys (PyObject *p)
Return value:New reference.
Returns aPyListObject containing all the keys from the dictionary, as in the dictionary methodkeys()
(see thePython Library Reference).

PyObject* PyDict Values (PyObject *p)
Return value:New reference.
Returns aPyListObject containing all the values from the dictionaryp, as in the dictionary method
values() (see thePython Library Reference).

int PyDict Size (PyObject *p)
Returns the number of items in the dictionary. This is equivalent to ‘len(p) ’ on a dictionary.

int PyDict Next (PyObject *p, int *ppos, PyObject **pkey, PyObject **pvalue)
Iterate over all key-value pairs in the dictionaryp. The int referred to bypposmust be initialized to
0 prior to the first call to this function to start the iteration; the function returns true for each pair in the
dictionary, and false once all pairs have been reported. The parameterspkeyandpvalueshould either point
to PyObject* variables that will be filled in with each key and value, respectively, or may beNULL. Any
references returned through them are borrowed.

For example:

7.4. Mapping Objects 59

PyObject *key, *value;
int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */
...

}

The dictionaryp should not be mutated during iteration. It is safe (since Python 2.1) to modify the values of
the keys as you iterate over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
int i = PyInt_AS_LONG(value) + 1;
PyObject *o = PyInt_FromLong(i);
if (o == NULL)

return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {

Py_DECREF(o);
return -1;

}
Py_DECREF(o);

}

int PyDict Merge (PyObject *a, PyObject *b, int override)
Iterate over mapping objectb adding key-value pairs to dictionarya. b may be a dictionary, or any object
supportingPyMapping Keys() andPyObject GetItem() . If override is true, existing pairs ina
will be replaced if a matching key is found inb, otherwise pairs will only be added if there is not a matching
key ina. Return0 on success or-1 if an exception was raised. New in version 2.2.

int PyDict Update (PyObject *a, PyObject *b)
This is the same asPyDict Merge(a, b, 1) in C, ora.update(b) in Python. Return0 on success
or -1 if an exception was raised. New in version 2.2.

int PyDict MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
Update or merge into dictionarya, from the key-value pairs inseq2. seq2must be an iterable object produc-
ing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins ifoverride
is true, else the first wins. Return0 on success or-1 if an exception was raised. Equivalent Python (except
for the return value):

def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:

if override or key not in a:
a[key] = value

New in version 2.2.

7.5 Other Objects

7.5.1 File Objects

Python’s built-in file objects are implemented entirely on theFILE* support from the C standard library. This is
an implementation detail and may change in future releases of Python.

PyFileObject
This subtype ofPyObject represents a Python file object.

PyTypeObject PyFile Type

60 Chapter 7. Concrete Objects Layer

This instance ofPyTypeObject represents the Python file type. This is exposed to Python programs as
types.FileType .

int PyFile Check (PyObject *p)
Returns true if its argument is aPyFileObject or a subtype ofPyFileObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyFile CheckExact (PyObject *p)
Returns true if its argument is aPyFileObject , but not a subtype ofPyFileObject . New in version
2.2.

PyObject* PyFile FromString (char *filename, char *mode)
Return value:New reference.
On success, returns a new file object that is opened on the file given byfilename, with a file mode given by
mode, wheremodehas the same semantics as the standard C routinefopen() . On failure, returnsNULL.

PyObject* PyFile FromFile (FILE *fp, char *name, char *mode, int (*close)(FILE*))
Return value:New reference.
Creates a newPyFileObject from the already-open standard C file pointer,fp. The functionclosewill
be called when the file should be closed. ReturnsNULLon failure.

FILE* PyFile AsFile (PyFileObject *p)
Returns the file object associated withp as aFILE* .

PyObject* PyFile GetLine (PyObject *p, int n)
Return value:New reference.
Equivalent top.readline([n]) , this function reads one line from the objectp. p may be a file object or
any object with areadline() method. Ifn is 0, exactly one line is read, regardless of the length of the
line. If n is greater than0, no more thann bytes will be read from the file; a partial line can be returned.
In both cases, an empty string is returned if the end of the file is reached immediately. Ifn is less than
0, however, one line is read regardless of length, butEOFError is raised if the end of the file is reached
immediately.

PyObject* PyFile Name(PyObject *p)
Return value:Borrowed reference.
Returns the name of the file specified byp as a string object.

void PyFile SetBufSize (PyFileObject *p, int n)
Available on systems withsetvbuf() only. This should only be called immediately after file object
creation.

int PyFile Encoding (PyFileObject *p, char *enc)
Set the file’s encoding for Unicode output toenc. Return 1 on success and 0 on failure. New in version 2.3.

int PyFile SoftSpace (PyObject *p, int newflag)
This function exists for internal use by the interpreter. Sets thesoftspace attribute ofp to newflagand
returns the previous value.p does not have to be a file object for this function to work properly; any object
is supported (thought its only interesting if thesoftspace attribute can be set). This function clears any
errors, and will return0 as the previous value if the attribute either does not exist or if there were errors in
retrieving it. There is no way to detect errors from this function, but doing so should not be needed.

int PyFile WriteObject (PyObject *obj, PyFileObject *p, int flags)
Writes objectobj to file objectp. The only supported flag forflagsis Py PRINT RAW; if given, thestr()
of the object is written instead of therepr() . Returns0 on success or-1 on failure; the appropriate
exception will be set.

int PyFile WriteString (const char *s, PyFileObject *p)
Writes strings to file objectp. Returns0 on success or-1 on failure; the appropriate exception will be set.

7.5.2 Instance Objects

There are very few functions specific to instance objects.

PyTypeObject PyInstance Type

7.5. Other Objects 61

Type object for class instances.

int PyInstance Check (PyObject *obj)
Returns true ifobj is an instance.

PyObject* PyInstance New(PyObject *class, PyObject *arg, PyObject *kw)
Return value:New reference.
Create a new instance of a specific class. The parametersarg andkware used as the positional and keyword
parameters to the object’s constructor.

PyObject* PyInstance NewRaw(PyObject *class, PyObject *dict)
Return value:New reference.
Create a new instance of a specific class without calling it’s constructor.classis the class of new object.
Thedict parameter will be used as the object’sdict ; if NULL, a new dictionary will be created for
the instance.

7.5.3 Method Objects

There are some useful functions that are useful for working with method objects.

PyTypeObject PyMethod Type
This instance ofPyTypeObject represents the Python method type. This is exposed to Python programs
astypes.MethodType .

int PyMethod Check (PyObject *o)
Return true ifo is a method object (has typePyMethod Type). The parameter must not beNULL.

PyObject* PyMethod New(PyObject *func. PyObject *self, PyObject *class)
Return value:New reference.
Return a new method object, withfuncbeing any callable object; this is the function that will be called when
the method is called. If this method should be bound to an instance,self should be the instance andclass
should be the class ofself, otherwiseself should beNULLandclassshould be the class which provides the
unbound method..

PyObject* PyMethod Class (PyObject *meth)
Return value:Borrowed reference.
Return the class object from which the methodmethwas created; if this was created from an instance, it
will be the class of the instance.

PyObject* PyMethod GET CLASS(PyObject *meth)
Return value:Borrowed reference.
Macro version ofPyMethod Class() which avoids error checking.

PyObject* PyMethod Function (PyObject *meth)
Return value:Borrowed reference.
Return the function object associated with the methodmeth.

PyObject* PyMethod GET FUNCTION(PyObject *meth)
Return value:Borrowed reference.
Macro version ofPyMethod Function() which avoids error checking.

PyObject* PyMethod Self (PyObject *meth)
Return value:Borrowed reference.
Return the instance associated with the methodmethif it is bound, otherwise returnNULL.

PyObject* PyMethod GET SELF(PyObject *meth)
Return value:Borrowed reference.
Macro version ofPyMethod Self() which avoids error checking.

7.5.4 Module Objects

There are only a few functions special to module objects.

62 Chapter 7. Concrete Objects Layer

PyTypeObject PyModule Type
This instance ofPyTypeObject represents the Python module type. This is exposed to Python programs
astypes.ModuleType .

int PyModule Check (PyObject *p)
Returns true ifp is a module object, or a subtype of a module object. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyModule CheckExact (PyObject *p)
Returns true ifp is a module object, but not a subtype ofPyModule Type . New in version 2.2.

PyObject* PyModule New(char *name)
Return value:New reference.
Return a new module object with the name attribute set toname. Only the module’s doc and

name attributes are filled in; the caller is responsible for providing afile attribute.

PyObject* PyModule GetDict (PyObject *module)
Return value:Borrowed reference.
Return the dictionary object that implementsmodule’s namespace; this object is the same as thedict
attribute of the module object. This function never fails. It is recommended extensions use other
PyModule *() andPyObject *() functions rather than directly manipulate a module’sdict .

char* PyModule GetName(PyObject *module)
Return module’s name value. If the module does not provide one, or if it is not a string,
SystemError is raised andNULL is returned.

char* PyModule GetFilename (PyObject *module)
Return the name of the file from whichmodulewas loaded usingmodule’s file attribute. If this is
not defined, or if it is not a string, raiseSystemError and returnNULL.

int PyModule AddObject (PyObject *module, char *name, PyObject *value)
Add an object tomoduleasname. This is a convenience function which can be used from the module’s
initialization function. This steals a reference tovalue. Returns-1 on error,0 on success. New in version
2.0.

int PyModule AddIntConstant (PyObject *module, char *name, int value)
Add an integer constant tomoduleasname. This convenience function can be used from the module’s
initialization function. Returns-1 on error,0 on success. New in version 2.0.

int PyModule AddStringConstant (PyObject *module, char *name, char *value)
Add a string constant tomoduleasname. This convenience function can be used from the module’s ini-
tialization function. The stringvaluemust be null-terminated. Returns-1 on error,0 on success. New in
version 2.0.

7.5.5 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary
sequence supporting the getitem () method. The second works with a callable object and a sentinel
value, calling the callable for each item in the sequence, and ending the iteration when the sentinel value is
returned.

PyTypeObject PySeqIter Type
Type object for iterator objects returned byPySeqIter New() and the one-argument form of the
iter() built-in function for built-in sequence types. New in version 2.2.

int PySeqIter Check (op)
Return true if the type ofop is PySeqIter Type . New in version 2.2.

PyObject* PySeqIter New(PyObject *seq)
Return value:New reference.
Return an iterator that works with a general sequence object,seq. The iteration ends when the sequence
raisesIndexError for the subscripting operation. New in version 2.2.

PyTypeObject PyCallIter Type

7.5. Other Objects 63

Type object for iterator objects returned byPyCallIter New() and the two-argument form of the
iter() built-in function. New in version 2.2.

int PyCallIter Check (op)
Return true if the type ofop is PyCallIter Type . New in version 2.2.

PyObject* PyCallIter New(PyObject *callable, PyObject *sentinel)
Return value:New reference.
Return a new iterator. The first parameter,callable, can be any Python callable object that can be called
with no parameters; each call to it should return the next item in the iteration. Whencallablereturns a value
equal tosentinel, the iteration will be terminated. New in version 2.2.

7.5.6 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty Type
The type object for the built-in descriptor types. New in version 2.2.

PyObject* PyDescr NewGetSet (PyTypeObject *type, PyGetSetDef *getset)
Return value:New reference.
New in version 2.2.

PyObject* PyDescr NewMember(PyTypeObject *type, PyMemberDef *meth)
Return value:New reference.
New in version 2.2.

PyObject* PyDescr NewMethod(PyTypeObject *type, PyMethodDef *meth)
Return value:New reference.
New in version 2.2.

PyObject* PyDescr NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)
Return value:New reference.
New in version 2.2.

PyObject* PyDescr NewClassMethod (PyTypeObject *type, PyMethodDef *method)
New in version 2.3.

int PyDescr IsData (PyObject *descr)
Returns true if the descriptor objectsdescrdescribes a data attribute, or false if it describes a method.descr
must be a descriptor object; there is no error checking. New in version 2.2.

PyObject* PyWrapper New(PyObject *, PyObject *)
Return value:New reference.
New in version 2.2.

7.5.7 Slice Objects

PyTypeObject PySlice Type
The type object for slice objects. This is the same astypes.SliceType .

int PySlice Check (PyObject *ob)
Returns true ifob is a slice object;obmust not beNULL.

PyObject* PySlice New(PyObject *start, PyObject *stop, PyObject *step)
Return value:New reference.
Return a new slice object with the given values. Thestart, stop, andstepparameters are used as the values
of the slice object attributes of the same names. Any of the values may beNULL, in which case theNone
will be used for the corresponding attribute. ReturnsNULL if the new object could not be allocated.

int PySlice GetIndices (PySliceObject *slice, int length, int *start, int *stop, int *step)
Retrieve the start, stop and step indices from the slice objectslice, assuming a sequence of lengthlength.
Treats indices greater thanlengthas errors.

64 Chapter 7. Concrete Objects Layer

Returns 0 on success and -1 on error with no exception set (unless one of the indices was notNone and
failed to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function. If you want to use slice objects in versions of Python prior
to 2.3, you would probably do well to incorporate the source ofPySlice GetIndicesEx , suitably
renamed, in the source of your extension.

int PySlice GetIndicesEx (PySliceObject *slice, int length, int *start, int *stop, int *step, int *slice-
length)

Usable replacement forPySlice GetIndices . Retrieve the start, stop, and step indices from the slice
objectslice assuming a sequence of lengthlength, and store the length of the slice inslicelength. Out of
bounds indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and -1 on error with exception set.

New in version 2.3.

7.5.8 Weak Reference Objects

Python supportsweak referencesas first-class objects. There are two specific object types which directly imple-
ment weak references. The first is a simple reference object, and the second acts as a proxy for the original object
as much as it can.

int PyWeakref Check (ob)
Return true ifob is either a reference or proxy object. New in version 2.2.

int PyWeakref CheckRef (ob)
Return true ifob is a reference object. New in version 2.2.

int PyWeakref CheckProxy (ob)
Return true ifob is a proxy object. New in version 2.2.

PyObject* PyWeakref NewRef(PyObject *ob, PyObject *callback)
Return value:New reference.
Return a weak reference object for the objectob. This will always return a new reference, but is not
guaranteed to create a new object; an existing reference object may be returned. The second parameter,
callback, can be a callable object that receives notification whenob is garbage collected; it should accept a
single parameter, which will be the weak reference object itself.callbackmay also beNone or NULL. If
ob is not a weakly-referencable object, or ifcallbackis not callable,None, or NULL, this will returnNULL
and raiseTypeError . New in version 2.2.

PyObject* PyWeakref NewProxy (PyObject *ob, PyObject *callback)
Return value:New reference.
Return a weak reference proxy object for the objectob. This will always return a new reference, but is
not guaranteed to create a new object; an existing proxy object may be returned. The second parameter,
callback, can be a callable object that receives notification whenob is garbage collected; it should accept a
single parameter, which will be the weak reference object itself.callbackmay also beNone or NULL. If
ob is not a weakly-referencable object, or ifcallbackis not callable,None, or NULL, this will returnNULL
and raiseTypeError . New in version 2.2.

PyObject* PyWeakref GetObject (PyObject *ref)
Return value:Borrowed reference.
Returns the referenced object from a weak reference,ref . If the referent is no longer live, returnsNone.
New in version 2.2.

PyObject* PyWeakref GET OBJECT(PyObject *ref)
Return value:Borrowed reference.
Similar toPyWeakref GetObject() , but implemented as a macro that does no error checking. New
in version 2.2.

7.5. Other Objects 65

7.5.9 CObjects

Refer toExtending and Embedding the Python Interpreter, section 1.12, “Providing a C API for an Extension
Module,” for more information on using these objects.

PyCObject
This subtype ofPyObject represents an opaque value, useful for C extension modules who need to pass
an opaque value (as avoid* pointer) through Python code to other C code. It is often used to make a C
function pointer defined in one module available to other modules, so the regular import mechanism can be
used to access C APIs defined in dynamically loaded modules.

int PyCObject Check (PyObject *p)
Returns true if its argument is aPyCObject .

PyObject* PyCObject FromVoidPtr (void* cobj, void (*destr)(void *))
Return value:New reference.
Creates aPyCObject from thevoid * cobj. The destr function will be called when the object is re-
claimed, unless it isNULL.

PyObject* PyCObject FromVoidPtrAndDesc (void* cobj, void* desc, void (*destr)(void *, void *))
Return value:New reference.
Creates aPyCObject from thevoid * cobj. The destr function will be called when the object is re-
claimed. Thedescargument can be used to pass extra callback data for the destructor function.

void* PyCObject AsVoidPtr (PyObject* self)
Returns the objectvoid * that thePyCObject self was created with.

void* PyCObject GetDesc (PyObject* self)
Returns the descriptionvoid * that thePyCObject self was created with.

7.5.10 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object
is created to store the value; the local variables of each stack frame that references the value contains a reference
to the cells from outer scopes which also use that variable. When the value is accessed, the value contained in
the cell is used instead of the cell object itself. This de-referencing of the cell object requires support from the
generated byte-code; these are not automatically de-referenced when accessed. Cell objects are not likely to be
useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell Type
The type object corresponding to cell objects

int PyCell Check (ob)
Return true ifob is a cell object;obmust not beNULL.

PyObject* PyCell New(PyObject *ob)
Return value:New reference.
Create and return a new cell object containing the valueob. The parameter may beNULL.

PyObject* PyCell Get (PyObject *cell)
Return value:New reference.
Return the contents of the cellcell.

PyObject* PyCell GET(PyObject *cell)
Return value:Borrowed reference.
Return the contents of the cellcell, but without checking thatcell is non-NULLand a cell object.

int PyCell Set (PyObject *cell, PyObject *value)
Set the contents of the cell objectcell to value. This releases the reference to any current content of the cell.
valuemay beNULL. cell must be non-NULL; if it is not a cell object,-1 will be returned. On success,0
will be returned.

66 Chapter 7. Concrete Objects Layer

void PyCell SET(PyObject *cell, PyObject *value)
Sets the value of the cell objectcell to value. No reference counts are adjusted, and no checks are made for
safety;cell must be non-NULLand must be a cell object.

7.5. Other Objects 67

68

CHAPTER

EIGHT

Initialization, Finalization, and Threads

void Py Initialize ()
Initialize the Python interpreter. In an application embedding Python, this should be called be-
fore using any other Python/C API functions; with the exception ofPy SetProgramName() ,
PyEval InitThreads() , PyEval ReleaseLock() , and PyEval AcquireLock() . This
initializes the table of loaded modules (sys.modules), and creates the fundamental modules

builtin , main andsys . It also initializes the module search path (sys.path). It does
not setsys.argv ; usePySys SetArgv() for that. This is a no-op when called for a second time
(without callingPy Finalize() first). There is no return value; it is a fatal error if the initialization
fails.

int Py IsInitialized ()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py Finalize() is called, this returns false untilPy Initialize() is called again.

void Py Finalize ()
Undo all initializations made byPy Initialize() and subsequent use of Python/C API functions, and
destroy all sub-interpreters (seePy NewInterpreter() below) that were created and not yet destroyed
since the last call toPy Initialize() . Ideally, this frees all memory allocated by the Python inter-
preter. This is a no-op when called for a second time (without callingPy Initialize() again first).
There is no return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading
the DLL. During a hunt for memory leaks in an application a developer might want to free all memory
allocated by Python before exiting from the application.

Bugs and caveats:The destruction of modules and objects in modules is done in random order; this may
cause destructors (del () methods) to fail when they depend on other objects (even functions) or
modules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of
memory allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory
tied up in circular references between objects is not freed. Some memory allocated by extension modules
may not be freed. Some extensions may not work properly if their initialization routine is called more than
once; this can happen if an application callsPy Initialize() andPy Finalize() more than once.

PyThreadState* Py NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, in-
cluding the fundamental modules builtin , main andsys . The table of loaded modules
(sys.modules) and the module search path (sys.path) are also separate. The new environment has
no sys.argv variable. It has new standard I/O stream file objectssys.stdin , sys.stdout and
sys.stderr (however these refer to the same underlyingFILE structures in the C library).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made
the current thread state. Note that no actual thread is created; see the discussion of thread states below. If
creation of the new interpreter is unsuccessful,NULL is returned; no exception is set since the exception
state is stored in the current thread state and there may not be a current thread state. (Like all other Python/C
API functions, the global interpreter lock must be held before calling this function and is still held when

69

it returns; however, unlike most other Python/C API functions, there needn’t be a current thread state on
entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is
imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When
the same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the
contents of this copy; the extension’sinit function is not called. Note that this is different from what
happens when an extension is imported after the interpreter has been completely re-initialized by calling
Py Finalize() andPy Initialize() ; in that case, the extension’sinit modulefunctionis called
again.

Bugs and caveats:Because sub-interpreters (and the main interpreter) are part of the same process, the
insulation between them isn’t perfect — for example, using low-level file operations likeos.close()
they can (accidentally or maliciously) affect each other’s open files. Because of the way extensions are
shared between (sub-)interpreters, some extensions may not work properly; this is especially likely when the
extension makes use of (static) global variables, or when the extension manipulates its module’s dictionary
after its initialization. It is possible to insert objects created in one sub-interpreter into a namespace of
another sub-interpreter; this should be done with great care to avoid sharing user-defined functions, methods,
instances or classes between sub-interpreters, since import operations executed by such objects may affect
the wrong (sub-)interpreter’s dictionary of loaded modules. (XXX This is a hard-to-fix bug that will be
addressed in a future release.)

void Py EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the
current thread state. See the discussion of thread states below. When the call returns, the current thread
state isNULL. All thread states associated with this interpreted are destroyed. (The global interpreter lock
must be held before calling this function and is still held when it returns.)Py Finalize() will destroy
all sub-interpreters that haven’t been explicitly destroyed at that point.

void Py SetProgramName (char *name)
This function should be called beforePy Initialize() is called for the first time, if it is called at all.
It tells the interpreter the value of theargv[0] argument to themain() function of the program. This is
used byPy GetPath() and some other functions below to find the Python run-time libraries relative to
the interpreter executable. The default value is’python’ . The argument should point to a zero-terminated
character string in static storage whose contents will not change for the duration of the program’s execution.
No code in the Python interpreter will change the contents of this storage.

char* Py GetProgramName ()
Return the program name set withPy SetProgramName() , or the default. The returned string points
into static storage; the caller should not modify its value.

char* Py GetPrefix ()
Return theprefix for installed platform-independent files. This is derived through a number of complicated
rules from the program name set withPy SetProgramName() and some environment variables; for
example, if the program name is’/usr/local/bin/python’ , the prefix is’/usr/local’ . The
returned string points into static storage; the caller should not modify its value. This corresponds to the
prefix variable in the top-level ‘Makefile’ and the--prefix argument to theconfigure script at build time.
The value is available to Python code assys.prefix . It is only useful on UNIX . See also the next
function.

char* Py GetExecPrefix ()
Return theexec-prefixfor installed platform-dependent files. This is derived through a number of
complicated rules from the program name set withPy SetProgramName() and some environment
variables; for example, if the program name is’/usr/local/bin/python’ , the exec-prefix is
’/usr/local’ . The returned string points into static storage; the caller should not modify its value.
This corresponds to the execprefix variable in the top-level ‘Makefile’ and the--exec-prefixargument to
theconfigurescript at build time. The value is available to Python code assys.exec prefix . It is only
useful on UNIX .

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files
may be installed in the ‘/usr/local/plat’ subtree while platform independent may be installed in ‘/usr/local’.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines

70 Chapter 8. Initialization, Finalization, and Threads

running the Solaris 2.x operating system are considered the same platform, but Intel machines running
Solaris 2.x are another platform, and Intel machines running Linux are yet another platform. Different
major revisions of the same operating system generally also form different platforms. Non-UNIX operating
systems are a different story; the installation strategies on those systems are so different that the prefix and
exec-prefix are meaningless, and set to the empty string. Note that compiled Python bytecode files are
platform independent (but not independent from the Python version by which they were compiled!).

System administrators will know how to configure themount or automount programs to share ‘/usr/local’
between platforms while having ‘/usr/local/plat’ be a different filesystem for each platform.

char* Py GetProgramFullPath ()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the de-
fault module search path from the program name (set byPy SetProgramName() above). The returned
string points into static storage; the caller should not modify its value. The value is available to Python code
assys.executable .

char* Py GetPath ()
Return the default module search path; this is computed from the program name (set by
Py SetProgramName() above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter character is
‘ : ’ on UNIX , ‘; ’ on Windows, and ‘\n ’ (the ASCII newline character) on Macintosh. The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as
the listsys.path , which may be modified to change the future search path for loaded modules.

const char* Py GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three characters are
the major and minor version separated by a period. The returned string points into static storage; the caller
should not modify its value. The value is available to Python code assys.version .

const char* Py GetPlatform ()
Return the platform identifier for the current platform. On UNIX , this is formed from the “official” name of
the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x,
which is also known as SunOS 5.x, the value is’sunos5’ . On Macintosh, it is’mac’ . On Windows, it
is ’win’ . The returned string points into static storage; the caller should not modify its value. The value is
available to Python code assys.platform .

const char* Py GetCopyright ()
Return the official copyright string for the current Python version, for example

’Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam’

The returned string points into static storage; the caller should not modify its value. The value is available
to Python code assys.copyright .

const char* Py GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for exam-
ple:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available
to Python code as part of the variablesys.version .

const char* Py GetBuildInfo ()
Return information about the sequence number and build date and time of the current Python interpreter
instance, for example

"#67, Aug 1 1997, 22:34:28"

71

The returned string points into static storage; the caller should not modify its value. The value is available
to Python code as part of the variablesys.version .

int PySys SetArgv (int argc, char **argv)
Setsys.argv based onargc andargv. These parameters are similar to those passed to the program’s
main() function with the difference that the first entry should refer to the script file to be executed rather
than the executable hosting the Python interpreter. If there isn’t a script that will be run, the first entry in
argv can be an empty string. If this function fails to initializesys.argv , a fatal condition is signalled
usingPy FatalError() .

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs, there’s a global
lock that must be held by the current thread before it can safely access Python objects. Without the lock, even the
simplest operations could cause problems in a multi-threaded program: for example, when two threads simultane-
ously increment the reference count of the same object, the reference count could end up being incremented only
once instead of twice.

Therefore, the rule exists that only the thread that has acquired the global interpreter lock may operate on Python
objects or call Python/C API functions. In order to support multi-threaded Python programs, the interpreter
regularly releases and reacquires the lock — by default, every 100 bytecode instructions (this can be changed
with sys.setcheckinterval()). The lock is also released and reacquired around potentially blocking I/O
operations like reading or writing a file, so that other threads can run while the thread that requests the I/O is
waiting for the I/O operation to complete.

The Python interpreter needs to keep some bookkeeping information separate per thread — for this it uses a data
structure calledPyThreadState . This is new in Python 1.5; in earlier versions, such state was stored in global
variables, and switching threads could cause problems. In particular, exception handling is now thread safe, when
the application usessys.exc info() to access the exception last raised in the current thread.

There’s one global variable left, however: the pointer to the currentPyThreadState structure. While most
thread packages have a way to store “per-thread global data,” Python’s internal platform independent thread ab-
straction doesn’t support this yet. Therefore, the current thread state must be manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following simple
structure:

Save the thread state in a local variable.
Release the interpreter lock.
...Do some blocking I/O operation...
Reacquire the interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
...Do some blocking I/O operation...
Py_END_ALLOW_THREADS

The Py BEGIN ALLOWTHREADSmacro opens a new block and declares a hidden local variable; the
Py END ALLOWTHREADSmacro closes the block. Another advantage of using these two macros is that when
Python is compiled without thread support, they are defined empty, thus saving the thread state and lock manipu-
lations.

When thread support is enabled, the block above expands to the following code:

72 Chapter 8. Initialization, Finalization, and Threads

PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking I/O operation...
PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState *_save;

_save = PyThreadState_Swap(NULL);
PyEval_ReleaseLock();
...Do some blocking I/O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);

There are some subtle differences; in particular,PyEval RestoreThread() saves and restores the value of
the global variableerrno , since the lock manipulation does not guarantee thaterrno is left alone. Also, when
thread support is disabled,PyEval SaveThread() and PyEval RestoreThread() don’t manipulate
the lock; in this case,PyEval ReleaseLock() andPyEval AcquireLock() are not available. This is
done so that dynamically loaded extensions compiled with thread support enabled can be loaded by an interpreter
that was compiled with disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and
saving the thread state, the current thread state pointer must be retrieved before the lock is released (since another
thread could immediately acquire the lock and store its own thread state in the global variable). Conversely, when
acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.

Why am I going on with so much detail about this? Because when threads are created from C, they don’t have the
global interpreter lock, nor is there a thread state data structure for them. Such threads must bootstrap themselves
into existence, by first creating a thread state data structure, then acquiring the lock, and finally storing their thread
state pointer, before they can start using the Python/C API. When they are done, they should reset the thread state
pointer, release the lock, and finally free their thread state data structure.

When creating a thread data structure, you need to provide an interpreter state data structure. The interpreter state
data structure hold global data that is shared by all threads in an interpreter, for example the module administration
(sys.modules). Depending on your needs, you can either create a new interpreter state data structure, or share
the interpreter state data structure used by the Python main thread (to access the latter, you must obtain the thread
state and access itsinterp member; this must be done by a thread that is created by Python or by the main
thread after Python is initialized).

Assuming you have access to an interpreter object, the typical idiom for calling into Python from a C thread is

8.1. Thread State and the Global Interpreter Lock 73

PyThreadState *tstate;
PyObject *result;

/* interp is your reference to an interpreter object. */
tstate = PyThreadState_New(interp);
PyEval_AcquireThread(tstate);

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result */

/* Release the thread. No Python API allowed beyond this point. */
PyEval_ReleaseThread(tstate);

/* You can either delete the thread state, or save it
until you need it the next time. */

PyThreadState_Delete(tstate);

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to
the same interpreter share their module administration and a few other internal items. There are no public
members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available mem-
ory, open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to
which interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp , which points to this thread’s interpreter state.

void PyEval InitThreads ()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creat-
ing a second thread or engaging in any other thread operations such asPyEval ReleaseLock()
or PyEval ReleaseThread(tstate) . It is not needed before callingPyEval SaveThread() or
PyEval RestoreThread() .

This is a no-op when called for a second time. It is safe to call this function before calling
Py Initialize() .

When only the main thread exists, no lock operations are needed. This is a common situation (most Python
programs do not use threads), and the lock operations slow the interpreter down a bit. Therefore, the lock
is not created initially. This situation is equivalent to having acquired the lock: when there is only a single
thread, all object accesses are safe. Therefore, when this function initializes the lock, it also acquires it.
Before the Pythonthread module creates a new thread, knowing that either it has the lock or the lock
hasn’t been created yet, it callsPyEval InitThreads() . When this call returns, it is guaranteed that
the lock has been created and that it has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter
lock.

This function is not available when thread support is disabled at compile time.

void PyEval AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the
lock, a deadlock ensues. This function is not available when thread support is disabled at compile time.

void PyEval ReleaseLock ()
Release the global interpreter lock. The lock must have been created earlier. This function is not available
when thread support is disabled at compile time.

void PyEval AcquireThread (PyThreadState *tstate)
Acquire the global interpreter lock and then set the current thread state totstate, which should not beNULL.
The lock must have been created earlier. If this thread already has the lock, deadlock ensues. This function

74 Chapter 8. Initialization, Finalization, and Threads

is not available when thread support is disabled at compile time.

void PyEval ReleaseThread (PyThreadState *tstate)
Reset the current thread state toNULL and release the global interpreter lock. The lock must have been
created earlier and must be held by the current thread. Thetstateargument, which must not beNULL, is
only used to check that it represents the current thread state — if it isn’t, a fatal error is reported. This
function is not available when thread support is disabled at compile time.

PyThreadState* PyEval SaveThread ()
Release the interpreter lock (if it has been created and thread support is enabled) and reset the thread state
to NULL, returning the previous thread state (which is notNULL). If the lock has been created, the current
thread must have acquired it. (This function is available even when thread support is disabled at compile
time.)

void PyEval RestoreThread (PyThreadState *tstate)
Acquire the interpreter lock (if it has been created and thread support is enabled) and set the thread state
to tstate, which must not beNULL. If the lock has been created, the current thread must not have acquired
it, otherwise deadlock ensues. (This function is available even when thread support is disabled at compile
time.)

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py BEGIN ALLOWTHREADS
This macro expands to ‘{PyThreadState * save; save = PyEval SaveThread(); ’.
Note that it contains an opening brace; it must be matched with a followingPy END ALLOWTHREADS
macro. See above for further discussion of this macro. It is a no-op when thread support is disabled at
compile time.

Py END ALLOWTHREADS
This macro expands to ‘PyEval RestoreThread(save); } ’. Note that it contains a closing brace;
it must be matched with an earlierPy BEGIN ALLOWTHREADSmacro. See above for further discussion
of this macro. It is a no-op when thread support is disabled at compile time.

Py BLOCK THREADS
This macro expands to ‘PyEval RestoreThread(save); ’: it is equivalent to
Py END ALLOWTHREADSwithout the closing brace. It is a no-op when thread support is disabled at
compile time.

Py UNBLOCKTHREADS
This macro expands to ‘save = PyEval SaveThread(); ’: it is equivalent to
Py BEGIN ALLOWTHREADSwithout the opening brace and variable declaration. It is a no-op
when thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and must be
called only when the interpreter lock has been created.

PyInterpreterState* PyInterpreterState New()
Create a new interpreter state object. The interpreter lock need not be held, but may be held if it is necessary
to serialize calls to this function.

void PyInterpreterState Clear (PyInterpreterState *interp)
Reset all information in an interpreter state object. The interpreter lock must be held.

void PyInterpreterState Delete (PyInterpreterState *interp)
Destroy an interpreter state object. The interpreter lock need not be held. The interpreter state must have
been reset with a previous call toPyInterpreterState Clear() .

PyThreadState* PyThreadState New(PyInterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The interpreter lock need not be
held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState Clear (PyThreadState *tstate)
Reset all information in a thread state object. The interpreter lock must be held.

void PyThreadState Delete (PyThreadState *tstate)

8.1. Thread State and the Global Interpreter Lock 75

Destroy a thread state object. The interpreter lock need not be held. The thread state must have been reset
with a previous call toPyThreadState Clear() .

PyThreadState* PyThreadState Get ()
Return the current thread state. The interpreter lock must be held. When the current thread state isNULL,
this issues a fatal error (so that the caller needn’t check forNULL).

PyThreadState* PyThreadState Swap(PyThreadState *tstate)
Swap the current thread state with the thread state given by the argumenttstate, which may beNULL. The
interpreter lock must be held.

PyObject* PyThreadState GetDict ()
Return value:Borrowed reference.
Return a dictionary in which extensions can store thread-specific state information. Each extension should
use a unique key to use to store state in the dictionary. It is okay to call this function when no current thread
state is available. If this function returnsNULL, no exception has been raised and the caller should assume
no current thread state is available. Changed in version 2.3: Previously this could only be called when a
current thread is active, andNULLmeant that an exception was raised.

int PyThreadState SetAsyncExc (long id, PyObject *exc)
Asynchronously raise an exception in a thread. Theid argument is the thread id of the target thread;exc
is the exception object to be raised. This function does not steal any references toexc. To prevent naive
misuse, you must write your own C extension to call this. Must be called with the GIL held. Returns the
number of thread states modified; if it returns a number greater than one, you’re in trouble, and you should
call it again withexcset toNULL to revert the effect. This raises no exceptions. New in version 2.3.

8.2 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities.
These are used for profiling, debugging, and coverage analysis tools.

Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface from C was
added. This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level
callable objects, making a direct C function call instead. The essential attributes of the facility have not changed;
the interface allows trace functions to be installed per-thread, and the basic events reported to the trace function
are the same as had been reported to the Python-level trace functions in previous versions.

int (*Py tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered usingPyEval SetProfile() andPyEval SetTrace() .
The first parameter is the object passed to the registration function asobj, frameis the frame object to which
the event pertains,what is one of the constantsPyTrace CALL, PyTrace EXCEPT, PyTrace LINE
or PyTrace RETURN, andarg depends on the value ofwhat:

Value of what Meaning of arg
PyTrace CALL AlwaysNULL.
PyTrace EXCEPT Exception information as returned bysys.exc info() .
PyTrace LINE AlwaysNULL.
PyTrace RETURN Value being returned to the caller.

int PyTrace CALL
The value of thewhatparameter to aPy tracefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace EXCEPT
The value of thewhat parameter to aPy tracefunc function when an exception has been raised. The
callback function is called with this value forwhat when after any bytecode is processed after which the
exception becomes set within the frame being executed. The effect of this is that as exception propaga-
tion causes the Python stack to unwind, the callback is called upon return to each frame as the exception
propagates. Only trace functions receives these events; they are not needed by the profiler.

int PyTrace LINE

76 Chapter 8. Initialization, Finalization, and Threads

The value passed as thewhatparameter to a trace function (but not a profiling function) when a line-number
event is being reported.

int PyTrace RETURN
The value for thewhatparameter toPy tracefunc functions when a call is returning without propagat-
ing an exception.

void PyEval SetProfile (Py tracefunc func, PyObject *obj)
Set the profiler function tofunc. Theobj parameter is passed to the function as its first parameter, and may
be any Python object, orNULL. If the profile function needs to maintain state, using a different value forobj
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except the line-number events.

void PyEval SetTrace (Py tracefunc func, PyObject *obj)
Set the tracing function tofunc. This is similar toPyEval SetProfile() , except the tracing function
does receive line-number events.

8.3 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PyInterpreterState* PyInterpreterState Head()
Return the interpreter state object at the head of the list of all such objects. New in version 2.2.

PyInterpreterState* PyInterpreterState Next (PyInterpreterState *interp)
Return the next interpreter state object afterinterp from the list of all such objects. New in version 2.2.

PyThreadState * PyInterpreterState ThreadHead (PyInterpreterState *interp)
Return the a pointer to the firstPyThreadState object in the list of threads associated with the interpreter
interp. New in version 2.2.

PyThreadState* PyThreadState Next (PyThreadState *tstate)
Return the next thread state object aftertstate from the list of all such objects belonging to the same
PyInterpreterState object. New in version 2.2.

8.3. Advanced Debugger Support 77

78

CHAPTER

NINE

Memory Management

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The
management of this private heap is ensured internally by thePython memory manager. The Python memory
manager has different components which deal with various dynamic storage management aspects, like sharing,
segmentation, preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing
all Python-related data by interacting with the memory manager of the operating system. On top of the raw
memory allocator, several object-specific allocators operate on the same heap and implement distinct memory
management policies adapted to the peculiarities of every object type. For example, integer objects are managed
differently within the heap than strings, tuples or dictionaries because integers imply different storage requirements
and speed/space tradeoffs. The Python memory manager thus delegates some of the work to the object-specific
allocators, but ensures that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and
that the user has no control over it, even if she regularly manipulates object pointers to memory blocks inside that
heap. The allocation of heap space for Python objects and other internal buffers is performed on demand by the
Python memory manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C library:malloc() , calloc() , realloc() andfree() . This will result in mixed calls
between the C allocator and the Python memory manager with fatal consequences, because they implement dif-
ferent algorithms and operate on different heaps. However, one may safely allocate and release memory blocks
with the C library allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

...Do some I/O operation involving buf...
res = PyString_FromString(buf);
free(buf); /* malloc’ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because
the latter is under control of the Python memory manager. For example, this is required when the interpreter is
extended with new object types written in C. Another reason for using the Python heap is the desire toinform the
Python memory manager about the memory needs of the extension module. Even when the requested memory
is used exclusively for internal, highly-specific purposes, delegating all memory requests to the Python memory
manager causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently,

79

under certain circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage
collection, memory compaction or other preventive procedures. Note that by using the C library allocator as shown
in the previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero
bytes, are available for allocating and releasing memory from the Python heap:

void* PyMem Malloc (size t n)
Allocatesn bytes and returns a pointer of typevoid* to the allocated memory, orNULL if the request fails.
Requesting zero bytes returns a distinct non-NULLpointer if possible, as ifPyMem Malloc(1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem Realloc (void *p, size t n)
Resizes the memory block pointed to byp to n bytes. The contents will be unchanged to the minimum of
the old and the new sizes. Ifp is NULL, the call is equivalent toPyMem Malloc(n) ; else ifn is equal to
zero, the memory block is resized but is not freed, and the returned pointer is non-NULL. Unlessp is NULL,
it must have been returned by a previous call toPyMem Malloc() or PyMem Realloc() .

void PyMem Free (void *p)
Frees the memory block pointed to byp, which must have been returned by a previous call to
PyMem Malloc() or PyMem Realloc() . Otherwise, or ifPyMem Free(p) has been called be-
fore, undefined behavior occurs. Ifp is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note thatTYPErefers to any C type.

TYPE* PyMem New(TYPE, sizet n)
Same asPyMem Malloc() , but allocates(n * sizeof(TYPE)) bytes of memory. Returns a pointer
cast toTYPE* . The memory will not have been initialized in any way.

TYPE* PyMem Resize (void *p, TYPE, sizet n)
Same asPyMem Realloc() , but the memory block is resized to(n * sizeof(TYPE)) bytes. Re-
turns a pointer cast toTYPE* .

void PyMem Del (void *p)
Same asPyMem Free() .

In addition, the following macro sets are provided for calling the Python memory allocator directly, without
involving the C API functions listed above. However, note that their use does not preserve binary compatibility
accross Python versions and is therefore deprecated in extension modules.

PyMem MALLOC(), PyMem REALLOC(), PyMem FREE() .

PyMem NEW(), PyMem RESIZE() , PyMem DEL() .

9.3 Examples

Here is the example from section 9.1, rewritten so that the I/O buffer is allocated from the Python heap by using
the first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

80 Chapter 9. Memory Management

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set.
Indeed, it is required to use the same memory API family for a given memory block, so that the risk of mixing
different allocators is reduced to a minimum. The following code sequence contains two errors, one of which is
labeled asfatal because it mixes two different allocators operating on different heaps.

char *buf1 = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_Del() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released withPyObject New() , PyObject NewVar() and PyObject Del() , or with
their corresponding macrosPyObject NEW(), PyObject NEWVAR() andPyObject DEL() .

These will be explained in the next chapter on defining and implementing new object types in C.

9.3. Examples 81

82

CHAPTER

TEN

Object Implementation Support

This chapter describes the functions, types, and macros used when defining new object types.

10.1 Allocating Objects on the Heap

PyObject* PyObject New(PyTypeObject *type)
Return value:New reference.

PyObject* PyObject NewVar(PyTypeObject *type, int size)
Return value:New reference.

void PyObject Del (PyObject *op)

PyObject* PyObject Init (PyObject *op, PyTypeObject *type)
Return value:Borrowed reference.
Initialize a newly-allocated objectop with its type and initial reference. Returns the initialized object. If
type indicates that the object participates in the cyclic garbage detector, it is added to the detector’s set of
observed objects. Other fields of the object are not affected.

PyVarObject* PyObject InitVar (PyVarObject *op, PyTypeObject *type, int size)
Return value:Borrowed reference.
This does everythingPyObject Init() does, and also initializes the length information for a variable-
size object.

TYPE* PyObject New(TYPE, PyTypeObject *type)
Allocate a new Python object using the C structure typeTYPEand the Python type objecttype. Fields not
defined by the Python object header are not initialized; the object’s reference count will be one. The size of
the memory allocation is determined from thetp basicsize field of the type object.

TYPE* PyObject NewVar(TYPE, PyTypeObject *type, int size)
Allocate a new Python object using the C structure typeTYPEand the Python type objecttype. Fields not
defined by the Python object header are not initialized. The allocated memory allows for theTYPEstructure
plussizefields of the size given by thetp itemsize field of type. This is useful for implementing objects
like tuples, which are able to determine their size at construction time. Embedding the array of fields into
the same allocation decreases the number of allocations, improving the memory management efficiency.

void PyObject Del (PyObject *op)
Releases memory allocated to an object usingPyObject New() or PyObject NewVar() . This is
normally called from thetp dealloc handler specified in the object’s type. The fields of the object
should not be accessed after this call as the memory is no longer a valid Python object.

TYPE* PyObject NEW(TYPE, PyTypeObject *type)
Macro version ofPyObject New() , to gain performance at the expense of safety. This does not check
typefor aNULLvalue.

TYPE* PyObject NEWVAR(TYPE, PyTypeObject *type, int size)
Macro version ofPyObject NewVar() , to gain performance at the expense of safety. This does not

83

checktypefor aNULLvalue.

void PyObject DEL(PyObject *op)
Macro version ofPyObject Del() .

PyObject* Py InitModule (char *name, PyMethodDef *methods)
Return value:Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module object.

Changed in version 2.3: Older versions of Python did not supportNULLas the value for themethodsargu-
ment.

PyObject* Py InitModule3 (char *name, PyMethodDef *methods, char *doc)
Return value:Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module object. If
doc is non-NULL, it will be used to define the docstring for the module.

Changed in version 2.3: Older versions of Python did not supportNULLas the value for themethodsargu-
ment.

PyObject* Py InitModule4 (char *name, PyMethodDef *methods, char *doc, PyObject *self, int apiver)
Return value:Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module object. Ifdoc
is non-NULL, it will be used to define the docstring for the module. Ifself is non-NULL, it will passed to
the functions of the module as their (otherwiseNULL) first parameter. (This was added as an experimental
feature, and there are no known uses in the current version of Python.) Forapiver, the only value which
should be passed is defined by the constantPYTHONAPI VERSION.

Note: Most uses of this function should probably be using thePy InitModule3() instead; only use
this if you are sure you need it.

Changed in version 2.3: Older versions of Python did not supportNULLas the value for themethodsargu-
ment.

DL IMPORT

PyObject Py NoneStruct
Object which is visible in Python asNone. This should only be accessed using thePy None macro, which
evaluates to a pointer to this object.

10.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in
memory. These are represented by thePyObject andPyVarObject types, which are defined, in turn, by the
expansions of some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to
treat a pointer to an object as an object. In a normal “release” build, it contains only the objects reference
count and a pointer to the corresponding type object. It corresponds to the fields defined by the expansion
of thePyObject HEADmacro.

PyVarObject
This is an extension ofPyObject that adds theob size field. This is only used for objects that have
some notion oflength. This type does not often appear in the Python/C API. It corresponds to the fields
defined by the expansion of thePyObject VAR HEADmacro.

These macros are used in the definition ofPyObject andPyVarObject :

PyObject HEAD
This is a macro which expands to the declarations of the fields of thePyObject type; it is used when
declaring new types which represent objects without a varying length. The specific fields it expands to de-

84 Chapter 10. Object Implementation Support

pend on the definition ofPy TRACE REFS. By default, that macro is not defined, andPyObject HEAD
expands to:

int ob_refcnt;
PyTypeObject *ob_type;

WhenPy TRACE REFSis defined, it expands to:

PyObject *_ob_next, *_ob_prev;
int ob_refcnt;
PyTypeObject *ob_type;

PyObject VAR HEAD
This is a macro which expands to the declarations of the fields of thePyVarObject type; it is used when
declaring new types which represent objects with a length that varies from instance to instance. This macro
always expands to:

PyObject_HEAD
int ob_size;

Note thatPyObject HEADis part of the expansion, and that it’s own expansion varies depending on the
definition ofPy TRACE REFS.

PyObject HEAD INIT

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyObject* parameters and return one such value. If the return value isNULL, an exception shall have
been set. If notNULL, the return value is interpreted as the return value of the function as exposed in Python.
The function must return a new reference.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:

Field C Type Meaning
ml name char * name of the method
ml meth PyCFunction pointer to the C implementation
ml flags int flag bits indicating how the call should be constructed
ml doc char * points to the contents of the docstring

The ml meth is a C function pointer. The functions may be of different types, but they always return
PyObject* . If the function is not of thePyCFunction , the compiler will require a cast in the method ta-
ble. Even thoughPyCFunction defines the first parameter asPyObject* , it is common that the method
implementation uses a the specific C type of theself object.

The ml flags field is a bitfield which can include the following flags. The individual flags indicate ei-
ther a calling convention or a binding convention. Of the calling convention flags, onlyMETH VARARGSand
METH KEYWORDScan be combined (but note thatMETH KEYWORDSalone is equivalent toMETH VARARGS
| METH KEYWORDS). Any of the calling convention flags can be combined with a binding flag.

METH VARARGS
This is the typical calling convention, where the methods have the typePyCFunction . The function
expects twoPyObject* values. The first one is theself object for methods; for module functions, it has the
value given toPy InitModule4() (or NULLif Py InitModule() was used). The second parameter
(often calledargs) is a tuple object representing all arguments. This parameter is typically processed using
PyArg ParseTuple() or PyArg UnpackTuple .

METH KEYWORDS
Methods with these flags must be of typePyCFunctionWithKeywords . The function ex-
pects three parameters:self, args, and a dictionary of all the keyword arguments. The flag

10.2. Common Object Structures 85

is typically combined with METH VARARGS, and the parameters are typically processed using
PyArg ParseTupleAndKeywords() .

METH NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH NOARGSflag. They need to be of typePyCFunction . When used with object methods, the first
parameter is typically namedself and will hold a reference to the object instance. In all cases the second
parameter will beNULL.

METH O
Methods with a single object argument can be listed with theMETH O flag, instead of invoking
PyArg ParseTuple() with a "O" argument. They have the typePyCFunction , with theself pa-
rameter, and aPyObject* parameter representing the single argument.

METH OLDARGS
This calling convention is deprecated. The method must be of typePyCFunction . The second argument
is NULL if no arguments are given, a single object if exactly one argument is given, and a tuple of objects
if more than one argument is given. There is no way for a function using this convention to distinguish
between a call with multiple arguments and a call with a tuple as the only argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of
classes. These may not be used for functions defined for modules. At most one of these flags may be set for any
given method.

METH CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to createclass methods, similar to what is created when using theclassmethod() built-in function.
New in version 2.3.

METH STATIC
The method will be passedNULL as the first parameter rather than an instance of the type. This is used
to createstatic methods, similar to what is created when using thestaticmethod() built-in function.
New in version 2.3.

PyObject* Py FindMethod (PyMethodDef table[], PyObject *ob, char *name)
Return value:New reference.
Return a bound method object for an extension type implemented in C. This can be use-
ful in the implementation of atp getattro or tp getattr handler that does not use the
PyObject GenericGetAttr() function.

10.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
thePyTypeObject structure. Type objects can be handled using any of thePyObject *() or PyType *()
functions, but do not offer much that’s interesting to most Python applications. These objects are fundamental to
how objects behave, so they are very important to the interpreter itself and to any extension module that implements
new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type
object stores a large number of values, mostly C function pointers, each of which implements a small part of the
type’s functionality. The fields of the type object are examined in detail in this section. The fields will be described
in the order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intinto-
bjargproc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, cmp-
func, reprfunc, hashfunc

The structure definition forPyTypeObject can be found in ‘Include/object.h’. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD

86 Chapter 10. Object Implementation Support

char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

/* Added in release 2.2 */
/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
long tp_dictoffset;
initproc tp_init;

10.3. Type Objects 87

allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;

} PyTypeObject;

The type object structure extends thePyVarObject structure. Theob size field is used for dynamic types
(created bytype new() , usually called from a class statement). Note thatPyType Type (the metatype)
initializestp itemsize , which means that its instances (i.e. type objects)musthave theob size field.

PyObject* ob next
PyObject* ob prev

These fields are only present when the macroPy TRACE REFSis defined. Their initialization toNULL is
taken care of by thePyObject HEAD INIT macro. For statically allocated objects, these fields always
remainNULL. For dynamically allocated objects, these two fields are used to link the object into a doubly-
linked list of all live objects on the heap. This could be used for various debugging purposes; currently
the only use is to print the objects that are still alive at the end of a run when the environment variable
PYTHONDUMPREFS is set.

These fields are not inherited by subtypes.

int ob refcnt
This is the type object’s reference count, initialized to1 by thePyObject HEAD INIT macro. Note that
for statically allocated type objects, the type’s instances (objects whoseob type points back to the type)
donotcount as references. But for dynamically allocated type objects, the instancesdocount as references.

This field is not inherited by subtypes.

PyTypeObject* ob type
This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject HEAD INIT macro, and its value should normally be&PyType Type . However, for dy-
namically loadable extension modules that must be usable on Windows (at least), the compiler complains
that this is not a valid initializer. Therefore, the convention is to passNULLto thePyObject HEAD INIT
macro and to initialize this field explicitly at the start of the module’s initialization function, before doing
anything else. This is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created.PyType Ready() checks ifob type
is NULL, and if so, initializes it: in Python 2.2, it is set to&PyType Type ; in Python 2.2.1 and later it
is initialized to theob type field of the base class.PyType Ready() will not change this field if it is
non-zero.

In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3 and beyond, it is inherited by
subtypes.

int ob size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type
objects, this field has a special internal meaning.

This field is not inherited by subtypes.

char* tp name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type namedT defined in moduleMin subpackageQin package
P should have thetp name initializer "P.Q.M.T" .

88 Chapter 10. Object Implementation Support

For dynamically allocated type objects, this should just be the type name, and the module name explicitly
stored in the type dict as the value for key’ module ’ .

For statically allocated type objects, the tpname field should contain a dot. Everything before the last dot
is made accessible as themodule attribute, and everything after the last dot is made accessible as the

name attribute.

If no dot is present, the entiretp name field is made accessible as the name attribute, and the
module attribute is undefined (unless explicitly set in the dictionary, as explained above). This

means your type will be impossible to pickle.

This field is not inherited by subtypes.

int tp basicsize
int tp itemsize

These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zerotp itemsize field, types with
variable-length instances have a non-zerotp itemsize field. For a type with fixed-length instances, all
instances have the same size, given intp basicsize .

For a type with variable-length instances, the instances must have anob size field, and the instance size
is tp basicsize plus N timestp itemsize , where N is the “length” of the object. The value of
N is typically stored in the instance’sob size field. There are exceptions: for example, long ints use
a negativeob size to indicate a negative number, and N isabs(ob size) there. Also, the presence
of anob size field in the instance layout doesn’t mean that the instance structure is variable-length (for
example, the structure for the list type has fixed-length instances, yet those instances have a meaningful
ob size field).

The basic size includes the fields in the instance declared by the macroPyObject HEAD or
PyObject VAR HEAD(whichever is used to declare the instance struct) and this in turn includes the
ob prev and ob next fields if they are present. This means that the only correct way to get an ini-

tializer for thetp basicsize is to use thesizeof operator on the struct used to declare the instance
layout. The basic size does not include the GC header size (this is new in Python 2.2; in 2.1 and 2.0, the GC
header size was included intp basicsize).

These fields are inherited separately by subtypes. If the base type has a non-zerotp itemsize , it is
generally not safe to settp itemsize to a different non-zero value in a subtype (though this depends on
the implementation of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value oftp basicsize . Example: suppose a type implements an array ofdouble . tp itemsize
is sizeof(double) . It is the programmer’s responsibility thattp basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirement fordouble).

destructor tp dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that
its instances will never be deallocated (as is the case for the singletonsNone andEllipsis).

The destructor function is called by thePy DECREF() and Py XDECREF() macros when the new
reference count is zero. At this point, the instance is still in existence, but there are no references
to it. The destructor function should free all references which the instance owns, free all memory
buffers owned by the instance (using the freeing function corresponding to the allocation function used
to allocate the buffer), and finally (as its last action) call the type’stp free function. If the type
is not subtypable (doesn’t have thePy TPFLAGS BASETYPEflag bit set), it is permissible to call
the object deallocator directly instead of viatp free . The object deallocator should be the one
used to allocate the instance; this is normallyPyObject Del() if the instance was allocated using
PyObject New() or PyOject VarNew() , or PyObject GC Del() if the instance was allocated
usingPyObject GC New() or PyObject GC VarNew() .

This field is inherited by subtypes.

printfunc tp print
An optional pointer to the instance print function.

The print function is only called when the instance is printed to areal file; when it is printed to a pseudo-
file (like a StringIO instance), the instance’stp repr or tp str function is called to convert it to a

10.3. Type Objects 89

string. These are also called when the type’stp print field is NULL. A type should never implement
tp print in a way that produces different output thantp repr or tp str would.

The print function is called with the same signature asPyObject Print() : int
tp print(PyObject *self, FILE *file, int flags) . The self argument is the in-
stance to be printed. Thefile argument is the stdio file to which it is to be printed. Theflagsargument is
composed of flag bits. The only flag bit currently defined isPy PRINT RAW. When thePy PRINT RAW
flag bit is set, the instance should be printed the same way astp str would format it; when the
Py PRINT RAWflag bit is clear, the instance should be printed the same was astp repr would format
it. It should return-1 and set an exception condition when an error occurred during the comparison.

It is possible that thetp print field will be deprecated. In any case, it is recommended not to define
tp print , but instead to rely ontp repr andtp str for printing.

This field is inherited by subtypes.

getattrfunc tp getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp getattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is the same as forPyObject GetAttrString() .

This field is inherited by subtypes together withtp getattro : a subtype inherits bothtp getattr
and tp getattro from its base type when the subtype’stp getattr and tp getattro are both
NULL.

setattrfunc tp setattr
An optional pointer to the set-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp setattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is the same as forPyObject SetAttrString() .

This field is inherited by subtypes together withtp setattro : a subtype inherits bothtp setattr
and tp setattro from its base type when the subtype’stp setattr and tp setattro are both
NULL.

cmpfunc tp compare
An optional pointer to the three-way comparison function.

The signature is the same as forPyObject Compare() . The function should return1 if self greater
thanother, 0 if self is equal toother, and-1 if self less thanother. It should return-1 and set an exception
condition when an error occurred during the comparison.

This field is inherited by subtypes together withtp richcompare and tp hash : a subtypes inher-
its all three oftp compare , tp richcompare , and tp hash when the subtype’stp compare ,
tp richcompare , andtp hash are allNULL.

reprfunc tp repr
An optional pointer to a function that implements the built-in functionrepr() .

The signature is the same as forPyObject Repr() ; it must return a string or a Unicode object. Ideally,
this function should return a string that, when passed toeval() , given a suitable environment, returns an
object with the same value. If this is not feasible, it should return a string starting with ‘<’ and ending with
‘>’ from which both the type and the value of the object can be deduced.

When this field is not set, a string of the form ‘<%s object at %p> ’ is returned, where%sis replaced
by the type name, and%pby the object’s memory address.

This field is inherited by subtypes.

PyNumberMethods *tpas number;

XXX

PySequenceMethods *tpas sequence;

XXX

PyMappingMethods *tpas mapping;

90 Chapter 10. Object Implementation Support

XXX

hashfunc tp hash
An optional pointer to a function that implements the built-in functionhash() .

The signature is the same as forPyObject Hash() ; it must return a C long. The value-1 should not
be returned as a normal return value; when an error occurs during the computation of the hash value, the
function should set an exception and return-1 .

When this field is not set, two possibilities exist: if thetp compare andtp richcompare fields are
both NULL, a default hash value based on the object’s address is returned; otherwise, aTypeError is
raised.

This field is inherited by subtypes together withtp richcompare and tp compare : a subtypes in-
herits all three oftp compare , tp richcompare , andtp hash , when the subtype’stp compare ,
tp richcompare andtp hash are allNULL.

ternaryfunc tp call
An optional pointer to a function that implements calling the object. This should beNULL if the object is
not callable. The signature is the same as forPyObject Call() .

This field is inherited by subtypes.

reprfunc tp str
An optional pointer to a function that implements the built-in operationstr() . (Note thatstr is a type
now, andstr() calls the constructor for that type. This constructor callsPyObject Str() to do the
actual work, andPyObject Str() will call this handler.)

The signature is the same as forPyObject Str() ; it must return a string or a Unicode object. This
function should return a “friendly” string representation of the object, as this is the representation that will
be used by the print statement.

When this field is not set,PyObject Repr() is called to return a string representation.

This field is inherited by subtypes.

getattrofunc tp getattro
An optional pointer to the get-attribute function.

The signature is the same as forPyObject GetAttr() . It is usually convenient to set this field to
PyObject GenericGetAttr() , which implements the normal way of looking for object attributes.

This field is inherited by subtypes together withtp getattr : a subtype inherits bothtp getattr and
tp getattro from its base type when the subtype’stp getattr andtp getattro are bothNULL.

setattrofunc tp setattro
An optional pointer to the set-attribute function.

The signature is the same as forPyObject SetAttr() . It is usually convenient to set this field to
PyObject GenericSetAttr() , which implements the normal way of setting object attributes.

This field is inherited by subtypes together withtp setattr : a subtype inherits bothtp setattr and
tp setattro from its base type when the subtype’stp setattr andtp setattro are bothNULL.

PyBufferProcs* tp as buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer
interface. These fields are documented in “Buffer Object Structures” (section 10.7).

Thetp as buffer field is not inherited, but the contained fields are inherited individually.

long tp flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp as number , tp as sequence , tp as mapping , andtp as buffer) that were historically
not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and
must be considered to have a zero orNULLvalue instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has
a flag bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly
inherited if the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into
the subtype together with a pointer to the extension structure. ThePy TPFLAGS HAVE GCflag bit is

10.3. Type Objects 91

inherited together with thetp traverse and tp clear fields, i.e. if thePy TPFLAGS HAVE GC
flag bit is clear in the subtype and thetp traverse and tp clear fields in the subtype exist (as
indicated by thePy TPFLAGS HAVE RICHCOMPAREflag bit) and haveNULLvalues.

The following bit masks are currently defined; these can be or-ed together using the| operator to form the
value of thetp flags field. The macroPyType HasFeature() takes a type and a flags value,tp and
f , and checks whethertp->tp flags & f is non-zero.

Py TPFLAGS HAVE GETCHARBUFFER
If this bit is set, the PyBufferProcs struct referenced bytp as buffer has the
bf getcharbuffer field.

Py TPFLAGS HAVE SEQUENCEIN
If this bit is set, thePySequenceMethods struct referenced bytp as sequence has the
sq contains field.

Py TPFLAGS GC
This bit is obsolete. The bit it used to name is no longer in use. The symbol is now defined as zero.

Py TPFLAGS HAVE INPLACEOPS
If this bit is set, thePySequenceMethods struct referenced bytp as sequence and
the PyNumberMethods structure referenced bytp as number contain the fields for
in-place operators. In particular, this means that thePyNumberMethods structure has
the fields nb inplace add , nb inplace subtract , nb inplace multiply ,
nb inplace divide , nb inplace remainder , nb inplace power ,
nb inplace lshift , nb inplace rshift , nb inplace and , nb inplace xor , and
nb inplace or ; and thePySequenceMethods struct has the fieldssq inplace concat
andsq inplace repeat .

Py TPFLAGS CHECKTYPES
If this bit is set, the binary and ternary operations in thePyNumberMethods structure refer-
enced bytp as number accept arguments of arbitrary object types, and do their own type con-
versions if needed. If this bit is clear, those operations require that all arguments have the cur-
rent type as their type, and the caller is supposed to perform a coercion operation first. This ap-
plies tonb add , nb subtract , nb multiply , nb divide , nb remainder , nb divmod ,
nb power , nb lshift , nb rshift , nb and , nb xor , andnb or .

Py TPFLAGS HAVE RICHCOMPARE
If this bit is set, the type object has thetp richcompare field, as well as thetp traverse and
thetp clear fields.

Py TPFLAGS HAVE WEAKREFS
If this bit is set, thetp weaklistoffset field is defined. Instances of a type are weakly refer-
enceable if the type’stp weaklistoffset field has a value greater than zero.

Py TPFLAGS HAVE ITER
If this bit is set, the type object has thetp iter andtp iternext fields.

Py TPFLAGS HAVE CLASS
If this bit is set, the type object has several new fields defined starting in Python
2.2: tp methods , tp members, tp getset , tp base , tp dict , tp descr get ,
tp descr set , tp dictoffset , tp init , tp alloc , tp new, tp free , tp is gc ,
tp bases , tp mro, tp cache , tp subclasses , andtp weaklist .

Py TPFLAGS HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case, theob type field
of its instances is considered a reference to the type, and the type object is INCREF’ed when a new
instance is created, and DECREF’ed when an instance is destroyed (this does not apply to instances
of subtypes; only the type referenced by the instance’s obtype gets INCREF’ed or DECREF’ed).

Py TPFLAGS BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a ”final” class in Java).

Py TPFLAGS READY
This bit is set when the type object has been fully initialized byPyType Ready() .

92 Chapter 10. Object Implementation Support

Py TPFLAGS READYING
This bit is set whilePyType Ready() is in the process of initializing the type object.

Py TPFLAGS HAVE GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be
created usingPyObject GC New() and destroyed usingPyObject GC Del() . More infor-
mation in section XXX about garbage collection. This bit also implies that the GC-related fields
tp traverse and tp clear are present in the type object; but those fields also exist when
Py TPFLAGS HAVE GCis clear butPy TPFLAGS HAVE RICHCOMPAREis set.

Py TPFLAGS DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in
the type object and its extension structures. Currently, it includes the following
bits: Py TPFLAGS HAVE GETCHARBUFFER, Py TPFLAGS HAVE SEQUENCEIN ,
Py TPFLAGS HAVE INPLACEOPS, Py TPFLAGS HAVE RICHCOMPARE,
Py TPFLAGS HAVE WEAKREFS, Py TPFLAGS HAVE ITER , and
Py TPFLAGS HAVE CLASS.

char* tp doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed
as the doc attribute on the type and instances of the type.

This field isnot inherited by subtypes.

The following three fields only exist if thePy TPFLAGS HAVE RICHCOMPAREflag bit is set.

traverseproc tp traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py TPFLAGS HAVE GCflag bit is set. More information in section 10.9 about garbage collection.

This field is inherited by subtypes together withtp clear and thePy TPFLAGS HAVE GCflag bit:
the flag bit,tp traverse , andtp clear are all inherited from the base type if they are all zero in the
subtypeandthe subtype has thePy TPFLAGS HAVE RICHCOMPAREflag bit set.

inquiry tp clear
An optional pointer to a clear function for the garbage collector. This is only used if the
Py TPFLAGS HAVE GCflag bit is set. More information in section 10.9 about garbage collection.

This field is inherited by subtypes together withtp clear and thePy TPFLAGS HAVE GCflag bit:
the flag bit,tp traverse , andtp clear are all inherited from the base type if they are all zero in the
subtypeandthe subtype has thePy TPFLAGS HAVE RICHCOMPAREflag bit set.

richcmpfunc tp richcompare
An optional pointer to the rich comparison function.

The signature is the same as forPyObject RichCompare() . The function should return1 if the
requested comparison returns true,0 if it returns false. It should return-1 and set an exception condition
when an error occurred during the comparison.

This field is inherited by subtypes together withtp compare and tp hash : a subtype inherits
all three of tp compare , tp richcompare , and tp hash , when the subtype’stp compare ,
tp richcompare , andtp hash are allNULL.

The following constants are defined to be used as the third argument fortp richcompare and for
PyObject RichCompare() :

Constant Comparison
Py LT <
Py LE <=
Py EQ ==
Py NE !=
Py GT >
Py GE >=

The next field only exists if thePy TPFLAGS HAVE WEAKREFSflag bit is set.

long tp weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in

10.3. Type Objects 93

the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used
by PyObject ClearWeakRefs() and thePyWeakref *() functions. The instance structure needs
to include a field of typePyObject* which is initialized toNULL.

Do not confuse this field withtp weaklist ; that is the list head for weak references to the type object
itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this
means that the subtype uses a different weak reference list head than the base type. Since the list head is
always found viatp weaklistoffset , this should not be a problem.

When a type defined by a class statement has noslots declaration, and none of its base types are
weakly referenceable, the type is made weakly referenceable by adding a weak reference list head slot to
the instance layout and setting thetp weaklistoffset of that slot’s offset.

When a type’s slots declaration contains a slot named weakref , that slot becomes
the weak reference list head for instances of the type, and the slot’s offset is stored in the type’s
tp weaklistoffset .

When a type’s slots declaration does not contain a slot namedweakref , the type inherits
its tp weaklistoffset from its base type.

The next two fields only exist if thePy TPFLAGS HAVE CLASSflag bit is set.

getiterfunc tp iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that
the instances of this type are iterable (although sequences may be iterable without this function, and classic
instances always have this function, even if they don’t define aniter () method).

This function has the same signature asPyObject GetIter() .

This field is inherited by subtypes.

iternextfunc tp iternext
An optional pointer to a function that returns the next item in an iterator, or raisesStopIteration when
the iterator is exhausted. Its presence normally signals that the instances of this type are iterators (although
classic instances always have this function, even if they don’t define anext() method).

Iterator types should also define thetp iter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signature asPyIter Next() .

This field is inherited by subtypes.

The next fields, up to and includingtp weaklist , only exist if thePy TPFLAGS HAVE CLASSflag bit is
set.

struct PyMethodDef* tp methods
An optional pointer to a staticNULL-terminated array ofPyMethodDef structures, declaring regular meth-
ods of this type.

For each entry in the array, an entry is added to the type’s dictionary (seetp dict below) containing a
method descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* tp members
An optional pointer to a staticNULL-terminated array ofPyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (seetp dict below) containing a
member descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* tp getset
An optional pointer to a staticNULL-terminated array ofPyGetSetDef structures, declaring computed
attributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (seetp dict below) containing a
getset descriptor.

94 Chapter 10. Object Implementation Support

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

Docs for PyGetSetDef (XXX belong elsewhere):

typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);

typedef struct PyGetSetDef {
char *name; /* attribute name */
getter get; /* C function to get the attribute */
setter set; /* C function to set the attribute */
char *doc; /* optional doc string */
void *closure; /* optional additional data for getter and setter */

} PyGetSetDef;

PyTypeObject* tp base
An optional pointer to a base type from which type properties are inherited. At this level, only single
inheritance is supported; multiple inheritance require dynamically creating a type object by calling the
metatype.

This field is not inherited by subtypes (obviously), but it defaults to&PyBaseObject Type (which to
Python programmers is known as the typeobject).

PyObject* tp dict
The type’s dictionary is stored here byPyType Ready() .

This field should normally be initialized toNULLbefore PyTypeReady is called; it may also be initialized
to a dictionary containing initial attributes for the type. OncePyType Ready() has initialized the type,
extra attributes for the type may be added to this dictionary only if they don’t correspond to overloaded
operations (like add ()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

descrgetfunc tp descr get
An optional pointer to a ”descriptor get” function.

XXX blah, blah.

This field is inherited by subtypes.

descrsetfunc tp descr set
An optional pointer to a ”descriptor set” function.

XXX blah, blah.

This field is inherited by subtypes.

long tp dictoffset
If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject GenericGetAttr() .

Do not confuse this field withtp dict ; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure.
If the value is less than zero, it specifies the offset from the *end* of the instance structure. A negative
offset is more expensive to use, and should only be used when the instance structure contains a variable-
length part. This is used for example to add an instance variable dictionary to subtypes ofstr or tuple .
Note that thetp basicsize field should account for the dictionary added to the end in that case, even
though the dictionary is not included in the basic object layout. On a system with a pointer size of 4 bytes,
tp dictoffset should be set to-4 to indicate that the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negativetp dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof(void*):

round up to sizeof(void*)

10.3. Type Objects 95

where tp basicsize , tp itemsize and tp dictoffset are taken from the type object, and
ob size is taken from the instance. The absolute value is taken because long ints use the sign ofob size
to store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
PyObject GetDictPtr() .)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this
means that the subtype instances store the dictionary at a difference offset than the base type. Since the
dictionary is always found viatp dictoffset , this should not be a problem.

When a type defined by a class statement has noslots declaration, and none of its base types has
an instance variable dictionary, a dictionary slot is added to the instance layout and thetp dictoffset
is set to that slot’s offset.

When a type defined by a class statement has aslots declaration, the type inherits its
tp dictoffset from its base type.

(Adding a slot named dict to the slots declaration does not have the expected effect, it just
causes confusion. Maybe this should be added as a feature just likeweakref though.)

initproc tp init
An optional pointer to an instance initialization function.

This function corresponds to the init () method of classes. Like init () , it is possible to
create an instance without calling init () , and it is possible to reinitialize an instance by calling its

init () method again.

The function signature is

int tp_init(PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized; theargs andkwdsarguments represent positional and
keyword arguments of the call to init () .

The tp init function, if notNULL, is called when an instance is created normally by calling its type,
after the type’stp new function has returned an instance of the type. If thetp new function returns an
instance of some other type that is not a subtype of the original type, notp init function is called; if
tp new returns an instance of a subtype of the original type, the subtype’stp init is called. (VERSION
NOTE: described here is what is implemented in Python 2.2.1 and later. In Python 2.2, thetp init of
the type of the object returned bytp new was always called, if notNULL.)

This field is inherited by subtypes.

allocfunc tp alloc
An optional pointer to an instance allocation function.

The function signature is

PyObject *tp_alloc(PyTypeObject *self, int nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should re-
turn a pointer to a block of memory of adequate length for the instance, suitably aligned, and initial-
ized to zeros, but withob refcnt set to 1 and ob type set to the type argument. If the type’s
tp itemsize is non-zero, the object’sob size field should be initialized tonitemsand the length
of the allocated memory block should betp basicsize + nitems*tp itemsize , rounded up to
a multiple of sizeof(void*) ; otherwise,nitemsis not used and the length of the block should be
tp basicsize .

Do not use this function to do any other instance initialization, not even to allocate additional memory; that
should be done bytp new.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class state-
ment); in the latter, this field is always set toPyType GenericAlloc() , to force a standard heap
allocation strategy. That is also the recommended value for statically defined types.

newfunc tp new
An optional pointer to an instance creation function.

96 Chapter 10. Object Implementation Support

If this function isNULLfor a particular type, that type cannot be called to create new instances; presumably
there is some other way to create instances, like a factory function.

The function signature is

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being created; theargsandkwdsarguments represent posi-
tional and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose
tp new function is called; it may be a subtype of that type (but not an unrelated type).

The tp new function should callsubtype->tp alloc(subtype, nitems) to allocate space for the ob-
ject, and then do only as much further initialization as is absolutely necessary. Initialization that can safely
be ignored or repeated should be placed in thetp init handler. A good rule of thumb is that for im-
mutable types, all initialization should take place intp new, while for mutable types, most initialization
should be deferred totp init .

This field is inherited by subtypes, except it is not inherited by static types whosetp base is NULL or
&PyBaseObject Type . The latter exception is a precaution so that old extension types don’t become
callable simply by being linked with Python 2.2.

destructor tp free
An optional pointer to an instance deallocation function.

The signature of this function has changed slightly: in Python 2.2 and 2.2.1, its signature isdestructor :

void tp_free(PyObject *)

In Python 2.3 and beyond, its signature isfreefunc :

void tp_free(void *)

The only initializer that is compatible with both versions isPyObject Del , whose definition has suit-
ably adapted in Python 2.3.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class state-
ment); in the latter, this field is set to a deallocator suitable to matchPyType GenericAlloc() and the
value of thePy TPFLAGS HAVE GCflag bit.

inquiry tp is gc
An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is suf-
ficient to look at the object’s type’stp flags field, and check thePy TPFLAGS HAVE GCflag bit.
But some types have a mixture of statically and dynamically allocated instances, and the statically allocated
instances are not collectible. Such types should define this function; it should return1 for a collectible
instance, and0 for a non-collectible instance. The signature is

int tp_is_gc(PyObject *self)

(The only example of this are types themselves. The metatype,PyType Type , defines this function to
distinguish between statically and dynamically allocated types.)

This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not inherited. It is inherited in
2.2.1 and later versions.)

PyObject* tp bases
Tuple of base types.

This is set for types created by a class statement. It should beNULL for statically defined types.

This field is not inherited.

PyObject* tp mro
Tuple containing the expanded set of base types, starting with the type itself and ending withobject , in
Method Resolution Order.

10.3. Type Objects 97

This field is not inherited; it is calculated fresh byPyType Ready() .

PyObject* tp cache
Unused. Not inherited. Internal use only.

PyObject* tp subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* tp weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test macroCOUNTALLOCSis defined, and are for internal
use only. They are documented here for completeness. None of these fields are inherited by subtypes.

int tp allocs
Number of allocations.

int tp frees
Number of frees.

int tp maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* tp next
Pointer to the next type object with a non-zerotp allocs field.

10.4 Mapping Object Structures

PyMappingMethods
Structure used to hold pointers to the functions used to implement the mapping protocol for an extension
type.

10.5 Number Object Structures

PyNumberMethods
Structure used to hold pointers to the functions an extension type uses to implement the number protocol.

10.6 Sequence Object Structures

PySequenceMethods
Structure used to hold pointers to the functions which an object uses to implement the sequence protocol.

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of data,
where each chunk is specified as a pointer/length pair. These chunks are calledsegmentsand are presumed to be
non-contiguous in memory.

If an object does not export the buffer interface, then itstp as buffer member in thePyTypeObject
structure should beNULL. Otherwise, thetp as buffer will point to aPyBufferProcs structure.

Note: It is very important that yourPyTypeObject structure usesPy TPFLAGS DEFAULTfor the value
of the tp flags member rather than0. This tells the Python runtime that yourPyBufferProcs structure
contains thebf getcharbuffer slot. Older versions of Python did not have this member, so a new Python
interpreter using an old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.

98 Chapter 10. Object Implementation Support

The first slot isbf getreadbuffer , of typegetreadbufferproc . If this slot isNULL, then the
object does not support reading from the internal data. This is non-sensical, so implementors should fill this
in, but callers should test that the slot contains a non-NULLvalue.

The next slot isbf getwritebuffer having typegetwritebufferproc . This slot may beNULL
if the object does not allow writing into its returned buffers.

The third slot isbf getsegcount , with typegetsegcountproc . This slot must not beNULLand is
used to inform the caller how many segments the object contains. Simple objects such asPyString Type
andPyBuffer Type objects contain a single segment.

The last slot isbf getcharbuffer , of typegetcharbufferproc . This slot will only be present
if the Py TPFLAGS HAVE GETCHARBUFFERflag is present in thetp flags field of the object’s
PyTypeObject . Before using this slot, the caller should test whether it is present by using the
PyType HasFeature() function. If present, it may beNULL, indicating that the object’s contents
cannot be used as8-bit characters. The slot function may also raise an error if the object’s contents cannot
be interpreted as 8-bit characters. For example, if the object is an array which is configured to hold float-
ing point values, an exception may be raised if a caller attempts to usebf getcharbuffer to fetch a
sequence of 8-bit characters. This notion of exporting the internal buffers as “text” is used to distinguish
between objects that are binary in nature, and those which have character-based content.

Note: The current policy seems to state that these characters may be multi-byte characters. This implies
that a buffer size ofN does not mean there areN characters present.

Py TPFLAGS HAVE GETCHARBUFFER
Flag bit set in the type structure to indicate that thebf getcharbuffer slot is known. This being set
does not indicate that the object supports the buffer interface or that thebf getcharbuffer slot is
non-NULL.

int (*getreadbufferproc) (PyObject *self, int segment, void **ptrptr)
Return a pointer to a readable segment of the buffer. This function is allowed to raise an exception, in which
case it must return-1 . The segmentwhich is passed must be zero or positive, and strictly less than the
number of segments returned by thebf getsegcount slot function. On success, it returns the length of
the buffer memory, and sets* ptrptr to a pointer to that memory.

int (*getwritebufferproc) (PyObject *self, int segment, void **ptrptr)
Return a pointer to a writable memory buffer in* ptrptr, and the length of that segment as the function return
value. The memory buffer must correspond to buffer segmentsegment. Must return-1 and set an exception
on error.TypeError should be raised if the object only supports read-only buffers, andSystemError
should be raised whensegmentspecifies a segment that doesn’t exist.

int (*getsegcountproc) (PyObject *self, int *lenp)
Return the number of memory segments which comprise the buffer. Iflenpis notNULL, the implementation
must report the sum of the sizes (in bytes) of all segments in* lenp. The function cannot fail.

int (*getcharbufferproc) (PyObject *self, int segment, const char **ptrptr)
Return the size of the memory buffer inptrptr for segmentsegment. * ptrptr is set to the memory buffer.

10.8 Supporting the Iterator Protocol

10.9 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from
object types which are “containers” for other objects which may also be containers. Types which do not store
references to other objects, or which only store references to atomic types (such as numbers or strings), do not
need to provide any explicit support for garbage collection.

An example showing the use of these interfaces can be found in “Supporting the Cycle Collector” in Extending
and Embedding the Python Interpreter.

To create a container type, thetp flags field of the type object must include thePy TPFLAGS HAVE GC
and provide an implementation of thetp traverse handler. If instances of the type are mutable, atp clear

10.8. Supporting the Iterator Protocol 99

implementation must also be provided.

Py TPFLAGS HAVE GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:

1. The memory for the object must be allocated usingPyObject GC New() or
PyObject GC VarNew() .

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject GC Track() .

TYPE* PyObject GC New(TYPE, PyTypeObject *type)
Analogous toPyObject New() but for container objects with thePy TPFLAGS HAVE GCflag set.

TYPE* PyObject GC NewVar(TYPE, PyTypeObject *type, int size)
Analogous toPyObject NewVar() but for container objects with thePy TPFLAGS HAVE GCflag
set.

PyVarObject * PyObject GC Resize (PyVarObject *op, int)
Resize an object allocated byPyObject NewVar() . Returns the resized object orNULLon failure.

void PyObject GC Track (PyObject *op)
Adds the objectop to the set of container objects tracked by the collector. The collector can run at unex-
pected times so objects must be valid while being tracked. This should be called once all the fields followed
by thetp traverse handler become valid, usually near the end of the constructor.

void PyObject GC TRACK(PyObject *op)
A macro version ofPyObject GC Track() . It should not be used for extension modules.

Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalidated,PyObject GC UnTrack() must be called.

2. The object’s memory must be deallocated usingPyObject GC Del() .

void PyObject GC Del (PyObject *op)
Releases memory allocated to an object usingPyObject GC New() or PyObject GC NewVar() .

void PyObject GC UnTrack (PyObject *op)
Remove the objectop from the set of container objects tracked by the collector. Note that
PyObject GC Track() can be called again on this object to add it back to the set of tracked objects.
The deallocator (tp dealloc handler) should call this for the object before any of the fields used by the
tp traverse handler become invalid.

void PyObject GC UNTRACK(PyObject *op)
A macro version ofPyObject GC UnTrack() . It should not be used for extension modules.

Thetp traverse handler accepts a function parameter of this type:

int (*visitproc)(PyObject *object, void *arg)
Type of the visitor function passed to thetp traverse handler. The function should be called with an
object to traverse asobjectand the third parameter to thetp traverse handler asarg.

Thetp traverse handler must have the following type:

int (*traverseproc)(PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must call thevisit function for each object
directly contained byself, with the parameters tovisit being the contained object and thearg value passed
to the handler. Ifvisit returns a non-zero value then an error has occurred and that value should be returned
immediately.

Thetp clear handler must be of theinquiry type, orNULL if the object is immutable.

100 Chapter 10. Object Implementation Support

int (*inquiry)(PyObject *self)
Drop references that may have created reference cycles. Immutable objects do not have to define this method
since they can never directly create reference cycles. Note that the object must still be valid after calling
this method (don’t just callPy DECREF() on a reference). The collector will call this method if it detects
that this object is involved in a reference cycle.

10.9. Supporting Cyclic Garbage Collection 101

102

APPENDIX

A

Reporting Bugs

Python is a mature programming language which has established a reputation for stability. In order to maintain
this reputation, the developers would like to know of any deficiencies you find in Python or its documentation.

Before submitting a report, you will be required to log into SourceForge; this will make it possible for the devel-
opers to contact you for additional information if needed. It is not possible to submit a bug report anonymously.

All bug reports should be submitted via the Python Bug Tracker on SourceForge
(http://sourceforge.net/bugs/?group id=5470). The bug tracker offers a Web form which allows pertinent
information to be entered and submitted to the developers.

The first step in filing a report is to determine whether the problem has already been reported. The advantage in
doing so, aside from saving the developers time, is that you learn what has been done to fix it; it may be that the
problem has already been fixed for the next release, or additional information is needed (in which case you are
welcome to provide it if you can!). To do this, search the bug database using the search box on the left side of the
page.

If the problem you’re reporting is not already in the bug tracker, go back to the Python Bug Tracker
(http://sourceforge.net/bugs/?group id=5470). Select the “Submit a Bug” link at the top of the page to open the
bug reporting form.

The submission form has a number of fields. The only fields that are required are the “Summary” and “Details”
fields. For the summary, enter averyshort description of the problem; less than ten words is good. In the Details
field, describe the problem in detail, including what you expected to happen and what did happen. Be sure to
include the version of Python you used, whether any extension modules were involved, and what hardware and
software platform you were using (including version information as appropriate).

The only other field that you may want to set is the “Category” field, which allows you to place the bug report into
a broad category (such as “Documentation” or “Library”).

Each bug report will be assigned to a developer who will determine what needs to be done to correct the problem.
You will receive an update each time action is taken on the bug.

See Also:

How to Report Bugs Effectively
(http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html)

Article which goes into some detail about how to create a useful bug report. This describes what kind of
information is useful and why it is useful.

Bug Writing Guidelines
(http://www.mozilla.org/quality/bug-writing-guidelines.html)

Information about writing a good bug report. Some of this is specific to the Mozilla project, but describes
general good practices.

103

104

APPENDIX

B

History and License

B.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.com/). In 2001, the Python Software Foundation (PSF, seehttp://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (seehttp://www.opensource.org/ for the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes

2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

105

B.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.3.4

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.3.4 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.3.4 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyrightc© 2001-2003 Python Soft-
ware Foundation; All Rights Reserved” are retained in Python 2.3.4 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.3.4 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.3.4.

4. PSF is making Python 2.3.4 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.3.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.3.4 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.3.4, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 2.3.4, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

106 Appendix B. History and License

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyrightc© 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

B.2. Terms and conditions for accessing or otherwise using Python 107

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

108 Appendix B. History and License

INDEX

Symbols
PyImport FindExtension() , 21
PyImport Fini() , 21
PyImport FixupExtension() , 21
PyImport Init() , 21
PyObject Del() , 83
PyObject GC TRACK() , 100
PyObject GC UNTRACK(), 100
PyObject New() , 83
PyObject NewVar() , 83
PyString Resize() , 47
PyTuple Resize() , 57
Py NoneStruct , 84
Py c diff() , 45
Py c neg() , 45
Py c pow() , 45
Py c prod() , 45
Py c quot() , 45
Py c sum() , 45

all (package variable), 20
builtin (built-in module), 7, 69
dict (module attribute), 63
doc (module attribute), 63
file (module attribute), 63
import () (built-in function), 20
main (built-in module), 7, 69
name (module attribute), 63

ob next (PyObject member), 88
ob prev (PyObject member), 88

A
abort() , 19
abs() (built-in function), 33
apply() (built-in function), 31
argv (in module sys), 72

B
buffer

object, 55
buffer interface, 55
BufferType (in module types), 56

C
calloc() , 79
classmethod() (built-in function), 86

cleanup functions, 20
close() (in module os), 70
cmp() (built-in function), 30
CObject

object, 66
coerce() (built-in function), 35
compile() (built-in function), 20
complex number

object, 45
copyright (in module sys), 71

D
dictionary

object, 58
DictionaryType (in module types), 58
DictType (in module types), 58
divmod() (built-in function), 33

E
environment variables

PATH, 8
PYTHONDUMPREFS, 88
PYTHONHOME, 8
PYTHONPATH, 8
exec prefix, 1, 2
prefix, 1, 2

EOFError (built-in exception), 61
errno , 73
exc info() (in module sys), 5, 72
exc traceback (in module sys), 5, 13
exc type (in module sys), 5, 13
exc value (in module sys), 5, 13
Exception (built-in exception), 17
exceptions (built-in module), 7
exec prefix, 1, 2
executable (in module sys), 71
exit() , 20

F
file

object, 60
FileType (in module types), 61
float() (built-in function), 35
floating point

object, 44
FloatType (in modules types), 44

109

fopen() , 61
free() , 79
freeze utility, 21

G
global interpreter lock, 72

H
hash() (built-in function), 31, 91

I
ihooks (standard module), 20
incr item() , 6, 7
instance

object, 61
int() (built-in function), 35
getcharbufferproc (C type), 99
getreadbufferproc (C type), 99
getsegcountproc (C type), 99
getwritebufferproc (C type), 99
inquiry (C type), 101
Py tracefunc (C type), 76
traverseproc (C type), 100
visitproc (C type), 100
integer

object, 42
interpreter lock, 72
IntType (in modules types), 42

K
KeyboardInterrupt (built-in exception), 16

L
len() (built-in function), 32, 35, 37, 57, 59
list

object, 57
ListType (in module types), 57
lock, interpreter, 72
long() (built-in function), 35
long integer

object, 43
LONG MAX, 43, 44
LongType (in modules types), 43

M
main() , 70, 72
malloc() , 79
mapping

object, 58
METH CLASS(data in), 86
METH KEYWORDS(data in), 85
METH NOARGS(data in), 86
METH O(data in), 86
METH OLDARGS(data in), 86
METH STATIC (data in), 86
METH VARARGS(data in), 85
method

object, 62
MethodType (in module types), 62
module

object, 62
search path, 8, 69, 71

modules (in module sys), 20, 69
ModuleType (in module types), 63

N
None

object, 42
numeric

object, 42

O
ob refcnt (PyObject member), 88
ob size (PyVarObject member), 88
ob type (PyObject member), 88
object

buffer, 55
CObject, 66
complex number, 45
dictionary, 58
file, 60
floating point, 44
instance, 61
integer, 42
list, 57
long integer, 43
mapping, 58
method, 62
module, 62
None, 42
numeric, 42
sequence, 46
string, 46
tuple, 56
type, 2, 41

OverflowError (built-in exception), 44

P
package variable

all , 20
PATH, 8
path

module search, 8, 69, 71
path (in module sys), 8, 69, 71
platform (in module sys), 71
pow() (built-in function), 33, 34
prefix, 1, 2
Py AtExit() , 20
Py BEGIN ALLOWTHREADS, 72
Py BEGIN ALLOWTHREADS(macro), 75
Py BLOCK THREADS(macro), 75
Py BuildValue() , 26
Py CompileString() , 10
Py CompileString() , 10
Py complex (C type), 45

110 Index

Py DECREF(), 11
Py DECREF(), 2
Py END ALLOWTHREADS, 72
Py END ALLOWTHREADS(macro), 75
Py END OF BUFFER, 56
Py EndInterpreter() , 70
Py eval input , 10
Py Exit() , 20
Py FatalError() , 19
Py FatalError() , 72
Py FdIsInteractive() , 19
Py file input , 10
Py Finalize() , 69
Py Finalize() , 20, 69, 70
Py FindMethod() , 86
Py GetBuildInfo() , 71
Py GetCompiler() , 71
Py GetCopyright() , 71
Py GetExecPrefix() , 70
Py GetExecPrefix() , 8
Py GetPath() , 71
Py GetPath() , 8, 70
Py GetPlatform() , 71
Py GetPrefix() , 70
Py GetPrefix() , 8
Py GetProgramFullPath() , 71
Py GetProgramFullPath() , 8
Py GetProgramName() , 70
Py GetVersion() , 71
Py INCREF() , 11
Py INCREF() , 2
Py Initialize() , 69
Py Initialize() , 7, 70, 74
Py InitModule() , 84
Py InitModule3() , 84
Py InitModule4() , 84
Py IsInitialized() , 69
Py IsInitialized() , 8
Py Main() , 9
Py NewInterpreter() , 69
Py None, 42
Py PRINT RAW, 61
Py SetProgramName() , 70
Py SetProgramName() , 8, 69–71
Py single input , 10
Py TPFLAGS BASETYPE(data in), 92
Py TPFLAGS CHECKTYPES(data in), 92
Py TPFLAGS DEFAULT(data in), 93
Py TPFLAGS GC(data in), 92
Py TPFLAGS HAVE CLASS(data in), 92
Py TPFLAGS HAVE GC(data in), 93, 100
Py TPFLAGS HAVE GETCHARBUFFER(data in

), 92, 99
Py TPFLAGS HAVE INPLACEOPS(data in), 92
Py TPFLAGS HAVE ITER (data in), 92
Py TPFLAGS HAVE RICHCOMPARE(data in),

92

Py TPFLAGS HAVE SEQUENCEIN (data in),
92

Py TPFLAGS HAVE WEAKREFS(data in), 92
Py TPFLAGS HEAPTYPE(data in), 92
Py TPFLAGS READY(data in), 92
Py TPFLAGS READYING(data in), 93
Py UNBLOCKTHREADS(macro), 75
Py UNICODE(C type), 48
Py UNICODE ISALNUM() , 49
Py UNICODE ISALPHA() , 49
Py UNICODE ISDECIMAL() , 49
Py UNICODE ISDIGIT() , 49
Py UNICODE ISLINEBREAK() , 49
Py UNICODE ISLOWER() , 49
Py UNICODE ISNUMERIC() , 49
Py UNICODE ISSPACE() , 49
Py UNICODE ISTITLE() , 49
Py UNICODE ISUPPER() , 49
Py UNICODE TODECIMAL() , 49
Py UNICODE TODIGIT() , 50
Py UNICODE TOLOWER(), 49
Py UNICODE TONUMERIC(), 50
Py UNICODE TOTITLE() , 49
Py UNICODE TOUPPER(), 49
Py XDECREF(), 11
Py XDECREF(), 7
Py XINCREF() , 11
PyArg Parse() , 26
PyArg ParseTuple() , 26
PyArg ParseTupleAndKeywords() , 26
PyArg UnpackTuple() , 26
PyBuffer Check() , 56
PyBuffer FromMemory() , 56
PyBuffer FromObject() , 56
PyBuffer FromReadWriteMemory() , 56
PyBuffer FromReadWriteObject() , 56
PyBuffer New() , 56
PyBuffer Type , 56
PyBufferObject (C type), 55
PyBufferProcs , 55
PyBufferProcs (C type), 98
PyCallable Check() , 30
PyCallIter Check() , 64
PyCallIter New() , 64
PyCallIter Type , 63
PyCell Check() , 66
PyCell GET() , 66
PyCell Get() , 66
PyCell New() , 66
PyCell SET() , 67
PyCell Set() , 66
PyCell Type , 66
PyCellObject (C type), 66
PyCFunction (C type), 85
PyCObject (C type), 66
PyCObject AsVoidPtr() , 66
PyCObject Check() , 66
PyCObject FromVoidPtr() , 66

Index 111

PyCObject FromVoidPtrAndDesc() , 66
PyCObject GetDesc() , 66
PyComplex AsCComplex() , 46
PyComplex Check() , 45
PyComplex CheckExact() , 45
PyComplex FromCComplex() , 45
PyComplex FromDoubles() , 46
PyComplex ImagAsDouble() , 46
PyComplex RealAsDouble() , 46
PyComplex Type , 45
PyComplexObject (C type), 45
PyDescr IsData() , 64
PyDescr NewClassMethod() , 64
PyDescr NewGetSet() , 64
PyDescr NewMember() , 64
PyDescr NewMethod() , 64
PyDescr NewWrapper() , 64
PyDict Check() , 58
PyDict Clear() , 59
PyDict Copy() , 59
PyDict DelItem() , 59
PyDict DelItemString() , 59
PyDict GetItem() , 59
PyDict GetItemString() , 59
PyDict Items() , 59
PyDict Keys() , 59
PyDict Merge() , 60
PyDict MergeFromSeq2() , 60
PyDict New() , 58
PyDict Next() , 59
PyDict SetItem() , 59
PyDict SetItemString() , 59
PyDict Size() , 59
PyDict Type , 58
PyDict Update() , 60
PyDict Values() , 59
PyDictObject (C type), 58
PyDictProxy New() , 59
PyErr BadArgument() , 14
PyErr BadInternalCall() , 15
PyErr CheckSignals() , 15
PyErr Clear() , 13
PyErr Clear() , 5, 7
PyErr ExceptionMatches() , 13
PyErr ExceptionMatches() , 7
PyErr Fetch() , 14
PyErr Format() , 14
PyErr GivenExceptionMatches() , 13
PyErr NewException() , 16
PyErr NoMemory() , 14
PyErr NormalizeException() , 13
PyErr Occurred() , 13
PyErr Occurred() , 5
PyErr Print() , 13
PyErr Restore() , 14
PyErr SetExcFromWindowsErr() , 15
PyErr SetExcFromWindowsErrWithFilename() ,

15

PyErr SetFromErrno() , 14
PyErr SetFromErrnoWithFilename() , 15
PyErr SetFromWindowsErr() , 15
PyErr SetFromWindowsErrWithFilename() ,

15
PyErr SetInterrupt() , 16
PyErr SetNone() , 14
PyErr SetObject() , 14
PyErr SetString() , 14
PyErr SetString() , 5
PyErr Warn() , 15
PyErr WarnExplicit() , 15
PyErr WriteUnraisable() , 16
PyEval AcquireLock() , 74
PyEval AcquireLock() , 69, 73
PyEval AcquireThread() , 74
PyEval InitThreads() , 74
PyEval InitThreads() , 69
PyEval ReleaseLock() , 74
PyEval ReleaseLock() , 69, 73, 74
PyEval ReleaseThread() , 75
PyEval ReleaseThread() , 74
PyEval RestoreThread() , 75
PyEval RestoreThread() , 73, 74
PyEval SaveThread() , 75
PyEval SaveThread() , 73, 74
PyEval SetProfile() , 77
PyEval SetTrace() , 77
PyFile AsFile() , 61
PyFile Check() , 61
PyFile CheckExact() , 61
PyFile Encoding() , 61
PyFile FromFile() , 61
PyFile FromString() , 61
PyFile GetLine() , 61
PyFile Name() , 61
PyFile SetBufSize() , 61
PyFile SoftSpace() , 61
PyFile Type , 60
PyFile WriteObject() , 61
PyFile WriteString() , 61
PyFileObject (C type), 60
PyFloat AS DOUBLE(), 44
PyFloat AsDouble() , 44
PyFloat Check() , 44
PyFloat CheckExact() , 44
PyFloat FromDouble() , 44
PyFloat FromString() , 44
PyFloat Type , 44
PyFloatObject (C type), 44
PyImport AddModule() , 20
PyImport AppendInittab() , 21
PyImport Cleanup() , 21
PyImport ExecCodeModule() , 20
PyImport ExtendInittab() , 22
PyImport FrozenModules , 21
PyImport GetMagicNumber() , 21
PyImport GetModuleDict() , 21

112 Index

PyImport Import() , 20
PyImport ImportFrozenModule() , 21
PyImport ImportModule() , 20
PyImport ImportModuleEx() , 20
PyImport ReloadModule() , 20
PyInstance Check() , 62
PyInstance New() , 62
PyInstance NewRaw() , 62
PyInstance Type , 61
PyInt AS LONG() , 42
PyInt AsLong() , 42
PyInt AsUnsignedLongLongMask() , 43
PyInt AsUnsignedLongMask() , 42
PyInt Check() , 42
PyInt CheckExact() , 42
PyInt FromLong() , 42
PyInt FromString() , 42
PyInt GetMax() , 43
PyInt Type , 42
PyInterpreterState (C type), 74
PyInterpreterState Clear() , 75
PyInterpreterState Delete() , 75
PyInterpreterState Head() , 77
PyInterpreterState New() , 75
PyInterpreterState Next() , 77
PyInterpreterState ThreadHead() , 77
PyIntObject (C type), 42
PyIter Check() , 38
PyIter Next() , 38
PyList Append() , 58
PyList AsTuple() , 58
PyList Check() , 57
PyList CheckExact() , 57
PyList GET ITEM() , 58
PyList GET SIZE() , 57
PyList GetItem() , 57
PyList GetItem() , 4
PyList GetSlice() , 58
PyList Insert() , 58
PyList New() , 57
PyList Reverse() , 58
PyList SET ITEM() , 58
PyList SetItem() , 58
PyList SetItem() , 3
PyList SetSlice() , 58
PyList Size() , 57
PyList Sort() , 58
PyList Type , 57
PyListObject (C type), 57
PyLong AsDouble() , 44
PyLong AsLong() , 44
PyLong AsLongLong() , 44
PyLong AsUnsignedLong() , 44
PyLong AsUnsignedLongLong() , 44
PyLong AsUnsignedLongLongMask() , 44
PyLong AsUnsignedLongMask() , 44
PyLong AsVoidPtr() , 44
PyLong Check() , 43

PyLong CheckExact() , 43
PyLong FromDouble() , 43
PyLong FromLong() , 43
PyLong FromLongLong() , 43
PyLong FromString() , 43
PyLong FromUnicode() , 43
PyLong FromUnsignedLong() , 43
PyLong FromUnsignedLongLong() , 43
PyLong FromVoidPtr() , 43
PyLong Type , 43
PyLongObject (C type), 43
PyMapping Check() , 37
PyMapping DelItem() , 37
PyMapping DelItemString() , 37
PyMapping GetItemString() , 37
PyMapping HasKey() , 37
PyMapping HasKeyString() , 37
PyMapping Items() , 37
PyMapping Keys() , 37
PyMapping Length() , 37
PyMapping SetItemString() , 37
PyMapping Values() , 37
PyMappingMethods (C type), 98
PyMarshal ReadLastObjectFromFile() ,

22
PyMarshal ReadLongFromFile() , 22
PyMarshal ReadObjectFromFile() , 22
PyMarshal ReadObjectFromString() , 22
PyMarshal ReadShortFromFile() , 22
PyMarshal WriteLongToFile() , 22
PyMarshal WriteObjectToFile() , 22
PyMarshal WriteObjectToString() , 22
PyMem Del() , 80
PyMem Free() , 80
PyMem Malloc() , 80
PyMem New() , 80
PyMem Realloc() , 80
PyMem Resize() , 80
PyMethod Check() , 62
PyMethod Class() , 62
PyMethod Function() , 62
PyMethod GET CLASS() , 62
PyMethod GET FUNCTION() , 62
PyMethod GET SELF() , 62
PyMethod New() , 62
PyMethod Self() , 62
PyMethod Type , 62
PyMethodDef (C type), 85
PyModule AddIntConstant() , 63
PyModule AddObject() , 63
PyModule AddStringConstant() , 63
PyModule Check() , 63
PyModule CheckExact() , 63
PyModule GetDict() , 63
PyModule GetFilename() , 63
PyModule GetName() , 63
PyModule New() , 63
PyModule Type , 63

Index 113

PyNumber Absolute() , 33
PyNumber Add() , 32
PyNumber And() , 33
PyNumber Check() , 32
PyNumber Coerce() , 35
PyNumber Divide() , 32
PyNumber Divmod() , 33
PyNumber Float() , 35
PyNumber FloorDivide() , 33
PyNumber InPlaceAdd() , 34
PyNumber InPlaceAnd() , 34
PyNumber InPlaceDivide() , 34
PyNumber InPlaceFloorDivide() , 34
PyNumber InPlaceLshift() , 34
PyNumber InPlaceMultiply() , 34
PyNumber InPlaceOr() , 35
PyNumber InPlacePower() , 34
PyNumber InPlaceRemainder() , 34
PyNumber InPlaceRshift() , 34
PyNumber InPlaceSubtract() , 34
PyNumber InPlaceTrueDivide() , 34
PyNumber InPlaceXor() , 35
PyNumber Int() , 35
PyNumber Invert() , 33
PyNumber Long() , 35
PyNumber Lshift() , 33
PyNumber Multiply() , 32
PyNumber Negative() , 33
PyNumber Or() , 34
PyNumber Positive() , 33
PyNumber Power() , 33
PyNumber Remainder() , 33
PyNumber Rshift() , 33
PyNumber Subtract() , 32
PyNumber TrueDivide() , 33
PyNumber Xor() , 33
PyNumberMethods (C type), 98
PyObject (C type), 84
PyObject AsCharBuffer() , 38
PyObject AsFileDescriptor() , 32
PyObject AsReadBuffer() , 38
PyObject AsWriteBuffer() , 38
PyObject Call() , 31
PyObject CallFunction() , 31
PyObject CallFunctionObjArgs() , 31
PyObject CallMethod() , 31
PyObject CallMethodObjArgs() , 31
PyObject CallObject() , 31
PyObject CheckReadBuffer() , 38
PyObject Cmp() , 30
PyObject Compare() , 30
PyObject DEL() , 84
PyObject Del() , 83
PyObject DelAttr() , 29
PyObject DelAttrString() , 29
PyObject DelItem() , 32
PyObject Dir() , 32
PyObject GC Del() , 100

PyObject GC New() , 100
PyObject GC NewVar() , 100
PyObject GC Resize() , 100
PyObject GC Track() , 100
PyObject GC UnTrack() , 100
PyObject GetAttr() , 29
PyObject GetAttrString() , 29
PyObject GetItem() , 32
PyObject GetIter() , 32
PyObject HasAttr() , 29
PyObject HasAttrString() , 29
PyObject Hash() , 31
PyObject HEAD(macro), 84
PyObject Init() , 83
PyObject InitVar() , 83
PyObject IsInstance() , 30
PyObject IsSubclass() , 30
PyObject IsTrue() , 31
PyObject Length() , 32
PyObject NEW(), 83
PyObject New() , 83
PyObject NEWVAR() , 83
PyObject NewVar() , 83
PyObject Not() , 31
PyObject Print() , 29
PyObject Repr() , 30
PyObject RichCompare() , 29
PyObject RichCompareBool() , 30
PyObject SetAttr() , 29
PyObject SetAttrString() , 29
PyObject SetItem() , 32
PyObject Size() , 32
PyObject Str() , 30
PyObject Type() , 31
PyObject TypeCheck() , 31
PyObject Unicode() , 30
PyObject VAR HEAD(macro), 85
PyOS AfterFork() , 19
PyOS CheckStack() , 19
PyOS GetLastModificationTime() , 19
PyOS getsig() , 19
PyOS setsig() , 19
PyParser SimpleParseFile() , 10
PyParser SimpleParseString() , 9
PyProperty Type , 64
PyRun AnyFile() , 9
PyRun File() , 10
PyRun InteractiveLoop() , 9
PyRun InteractiveOne() , 9
PyRun SimpleFile() , 9
PyRun SimpleString() , 9
PyRun String() , 10
PySeqIter Check() , 63
PySeqIter New() , 63
PySeqIter Type , 63
PySequence Check() , 35
PySequence Concat() , 35
PySequence Contains() , 36

114 Index

PySequence Count() , 36
PySequence DelItem() , 36
PySequence DelSlice() , 36
PySequence Fast() , 36
PySequence Fast GET ITEM() , 36
PySequence Fast GET SIZE() , 37
PySequence GetItem() , 36
PySequence GetItem() , 4
PySequence GetSlice() , 36
PySequence Index() , 36
PySequence InPlaceConcat() , 35
PySequence InPlaceRepeat() , 36
PySequence ITEM() , 37
PySequence Length() , 35
PySequence List() , 36
PySequence Repeat() , 35
PySequence SetItem() , 36
PySequence SetSlice() , 36
PySequence Size() , 35
PySequence Tuple() , 36
PySequenceMethods (C type), 98
PySlice Check() , 64
PySlice GetIndices() , 64
PySlice GetIndicesEx() , 65
PySlice New() , 64
PySlice Type , 64
PyString AS STRING() , 47
PyString AsDecodedObject() , 48
PyString AsEncodedObject() , 48
PyString AsString() , 47
PyString AsStringAndSize() , 47
PyString Check() , 46
PyString CheckExact() , 46
PyString Concat() , 47
PyString ConcatAndDel() , 47
PyString Decode() , 48
PyString Encode() , 48
PyString Format() , 48
PyString FromFormat() , 46
PyString FromFormatV() , 47
PyString FromString() , 46
PyString FromString() , 59
PyString FromStringAndSize() , 46
PyString GET SIZE() , 47
PyString InternFromString() , 48
PyString InternInPlace() , 48
PyString Size() , 47
PyString Type , 46
PyStringObject (C type), 46
PySys SetArgv() , 72
PySys SetArgv() , 8, 69
PYTHONDUMPREFS, 88
PYTHONHOME, 8
PYTHONPATH, 8
PyThreadState , 72
PyThreadState (C type), 74
PyThreadState Clear() , 75
PyThreadState Delete() , 75

PyThreadState Get() , 76
PyThreadState GetDict() , 76
PyThreadState New() , 75
PyThreadState Next() , 77
PyThreadState SetAsyncExc() , 76
PyThreadState Swap() , 76
PyTrace CALL, 76
PyTrace EXCEPT, 76
PyTrace LINE , 76
PyTrace RETURN, 77
PyTuple Check() , 56
PyTuple CheckExact() , 56
PyTuple GET ITEM() , 57
PyTuple GET SIZE() , 57
PyTuple GetItem() , 57
PyTuple GetSlice() , 57
PyTuple New() , 56
PyTuple SET ITEM() , 57
PyTuple SetItem() , 57
PyTuple SetItem() , 3
PyTuple Size() , 56
PyTuple Type , 56
PyTupleObject (C type), 56
PyType Check() , 41
PyType CheckExact() , 41
PyType GenericAlloc() , 41
PyType GenericNew() , 41
PyType HasFeature() , 41
PyType HasFeature() , 99
PyType IS GC() , 41
PyType IsSubtype() , 41
PyType Ready() , 42
PyType Type , 41
PyTypeObject (C type), 41
PyUnicode AS DATA() , 49
PyUnicode AS UNICODE() , 49
PyUnicode AsASCIIString() , 53
PyUnicode AsCharmapString() , 53
PyUnicode AsEncodedString() , 51
PyUnicode AsLatin1String() , 53
PyUnicode AsMBCSString() , 54
PyUnicode AsRawUnicodeEscapeString() ,

52
PyUnicode AsUnicode() , 50
PyUnicode AsUnicodeEscapeString() ,

52
PyUnicode AsUTF16String() , 52
PyUnicode AsUTF8String() , 51
PyUnicode AsWideChar() , 50
PyUnicode Check() , 49
PyUnicode CheckExact() , 49
PyUnicode Compare() , 55
PyUnicode Concat() , 54
PyUnicode Contains() , 55
PyUnicode Count() , 55
PyUnicode Decode() , 51
PyUnicode DecodeASCII() , 53
PyUnicode DecodeCharmap() , 53

Index 115

PyUnicode DecodeLatin1() , 52
PyUnicode DecodeMBCS() , 54
PyUnicode DecodeRawUnicodeEscape() ,

52
PyUnicode DecodeUnicodeEscape() , 52
PyUnicode DecodeUTF16() , 51
PyUnicode DecodeUTF8() , 51
PyUnicode Encode() , 51
PyUnicode EncodeASCII() , 53
PyUnicode EncodeCharmap() , 53
PyUnicode EncodeLatin1() , 53
PyUnicode EncodeMBCS() , 54
PyUnicode EncodeRawUnicodeEscape() ,

52
PyUnicode EncodeUnicodeEscape() , 52
PyUnicode EncodeUTF16() , 52
PyUnicode EncodeUTF8() , 51
PyUnicode Find() , 55
PyUnicode Format() , 55
PyUnicode FromEncodedObject() , 50
PyUnicode FromObject() , 50
PyUnicode FromUnicode() , 50
PyUnicode FromWideChar() , 50
PyUnicode GET DATA SIZE() , 49
PyUnicode GET SIZE() , 49
PyUnicode GetSize() , 50
PyUnicode Join() , 54
PyUnicode Replace() , 55
PyUnicode Split() , 54
PyUnicode Splitlines() , 54
PyUnicode Tailmatch() , 55
PyUnicode Translate() , 54
PyUnicode TranslateCharmap() , 53
PyUnicode Type , 48
PyUnicodeObject (C type), 48
PyVarObject (C type), 84
PyWeakref Check() , 65
PyWeakref CheckProxy() , 65
PyWeakref CheckRef() , 65
PyWeakref GET OBJECT() , 65
PyWeakref GetObject() , 65
PyWeakref NewProxy() , 65
PyWeakref NewRef() , 65
PyWrapper New() , 64

R
realloc() , 79
reload() (built-in function), 20
repr() (built-in function), 30, 90
rexec (standard module), 20

S
search

path, module, 8, 69, 71
sequence

object, 46
set all() , 4
setcheckinterval() (in module sys), 72

setvbuf() , 61
SIGINT , 16
signal (built-in module), 16
SliceType (in module types), 64
softspace (file attribute), 61
staticmethod() (built-in function), 86
stderr (in module sys), 69
stdin (in module sys), 69
stdout (in module sys), 69
str() (built-in function), 30
strerror() , 14
string

object, 46
StringType (in module types), 46

frozen (C type), 21
inittab (C type), 21

sum list() , 4
sum sequence() , 5, 6
sys (built-in module), 7, 69
SystemError (built-in exception), 63

T
thread (built-in module), 74
tp alloc (PyTypeObject member), 96
tp allocs (PyTypeObject member), 98
tp as buffer (PyTypeObject member), 91
tp base (PyTypeObject member), 95
tp bases (PyTypeObject member), 97
tp basicsize (PyTypeObject member), 89
tp cache (PyTypeObject member), 98
tp call (PyTypeObject member), 91
tp clear (PyTypeObject member), 93
tp compare (PyTypeObject member), 90
tp dealloc (PyTypeObject member), 89
tp descr get (PyTypeObject member), 95
tp descr set (PyTypeObject member), 95
tp dict (PyTypeObject member), 95
tp dictoffset (PyTypeObject member), 95
tp doc (PyTypeObject member), 93
tp flags (PyTypeObject member), 91
tp free (PyTypeObject member), 97
tp frees (PyTypeObject member), 98
tp getattr (PyTypeObject member), 90
tp getattro (PyTypeObject member), 91
tp getset (PyTypeObject member), 94
tp hash (PyTypeObject member), 91
tp init (PyTypeObject member), 96
tp is gc (PyTypeObject member), 97
tp itemsize (PyTypeObject member), 89
tp iter (PyTypeObject member), 94
tp iternext (PyTypeObject member), 94
tp maxalloc (PyTypeObject member), 98
tp members (PyTypeObject member), 94
tp methods (PyTypeObject member), 94
tp mro (PyTypeObject member), 97
tp name (PyTypeObject member), 88
tp new (PyTypeObject member), 96
tp next (PyTypeObject member), 98

116 Index

tp print (PyTypeObject member), 89
tp repr (PyTypeObject member), 90
tp richcompare (PyTypeObject member), 93
tp setattr (PyTypeObject member), 90
tp setattro (PyTypeObject member), 91
tp str (PyTypeObject member), 91
tp subclasses (PyTypeObject member), 98
tp traverse (PyTypeObject member), 93
tp weaklist (PyTypeObject member), 98
tp weaklistoffset (PyTypeObject member),

93
tuple

object, 56
tuple() (built-in function), 36, 58
TupleType (in module types), 56
type

object, 2, 41
type() (built-in function), 31
TypeType (in module types), 41

U
ULONGMAX, 44
unicode() (built-in function), 30

V
version (in module sys), 71, 72

Index 117

	1 Introduction
	1.1 Include Files
	1.2 Objects, Types and Reference Counts
	1.2.1 Reference Counts
	Reference Count Details

	1.2.2 Types

	1.3 Exceptions
	1.4 Embedding Python

	2 The Very High Level Layer
	3 Reference Counting
	4 Exception Handling
	4.1 Standard Exceptions
	4.2 Deprecation of String Exceptions

	5 Utilities
	5.1 Operating System Utilities
	5.2 Process Control
	5.3 Importing Modules
	5.4 Data marshalling support
	5.5 Parsing arguments and building values

	6 Abstract Objects Layer
	6.1 Object Protocol
	6.2 Number Protocol
	6.3 Sequence Protocol
	6.4 Mapping Protocol
	6.5 Iterator Protocol
	6.6 Buffer Protocol

	7 Concrete Objects Layer
	7.1 Fundamental Objects
	7.1.1 Type Objects
	7.1.2 The None Object

	7.2 Numeric Objects
	7.2.1 Plain Integer Objects
	7.2.2 Long Integer Objects
	7.2.3 Floating Point Objects
	7.2.4 Complex Number Objects
	Complex Numbers as C Structures
	Complex Numbers as Python Objects

	7.3 Sequence Objects
	7.3.1 String Objects
	7.3.2 Unicode Objects
	Built-in Codecs
	Methods and Slot Functions

	7.3.3 Buffer Objects
	7.3.4 Tuple Objects
	7.3.5 List Objects

	7.4 Mapping Objects
	7.4.1 Dictionary Objects

	7.5 Other Objects
	7.5.1 File Objects
	7.5.2 Instance Objects
	7.5.3 Method Objects
	7.5.4 Module Objects
	7.5.5 Iterator Objects
	7.5.6 Descriptor Objects
	7.5.7 Slice Objects
	7.5.8 Weak Reference Objects
	7.5.9 CObjects
	7.5.10 Cell Objects

	8 Initialization, Finalization, and Threads
	8.1 Thread State and the Global Interpreter Lock
	8.2 Profiling and Tracing
	8.3 Advanced Debugger Support

	9 Memory Management
	9.1 Overview
	9.2 Memory Interface
	9.3 Examples

	10 Object Implementation Support
	10.1 Allocating Objects on the Heap
	10.2 Common Object Structures
	10.3 Type Objects
	10.4 Mapping Object Structures
	10.5 Number Object Structures
	10.6 Sequence Object Structures
	10.7 Buffer Object Structures
	10.8 Supporting the Iterator Protocol
	10.9 Supporting Cyclic Garbage Collection

	A Reporting Bugs
	B History and License
	B.1 History of the software
	B.2 Terms and conditions for accessing or otherwise using Python

	Index

