Python Library Reference

Release 2.3

Guido van Rossum
Fred L. Drake, Jr., editor

July 29, 2003

PythonLabs
Email: python-docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applica-
tions, from simple text processing scripts to interactive Web browsers.

While thePython Reference Manudéscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability.
This library contains built-in modules (written in C) that provide access to system functionality such as file 1/O
that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are
explicitly designed to encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules
(which may or may not be available, depending on whether the underlying platform supports them and on the
configuration choices made at compile time). It also documents the standard types of the language and its built-in
functions and exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuemains the highest authority on syntactic and semantic questions.
Finally, the manual entitleExtending and Embedding the Python Interpretescribes how to add new extensions

to Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-In Objects 3
2.1 Built-in FUNCtioNs L e e 3
2.2 BUlt-INTYPES e 14
2.3 BUilt-in EXCEPLIONS e e e e 30
24 Bullt-inConstantS. 35

3 Python Runtime Services 37
3.1 sys — System-specific parametersand functions. L. 37
3.2 gc — Garbage Collectorinterface. e 43
3.3 weakref —Weakreferences. 45
3.4 fpectl — Floating pointexceptioncontrol 48
3.5 atexit —Exithandlers. 50
3.6 types — Namesforbuilt-intypes. e 51
3.7 UserDict — Class wrapper for dictionaryobjects 53
3.8 UserList — Classwrapperforlistobjects 53
3.9 UserString — Class wrapper for stringobjects 54
3.10 operator — Standard operatorsasfunctions. L. 55
3.11 inspect —Inspectliveobjects. L 59
3.12 traceback — Printorretrieve a stacktraceback. oo 0oL 63
3.13 linecache — Randomaccesstotextlines., 65
3.14 pickle — Python object serialization 65
3.15 cPickle — Afasterpickle 74
3.16 copy _reg — Registempickle supportfunctions. L. 74
3.17 shelve — Pythonobjectpersistence. 75
3.18 copy — Shallow anddeepcopyoperations 77
3.19 marshal — Internal Python object serialization. 78
3.20 warnings —Warningcontrol. 79
3.21 imp — Accessthémport internals. 81
3.22 pkgutil — Package extension utility, 84
3.23 code — Interpreterbaseclasses 85
3.24 codeop — Compile Pythoncode e 86
3.25 pprint — Datapretty printer e 87
3.26 repr — Alternaterepr() implementation. L Lo 89
3.27 new — Creation of runtime internal objects.o oL 91
3.28 site — Site-specific configurationhook. Lo 91
3.29 user — User-specific configurationhook 92
3.30 __builtin __—Built-infunctions. 93
3.31 __main __—Top-level scriptenvironment. oo 93
3.32 __future __ — Future statementdefinitions o oo Lo 93

4 String Services 95

4.1 string —Commonstringoperations e e 95
4.2 re —Regularexpressionoperations. e e 98
4.3 struct — Interpret strings as packed binarydata oL 108
4.4 (difflib — Helpers for computingdeltas 110
4.5 fpformat — Floating pointconversions. e 117
4.6 Stringl0 — Read and write stringsasfiles. 117
4.7 cStringl0O — Fasterversion oBtringlO L L 118
4.8 textwrap — Textwrappingandfiling. oL 118
49 codecs — Codecregistryandbaseclasses. 120
4.10 unicodedata —Unicode Database. 128
4.11 stringprep — Internet String Preparation. 129
Miscellaneous Services 131
5.1 pydoc — Documentation generator and online helpsystem. 131
5.2 doctest — Testdocstringsrepresentreality, 132
5.3 unittest —Unittestingframework. 139
5.4 test — Regressiontests package forPython. 150
5.5 math — Mathematical functions. L 153
5.6 cmath — Mathematical functions for complexnumbers 155
5.7 random — Generate pseudo-randomnumbers.o oo 157
5.8 whrandom — Pseudo-random number generator. oo 159
5.9 bisect — Array bisectionalgorithm 160
5.10 heapg — Heap queue algorithm. 161
5.11 array — Efficientarraysof numericvalues 163
5.12 sets — Unordered collections of unique elements. 166
5.13 itertools — Functions creating iterators for efficientlooping. 168
5.14 ConfigParser = — Configurationfileparser. 173
5.15 fileinput — Iterate over lines from multiple input streams 176
5.16 xreadlines — Efficientiterationoverafile. L. 178
5.17 calendar — General calendar-related functions. 178
5.18 cmd— Support for line-oriented command interpretets. 179
5.19 shlex — Simplelexicalanalysis e 181
Generic Operating System Services 185
6.1 o0s — Miscellaneous operating systeminterfaces. 185
6.2 os.path — Common pathname manipulations. 202
6.3 dircache — Cacheddirectorylistings. 204
6.4 stat — Interpretingstat() results. 205
6.5 statcache — Anoptimization ofos.stat() Lo oL 207
6.6 statvfs — Constants used withs.statvfs() oL 207
6.7 fileemp —File and Directory Comparisons v i it 208
6.8 popen2 — Subprocesses with accessible I/Ostreams. 209
6.9 datetime —Basicdateandtimetypes. 211
6.10 time — Timeaccessand ConNVerSioNS v o v v i i i i e e e 227
6.11 sched —Eventscheduler. e 232
6.12 mutex — Mutual exclusion support. e 233
6.13 getpass — Portable passwordinput. e 234
6.14 curses — Terminal handling for character-cell displays. 234
6.15 curses.textpad — Text input widget for curses programs 247
6.16 curses.wrapper — Terminal handler for cursesprograms 249
6.17 curses.ascii — Utilities for ASCllcharacters 249
6.18 curses.panel — A panel stack extensionforcurses.. 251
6.19 getopt — Parserforcommand lineoptions. 0. 252
6.20 optparse — Powerful parser for command lineoptions. 254
6.21 tempfile — Generate temporary files and directories. 278
6.22 errno — Standard errnosystemsymbols. L o Lo 279
6.23 glob — UNIx style pathname patternexpansion 285
6.24 fnmatch — UNIX filename patternmatching L. 285

6.25 shutii — High-levelfileoperations 286

6.26 locale — Internationalizationservices 287
6.27 gettext — Multilingual internationalization services. 292
6.28 logging — Logging facility for Python. 300
Optional Operating System Services 315
7.1 signal — Sethandlers forasynchronousevents. 315
7.2 socket — Low-level networkinginterface. o Lo 317
7.3 select — Waiting for I/O completion. 326
7.4 thread — Multiplethreadsofcontrol. 327
7.5 threading — Higher-level threadinginterface 328
7.6 dummy_thread — Drop-inreplacement for thtaread module 335
7.7 dummy_threading — Drop-in replacement for thihreading module 335
7.8 Queue —Asynchronizedqueueclass. 336
7.9 mmap— Memory-mapped filesupport L 337
7.10 anydbm — Generic access to DBM-styledatabases 338
7.11 dbhash — DBM-style interface to the BSD database libraty. 339
7.12 whichdb — Guess which DBM module created adatabase. 340
7.13 bsddb — Interface to Berkeley DB library oo 340
7.14 dumbdbm— Portable DBM implementation 342
7.15 zlib — Compression compatiblewithzip o o 343
7.16 gzip — Supportforgzipfiles 345
7.17 bz2 — Compression compatible witheip2 o o oo 345
7.18 zipfile — Work with ZIP archives. 347
7.19 tarfile — Read and write tar archivefiles. o . 350
7.20 readline —GNUreadlineinterface. 355
7.21 rlcompleter =~ — Completion function for GNU readline. 357
Unix Specific Services 359
8.1 posix — The mostcommon POSIX systemcalls. 359
8.2 pwd—Thepassworddatabase. 360
8.3 grp —Thegroupdatabase 361
8.4 crypt — Functiontocheck Nix passwords. 361
8.5 dl —CallCfunctionsinsharedobjects 362
8.6 dbm— Simple “database” interface. 363
8.7 gdbm— GNU'sreinterpretationofdbm. 364
8.8 termios —POSIXstylettycontrol. 365
8.9 TERMIOS— Constants used with thermios module 366
8.10 tty — Terminal controlfunctions. e 366
8.11 pty — Pseudo-terminal utilities. e 366
8.12 fentl — Thefentl() andioctl() systemcalls., 367
8.13 pipes — Interfaceto shell pipelines 369
8.14 posixfile — File-like objects with locking support 370
8.15 resource — Resource usage information. L oo 372
8.16 nis — Interfaceto Sun’s NIS (YellowPages) 374
8.17 syslog — UNix sysloglibraryroutines., 374
8.18 commands— Utilities for runningcommands o 375
The Python Debugger 377
9.1 DebuggerCommands e e e 378
9.2 HowltWorks e 380
The Python Profiler 383
10.1 Introductiontothe profiler e 383
10.2 How Is This Profiler Different From The Old Profiler?. 383
10.3 InstantUsers Manual. e 384
10.4 What Is Deterministic Profiling?. 385
10.5 Reference Manual 386
10.6 Limitations. o o o e e e e e 389

11

12

13

10.7 Calibration. e e e 389

10.8 Extensions — Deriving Better Profilers. Lo 390
10.9 hotshot — High performance logging profiler 390
10.10timeit — Measure execution time of small code snippets 392
Internet Protocols and Support 395
11.1 webbrowser — Convenient Web-browser controller. 395
11.2 cgi — Common Gateway Interface support.. L o 397
11.3 cgitb — Traceback managerforCGlscripts. 404
11.4 urlib —OpenarbitraryresourcesbyURL 404
11.5 urllib2 —extensible library foropeningURLs 409
11.6 httplib — HTTP protocolclient. 416
11.7 ftplib —FTP protocolclient. 419
11.8 gopherlib — Gopher protocolclient 422
11.9 poplib —POP3protocolclient. e 422
11.10imaplib — IMAP4 protocol client 424
11.11nntplib — NNTP protocol client. 428
11.12smtplib — SMTP protocolclient. 431
11.13telnetlib —Telnetclient e 435
11.14urlparse — Parse URLsintocomponents. v v 437
11.15SocketServer — A framework for networkservers. 438
11.16BaseHTTPServer —BasicHTTPserver i i et it 440
11.17SimpleHTTPServer — Simple HTTP requesthandler 443
11.18CGIHTTPServer — CGl-capable HTTP requesthandlet 443
11.19Cookie — HTTP state management. i i i ittt 444
11.20xmirpclib — XML-RPCclientaccess i i i i i e e 448
11.21SimpleXMLRPCServer — Basic XML-RPCserver. 451
11.22DocXMLRPCServer — Self-documenting XML-RPC server. 453
11.23asyncore — Asynchronous sockethandler. 454
11.24asynchat — Asynchronous socket command/response handler. 456
Internet Data Handling 461
12.1 formatter = — Generic outputformattingo oo 461
12.2 email — Anemail and MIME handlingpackage 465
12.3 mailcap — Mailcap file handling.. 490
12.4 mailbox — Read various mailbox formats L. 491
12.5 mhlib — Accessto MH mailboxes 493
12.6 mimetools — Tools for parsing MIME messages i 494
12.7 mimetypes — Map filenamesto MIME types. 496
12.8 MimeWriter — Generic MIME filewriter o 498
12.9 mimify — MIME processingof mailmessages. 498
12.10 multifile — Support for files containing distinctparts. L. 499
12.11rfc822 —Parse RFC 2822 mailheaders. 501
12.12base64 — Encode and decode MIME base64 data. 505
12.13binascii — Convert between binaryamdscii o Lo 505
12.14binhex — Encode and decode binhex4files 507
12.15quopri — Encode and decode MIME quoted-printabledata 508
12.16uu — Encode and decode uuencodefiles o 508
12.17xdrlib — Encode and decode XDRdata.o 509
12.18netrc —netrcfile processing. e 511
12.19robotparser — Parserforrobots.txt 512
12.20csv — CSV File Readingand Writing. o i i e 513
Structured Markup Processing Tools 517
13.1 HTMLParser — Simple HTML and XHTML parser. v v v v v v v .. 517
13.2 sgmllib — Simple SGML parser. e e e 519
13.3 htmllib — AparserforHTMLdocuments 521
13.4 htmlentitydefs — Definitions of HTML general entities 523
13.5 xml.parsers.expat — Fast XML parsingusingExpat 523

13.6 xml.dom — The Document Object Model API. 530

13.7 xml.dom.minidom — Lightweight DOM implementation. 539
13.8 xml.dom.pulldom — Support for building partial DOMtrees 543
13.9 xml.sax — Supportfor SAX2 parsers. o v 544
13.10xml.sax.handler — Baseclassesfor SAX handlers 545
13.11xml.sax.saxutils — SAX Utilities 549
13.12xml.sax.xmlreader — Interface for XML parsers. 550
13.13xmllib — A parserfor XML documents. 554
Multimedia Services 559
14.1 audioop — Manipulaterawaudiodata 559
14.2 imageop — Manipulaterawimagedata. oo 562
14.3 aifc — Read and write AIFFand AIFCfiles. oo 563
14.4 sunau — Read and write Sun AUfiles L L 565
145 wave — Read and write WAV files. 567
14.6 chunk —Read IFFchunkeddata. 569
14.7 colorsys — Conversions between colorsystems., 570
14.8 rghimg — Read and write “SGIRGB"files o 571
14.9 imghdr — Determine thetypeofanimage 571
14.10sndhdr — Determine type of soundfile 572
14.11o0ssaudiodev — Access to OSS-compatible audio devices. 572
Cryptographic Services 577
15.1 hmac — Keyed-Hashing for Message Authentication. 577
15.2 md5— MD5 message digestalgorithm. o 577
15.3 sha — SHA message digestalgorithm. 578
15.4 mpz— GNU arbitrary magnitude integers oo 579
15.5 rotor — Enigma-like encryption and decryption 580
Graphical User Interfaces with Tk 583
16.1 Tkinter — Pythoninterfaceto Tcl/TK. 583
16.2 Tix — Extensionwidgetsfor TK. e 594
16.3 ScrolledText ~ — Scrolled TextWidget. 599
16.4 turtle —TurtlegraphicsforTk e 599
16.5 Idle . . . o e e e 601
16.6 Other Graphical User Interface Packages 604
Restricted Execution 607
17.1 rexec — Restricted executionframework o oL 607
17.2 Bastion — Restrictingaccesstoobjects 610
Python Language Services 613
18.1 parser — Access Pythonparsetrees. e 613
18.2 symbol — Constants used with Python parsetrees 622
18.3 token — Constants used with Pythonparsetrees 622
18.4 keyword — Testing for Pythonkeywords, 623
18.5 tokenize — Tokenizer for Pythonsource., 623
18.6 tabnanny — Detection of ambiguousindentation 624
18.7 pyclbr — Python class browsersupport 624
18.8 py_compile — Compile Python sourcefiles. 625
18.9 compileall — Byte-compile Python libraries 625
18.10dis — Disassembler for Pythonbytecode. 626
18.11distutils — Building and installing Python modules. 633
Python compiler package 635
19.1 Thebasicinterface 635
19.2 Limitations. o e e e 636
19.3 Python Abstract Syntax. e 636
19.4 Using Visitorsto Walk ASTS o o o e 640

19.5 Bytecode Generation. e e e e e e e

20 SGI IRIX Specific Services 643
20.1 al —AudiofunctionsontheSGI 643
20.2 AL— Constantsused withtted module 645
20.3 cd — CD-ROM accesson SGISYStems ot i it i 645
20.4 fl — FORMS library for graphical userinterfaces. 648
20.5 FL — Constants used withtife module oL 653
20.6 flp — Functions for loading stored FORMS designs. 653
20.7 fm — Font Managefinterface. L e 653
20.8 gl — Graphics Libraryinterface e 654
20.9 DEVICE— Constants used withtlgd module 656
20.10GL— Constants used withtlgd module 656
20.11imgfile — Support for SGlimglibfileso 656
20.12jpeg — Read andwrite JPEGfiles. e 657

21 SunOS Specific Services 659
21.1 sunaudiodev — Accessto Sunaudiohardware. Lo 659
21.2 SUNAUDIODEW- Constants used witbunaudiodev 660

22 MS Windows Specific Services 661
22.1 msvcrt —Useful routines from the MS V€Fruntime 661
22.2 _winreg —WIindows registry aCCesS v v v v i i e e e e e e e 662
22.3 winsound — Sound-playing interface for Windows. 666

A Undocumented Modules 669
Al Frameworks e 669
A.2 Miscellaneous useful utilities. 669
A.3 Platform specificmodules 669
A4 Multimedia. e e e 670
A5 Obsolete e 670
A.6 SGl-specific Extensionmodules. e 671

B Reporting Bugs 673

C History and License 675
C.1 Historyofthesoftware 675
C.2 Terms and conditions for accessing or otherwise using Python 675

Module Index 679

Index 683

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as nhumbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of aimport statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you dontaveto read it like a novel — you can also browse the table of contents (in front of

the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see randale) and read a section or

two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in
Types, Exceptions and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-In Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names
can override built-in names. Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within
a table) and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter
5 of thePython Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by themport statement. It mainly exists so that you can replace it with another
function that has a compatible interface, in order to change the semanticsiofgbe statement. For
examples of why and how you would do this, see the standard library motolelss andrexec . See
also the built-in modulémp, which defines some useful operations out of which you can build your own
__import __() function.

For example, the statemeritmport spam ' results in the following call: __import __('spam’,
globals(), locals(), [1) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’]) ". Note that even though

locals() and['eggs’] are passed in as arguments, themport __() function does not set the
local variable nameeggs ; this is done by subsequent code that is generated for the import statement.
(In fact, the standard implementation does not uséoitals argument at all, and uses iggobalsonly to
determine the package context of ihgport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up
till the first dot) is returnedpotthe module named bhyame However, when a non-empfsomlistargument

is given, the module named mameis returned. This is done for compatibility with the bytecode gener-
ated for the different kinds of import statement; when usingpbrt spam.ham.eggs ', the top-level
packagespam must be placed in the importing namespace, but when uioig‘* spam.ham import

eggs’, the spam.ham subpackage must be used to find #ggs variable. As a workaround for this
behavior, usgetattr() to extract the desired components. For example, you could define the following
helper:

def my_import(name):
mod = __import__(name)
components = name.split(".")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point
number. If the argument is a complex number, its magnitude is returned.

apply (function, arg%, keywordﬁ)
The functionargument must be a callable object (a user-defined or built-in function or method, or a class
object) and theargs argument must be a sequence. Timectionis called withargs as the argument list;
the number of arguments is the length of the tuple. If the optikagvordsargument is present, it must
be a dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the the
argument list. Callingapply() is different from just callingunctior(args) , since in that case there is
always exactly one argument. The useapply() is equivalent tdunction* args ** keyword¥. Use
of apply() is not necessary since the “extended call syntax,” as used in the last example, is completely
equivalent.

Deprecated since release 2.RIse the extended call syntax instead, as described above.

bool ([x])
Convert a value to a Boolean, using the standard truth testing procedureés fidilse, this returnfalse ;
otherwise it returnsfrue . bool is also a class, which is a subclassinf . Classbool cannot be
subclassed further. Its only instances baégse andTrue .

New in version 2.2.1.
Changed in version 2.3: If no argument is given, this function retbeise .

buffer (objec{, offse[, size]])
The objectargument must be an object that supports the buffer call interface (such as strings, arrays, and
buffers). A new buffer object will be created which referencesdbjectargument. The buffer object will
be a slice from the beginning abject (or from the specifiedffse). The slice will extend to the end of
object(or will have a length given by theizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a
call fails, but if it is false, callingpbjectwill never succeed. Note that classes are callable (calling a class
returns a new instance); class instances are callable if they haveadl __() method.

chr (i)
Return a string of one character whasgCii code is the integdar For examplechr(97) returns the string
'a’ . Thisis the inverse afrd() . The argument must be in the range [0..255], inclusiedueError
will be raised ifi is outside that range.

classmethod (function
Return a class method féunction

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
def f(cls, argl, arg2, ..): ..
f = classmethod(f)

It can be called either on the class (suctCa§)) or on an instance (such &%).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different tharr€or Java static methods. If you want those, segicmethod() in
this section. New in version 2.2.
cmp(x,)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative
if X < vy, zeroifx == yand strictly positive ik > vy.

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules
as used by arithmetic operations.

4 Chapter 2. Built-In Objects

compile (string, filename, kin[i ﬂags[, donLinherit]])
Compile thestring into a code object. Code objects can be executed xan statement or evaluated by
a call toeval() . Thefilenameargument should give the file from which the code was read; pass some

recognizable value if it wasn’t read from a file$tring>’ is commonly used). Thieind argument spec-
ifies what kind of code must be compiled; it can’erec’ if string consists of a sequence of statements,
‘eval’ if it consists of a single expression, single’ if it consists of a single interactive statement

(in the latter case, expression statements that evaluate to something elSetieanill printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single
newline character\p’), and the input must be terminated by at least one newline character. If line
endings are represented yn’ , use the stringeplace() = method to change them intm’

The optional argumentfagsanddont_inherit (which are new in Python 2.2) control which future state-
ments (see PEP 236) affect the compilatiorstsing. If neither is present (or both are zero) the code is
compiled with those future statements that are in effect in the code that is calling compileflabthergu-
ment is given andlont_inherit is not (or is zero) then the future statements specified bjlaeargument
are used in addition to those that would be used anywalonf_inherit is a non-zero integer then tiflegs
argument is it — the future statements in effect around the call to compile are ignored.

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple statements.
The bitfield required to specify a given feature can be found aconepiler _flag attribute on the
_Feature instance inthe _future __ module.

complex ([real[, imag]])
Create a complex number with the vakegal + imagFj or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). limagis omitted, it defaults to zero and the function serves as a

numeric conversion function likimt() ,long() andfloat() . If both arguments are omitted, returns
0j .
delattr (object, namg
This is a relative oketattr() . The arguments are an object and a string. The string must be the name

of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
exampledelattr(%, ' foobar) is equivalenttalel x. foobar.

dict ([mapping—or—sequenc]e
Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument is a mapping
object, return a dictionary mapping the same keys to the same values as does the mapping object. Otherwise
the positional argument must be a sequence, a container that supports iteration, or an iterator object. The
elements of the argument must each also be of one of those kinds, and each must in turn contain exactly two
objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a given key is
seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one™ 2, "two™ 3}

edict({'one’: 2, 'two’: 3}

edict({'one”. 2, 'two: 3}.items())

edict({'one”: 2, 'two’: 3}.iteritems())

edict(zip((one’, 'two’), (2, 3)))

edict([['two’, 3], ['one’, 2]])

edict(one=2, two=3)

edict([(one’, 'two’][i-2], i) for i in (2, 3)])

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments
added.

2.1. Built-in Functions 5

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attributes for that object. This information is gleaned from the objectict __
attribute, if defined, and from the class or type object. The list is not necessarily complete. If the object is a
module object, the list contains the names of the module’s attributes. If the object is a type or class object,
the list contains the names of its attributes, and recursively of the attributes of its bases. Otherwise, the list
contains the object’s attributes’ names, the names of its class’s attributes, and recursively of the attributes of
its class’s base classes. The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

[__builtins__’, °__doc__’, '__name__’, ’struct]

>>> dir(struct)

[__doc_’', '__name__’, ’'calcsize’, 'error’, 'pack’, 'unpack’]

Note: Becausdlir() is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators
apply. For plain and long integers, the result is the san{feaas b, a % b) . For floating point numbers
theresultig g, a % b), whereq is usuallymath.floor(a / b) but may be 1 less than that. In any
caseq * b + a % bisverycloset@, if a % bis non-zero it has the same signtaand0 <= abs(a
% b) < abs(b).

Changed in version 2.3: Usirdivmod() with complex humbers is deprecated.

enumerate (iterable)
Return an enumerate objedterable must be a sequence, an iterator, or some other object which supports
iteration. Thenext() method of the iterator returned numerate() returns a tuple containing a
count (from zero) and the corresponding value obtained from iteratingit®rable enumerate() is
useful for obtaining an indexed serig§, seq[0]) , (1, seq[1]) , (2, seq[2]) ,.... Newin
version 2.3.

eval (expressio[n, globale[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated
as a Python expression (technically speaking, a condition list) usinglabalsandlocals dictionaries as
global and local name space. If tigéobals dictionary is present and lacks 'builtins__’, the current
globals are copied intglobalsbeforeexpressioris parsed. This means thatpressiomormally has full
access to the standard builtin -~ __ module and restricted environments are propagated. loiteds
dictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted, the expression is
executed in the environment whexeal is called. The return value is the result of the evaluated expression.
Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creategi®()). In
this case pass a code object instead of a string. The code object must have been compiletepabksing
as thekind argument.

Hints: dynamic execution of statements is supported beiee statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around forexa®y or
execfile()

execfile (fiIenameE, globals[, Iocals]])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and

6 Chapter 2. Built-In Objects

file

filter

float

does not create a new moddle.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence
of Python statements (similarly to a module) using gfebalsandlocals dictionaries as global and local
namespace. If thivcalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment winezefile() is called. The return value is

None.

Warning: The defauliocalsact as described for functidacals() below: modifications to the default
locals dictionary should not be attempted. Pass an exgbcidls dictionary if you need to see effects of
the code orocalsafter functionexecfile() returns.execfile() cannot be used reliably to modify
a function’s locals.

(filenam({, mode[, bufsizd])

Return a new file object (described earlier under Built-in Types). The first two arguments are the same
as forstdio 's fopen() : filenameis the file name to be openemhodeindicates how the file is to be
opened:’r' for reading,’'w’ for writing (truncating an existing file), an@’ opens it for appending
(which onsomeUNIx systems means thall writes append to the end of the file, regardless of the current
seek position).

Modes'r+' ,’'w+’ and’a+’ open the file for updating (note that+' truncates the file). Appent’

to the mode to open the file in binary mode, on systems that differentiate between binary and text files (else
it is ignored). If the file cannot be opend@Error s raised.

In addition to the standarpen() valuesmodemay be’U’ or’rU’ . If Python is built with universal
newline support (the default) the file is opened as a text file, but lines may be terminated by\any of

the Unix end-of-line conventioryr’ , the Macintosh convention dw\n’ , the Windows convention.

All of these external representations are seemas by the Python program. If Python is built without
universal newline suppomode’'U’ is the same as normal text mode. Note that file objects so opened also
have an attribute callegewlines which has a value dflone (if no newlines have yet been seetw),
\r,\\n” | or atuple containing all the newline types seen.

If modeis omitted, it defaults t&r’ . When opening a binary file, you should appébd to themode

value for improved portability. (It's useful even on systems which don't treat binary and text files differently,
where it serves as documentation.) The optidndsizeargument specifies the file’s desired buffer size:

0 means unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately)
that size. A negativdufsizemeans to use the system default, which is usually line buffered for for tty
devices and fully buffered for other files. If omitted, the system default is fised.

Thefile() constructor is new in Python 2.2. The previous spellojgen() , is retained for compatibil-
ity, and is an alias fofile()

(function, lis)
Construct a list from those elementslist for which functionreturns true list may be either a sequence,
a container which supports iteration, or an iteratolisifis a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementgsof
that are false (zero or empty) are removed.

Note that filter(function, listy is equivalent to [item for item in list if
function(item)] if function is not None and [item for item in list if item] if
function isNone.

(1x1)

Co[nv]ert a string or a number to floating point. If the argument is a string, it must contain a possi-
bly signed decimal or floating point number, possibly embedded in whitespace; this behaves identical to
string.atof(X) . Otherwise, the argument may be a plain or long integer or a floating point number,
and a floating point number with the same value (within Python’s floating point precision) is returned. If no
argument is given, returr0 .

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

2|t is used relatively rarely so does not warrant being made into a statement.

3Specifying a buffer size currently has no effect on systems that don'tdetvbuf() . The interface to specify the buffer size is not
done using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no
reliable way to determine whether this is the case.

2.1. Built-in Functions 7

getattr (object, nam[a, default])
Return the value of the named attributedobfect namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For exagetkfr(x, 'foobar’)
is equivalent toc.foobar . If the named attribute does not exidefaultis returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namp
The arguments are an object and a string. The result is 1 if the string is the name of one of the object’s
attributes, 0 if not. (This is implemented by calliggtattr(object namé@ and seeing whether it raises
an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.
New in version 2.2.

hex (X)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expres-
sion. Note: this always yields an unsigned literal. For example, on a 32-bit mattgre]l) vyields

'Oxffffffff’ . When evaluated on a machine with the same word size, this literal is evaluated as -1; at
a different word size, it may turn up as a large positive number or rai§gvarflowError exception.
id (objec)

Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have the same
id() value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It
expects a valid Python expression as input; if the input is not syntactically vaign@mxError will be
raised. Other exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes
this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and
history features.

Consider using theaw _input() function for general input from users.

int ([x[radix]])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespaeéixferameter
gives the base for the conversion and may be any integer in the range [2, 36], or zexbx i§ zero, the
proper radix is guessed based on the contents of string; the interpretation is the same as for integer literals.
If radix is specified and is not a string;TypeError is raised. Otherwise, the argument may be a plain or
long integer or a floating point number. Conversion of floating point numbers to integers truncates (towards
zero). If the argument is outside the integer range a long object will be returned instead. If no arguments
are given, return®.

intern (' string)
Enterstringin the table of “interned” strings and return the interned string — whistringitself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer

8 Chapter 2. Built-In Objects

compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Changed
in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and before); you must
keep a reference to the return valuargérn() around to benefit from it.

isinstance (object, classinfp
Return true if theobjectargument is an instance of tledassinfoargument, or of a (direct or indirect)
subclass thereof. Also return trueciassinfois a type object andbjectis an object of that type. ibbject
is not a class instance or an object of the given type, the function always returns falassififois neither
a class object nor a type object, it may be a tuple of class or type objects, or may recursively contain other
such tuples (other sequence types are not accepted)asifinfois not a class, type, or tuple of classes,
types, and such tuples,Tg¢gpeError exception is raised. Changed in version 2.2: Support for a tuple of
type information was added.

issubclass (class, classinfp
Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every entrlagsinfowill be checked. In any other
case, alypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (o[, sentineﬂ)
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumemhust be a collection object which supports the iteration
protocol (the__iter __() method), or it must support the sequence protocol (thgetitem __()
method with integer arguments startingdat If it does not support either of those protocdigpeError
is raised. If the second argumeségntine] is given, thero must be a callable object. The iterator created in
this case will callo with no arguments for each call to mext() method; if the value returned is equal to
sentine] Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len (9)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([sequencae)
Return a list whose items are the same and in the same ordegasncs items. sequencenay be either
a sequence, a container that supports iteration, or an iterator objeejuéncés already a list, a copy is

made and returned, similar sequende] . For instancelist(’abc’) returns['a’, ’'b’, 'c’]
andlist((1, 2, 3)) returns[1, 2, 3] . If noargumentis given, returns a new empty Ijt,
locals ()

Update and return a dictionary representing the current local symbol t&#ening: The contents of
this dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long ([x[radix]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed

number of arbitrary size, possibly embedded in whitespace; this behaves idenstralgaatol(X) .
Theradix argument is interpreted in the same way adifit) , and may only be given whenis a string.
Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with
the same value is returned. Conversion of floating point numbers to integers truncates (towards zero). If no
arguments are given, returfk.

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additiorlet arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter
than another it is assumed to be extended Wtne items. If functionis None, the identity function
is assumed; if there are multiple list argumemtsgp() returns a list consisting of tuples containing the
corresponding items from all lists (a kind of transpose operation). li§harguments may be any kind of
sequence; the result is always a list.

max(s[, args...])
With a single argumers, return the largest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

2.1. Built-in Functions 9

min (s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

object ()
Return a new featureless objeobject() is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note: this
always yields an unsigned literal. For example, on a 32-bit macbatel) vyields'037777777777
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word
size, it may turn up as a large positive number or rais®e@rflowError exception.

open (filename{, mode[, bufsizd])
An alias for thefile() function above.

ord (¢)
Return theascii value of a string of one character or a Unicode character. &rd(,a’) returns the
integer97, ord(u’
u2020’) returns8224. This is the inverse ofhr() for strings and ofuinichr() for Unicode charac-
ters.

pow(X, y[z])
Returnx to the powely; if zis present, retur to the powely, moduloz (computed more efficiently than
pow(x, Yy) % 2). The arguments must have numeric types. With mixed operand types, the coercion rules
for binary arithmetic operators apply. For int and long int operands, the result has the same type as the
operands (after coercion) unless the second argument is negative; in that case, all arguments are converted
to float and a float result is delivered. For examfl@é®*2 returns100, but10**-2 returns0.01 . (This
last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and
the second argument was negative, an exception was raised.) If the second argument is negative, the third
argument must be omitted. #is presentx andy must be of integer types, arydmust be non-negative.
(This restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argpovef)t returned
platform-dependent results depending on floating-point rounding accidents.)

property ([fget[, fse{, fdel[, doc]]]])
Return a property attribute for new-style classes (classes that deriveobjeat).

fgetis a function for getting an attribute value, likewisetis a function for setting, anftlel a function for
del'ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def getx(self): return self._ x
def setx(self, value): self.__x = value
def delx(self): del self.__x
X = property(getx, setx, delx, "I'm the 'X’ property.")

New in version 2.2.

range ([start,] stod, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tdised in
loops. The arguments must be plain integers. Ifdtemargument is omitted, it defaults th If the start
argument is omitted, it defaults . The full form returns a list of plain integefsstart, start + step
start + 2 * step ...] . If stepis positive, the last element is the largetdrt + i * stepless than
stop if stepis negative, the last element is the larggsit + i * stepgreater tharstop stepmust not be
zero (or els&/alueError is raised). Example:

10 Chapter 2. Built-In Objects

>>> range(10)

[0, 1, 2, 3, 4,5,6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5,6, 7, 8, 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

>>> range(1, 0)

I

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns that.E&hen
is read EOFError is raised. Example:

>>> s = raw_input(-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"”

Ifthereadline module was loaded, theaw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequem{einitializer])
Apply functionof two arguments cumulatively to the itemssg#quencefrom left to right, so as to reduce
the sequence to a single value. For examgléyuce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateg(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is emipigliZér is not given
andsequenceontains only one item, the first item is returned.

reload (modulg
Re-parse and re-initialize an already importeddule The argument must be a module object, so it must
have been successfully imported before. This is useful if you have edited the module source file using an
external editor and want to try out the new version without leaving the Python interpreter. The return value
is the module object (the same as theduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the fimmport statement for it does not bind
its name locally, but does store a (partially initialized) module objedysimodules . To reload the
module you must firsimport it again (this will bind the name to the partially initialized module object)
before you cameload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a name that was defined by the old version, the old definition remains. This
feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for
sys, __main __and__builtin __. In many cases, however, extension modules are not designed to be
initialized more than once, and may falil in arbitrary ways when reloaded.

If a module imports objects from another module usiram ... import ..., callingreload() for
the other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to ugeport and qualified namesr(odulenamég instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the

2.1. Built-in Functions 11

method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

repr (objec)

Return a string containing a printable representation of an object. This is the same value yielded by conver-
sions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For
many types, this function makes an attempt to return a string that would yield an object with the same value
when passed teval()

round (x[, n])

Return the floating point value rounded ton digits after the decimal point. I is omitted, it defaults to

zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minusn; if two multiples are equally close, rounding is done away from 0 (so. for examgalad(0.5)

is 1.0 andround(-0.5) is-1.0).

setattr (object, name, valye

slice

This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute,
provided the object allows it. For examp$stattr(%, ' foobar, 123) s equivalent tox. foobar =

123.

([start,] sto;{, step])
Return a slice object representing the set of indices specifieaiype(start, stop step . Thestartand
steparguments default thione. Slice objects have read-only data attribugest , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For exampa¢start:stop:step] " or ‘a[start:stop, i] '

staticmethod (function

Return a static method fdunction
A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
def f(argl, arg2, ...): ...
f = staticmethod(f)

It can be called either on the class (suctCaf§)) or on an instance (such &%).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java+or. G-or a more advanced concept, see
classmethod() in this section. New in version 2.2.

sum(sequenc[a start])

Sumsstart and the items of aequencefrom left to right, and returns the totadtart defaults to0. These-
quencés items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
sequence of strings is by callifgoin(sequence. Note thatsum(range(n), m) is equivalent to
reduce(operator.add, range(n), m) New inversion 2.3.

super (type[object-or-typd)

Return the superclass tyfpe If the second argument is omitted the super object returned is unbound. If the
second argument is an objeidinstance(obj, type must be true. If the second argument is a type,
issubclass(type2 type must be truesuper() only works for new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super(C, self).meth(arg)

New in version 2.2.

str([object])

Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference wittrepr(objec) is thatstr(objec) does not always attempt to return a string

12

Chapter 2. Built-In Objects

that is acceptable teval() ; its goal is to return a printable string. If no argument is given, returns the
empty string,”

tuple ([sequenc})
Return a tuple whose items are the same and in the same ordeqgasncs items. sequencenay be a
sequence, a container that supports iteration, or an iterator objsetjuénceés already a tuple, itis returned
unchanged. For instanctjple(’abc’) returns returng’a’, 'b’, 'c’) andtuple([1, 2,
3]) returns(l, 2, 3) . If noargumentis given, returns a new empty tugle,

type (objec)
Return the type of anbject The return value is a type object. The standard motiydes defines names
for all built-in types that don't already have built-in names. For instance:

>>> import types
>>> x = ’abc’
>>> if type(x) is str: print "lt's a string"

I's a string
>>> def f(): pass

>>> if type(f) is types.FunctionType: print "It's a function”
I's a function

Theisinstance() built-in function is recommended for testing the type of an object.

unichr (i)
Return the Unicode string of one character whose Unicode code is the intEgeexampleunichr(97)
returns the string’'a’ . This is the inverse obrd() for Unicode strings. The argument must be in the
range [0..65535], inclusivé/alueError is raised otherwise. New in version 2.0.

unicode ([objec{, encoding{, errors]]])
Return the Unicode string version abjectusing one of the following modes:

If encodingand/orerrorsare givenunicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding Theencodingparameter is a string giving the name of
an encoding; if the encoding is not knowlmgokupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encodimegroi$ is
strict’ (the default), a/alueError is raised on errors, while a value ‘@jnore’ causes errors to
be silently ignored, and a value 'oéplace’ causes the official Unicode replacement charatteEFFDQ

to be used to replace input characters which cannot be decoded. See alsoebe module.

If no optional parameters are givamicode() will mimic the behaviour oftr() except that it returns
Unicode strings instead of 8-hit strings. More preciselyohfectis a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a_unicode __() method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested and then
converted to a Unicode string using the codec for the default encodistgiot’ mode.

New in version 2.0. Changed in version 2.2: Supportfatunicode __() added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hadiet __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on
the corresponding symbol table are undefified.

xrange ([start,] sto;{, step])
This function is very similar tadange() , but returns an “xrange object” instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing them
all simultaneously. The advantage>asfinge() overrange() is minimal (sincexrange() still has

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

2.1. Built-in Functions 13

to create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break).

zip (seql,.)
This function returns a list of tuples, where fhih tuple contains theth element from each of the argument
sequences. At least one sequence is required, otherwisgeError is raised. The returned list is
truncated in length to the length of the shortest argument sequence. When there are multiple argument
sequences which are all of the same lengih() is similar tomap() with an initial argument oNone.
With a single sequence argument, it returns a list of 1-tuples. New in version 2.0.

2.2 Built-in Types

The following sections describe the standard types that are built into the interpreter. Historically, Python’s built-
in types have differed from user-defined types because it was not possible to use the built-in types as the basis
for object-oriented inheritance. With the 2.2 release this situation has started to change, although the intended
unification of user-defined and built-in types is as yet far from complete.

The principal built-in types are numerics, sequences, mappings, files classes, instances and exceptions.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth
value, and converted to a string (with the..* notation). The latter conversion is implicitly used when an object

is written by theprint statement. (Information gorint ~ statemenand other language statements can be found

in the Python Reference Manuahd thePython Tutorial)

2.2.1 Truth Value Testing

Any object can be tested for truth value, for use inifanor while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

e False

e zero of any numeric type, for exampl#,OL, 0.0 , 0] .

e any empty sequence, for exampgle,, () ,[] .

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when

that method returns the integer zerdoool valueFalse .°

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retarriFalse for false andl or True
for true, unless otherwise stated. (Important exception: the Boolean operatidrad ‘and’ always return one
of their operands.)

2.2.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (1)
x and y | if xis false, therx, elsey)
not x if Xis false, therTrue , elseFalse (2)

5Additional information on these special methods may be found ifPthieon Reference Manual

14 Chapter 2. Built-In Objects

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operatorsnsd a == bis interpreted asot (a == b),
anda == not bisasyntaxerror.

2.2.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of
the Boolean operations). Comparisons can be chained arbitrarily; for exampley <= zis equivalent tx <

y and y <= z except thay is evaluated only once (but in both casas not evaluated at all whex < yis

found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal Q)
<> not equal (1)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operdtoris the preferred spellings> is obsolescent.

Objects of different types, except different numeric types and different string types, never compare equal; such
objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently<¥he and

>= operators will raise &ypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class definesrtipe () method. Refer to
the Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the
same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority,”and ‘not in ’, are supported only by sequence types
(below).

2.2.4 Numeric Types

There are four distinct numeric typgdain integerslong integersfloating point numbersandcomplex numbers

In addition, Booleans are a subtype of plain integers. Plain integers (also justicidigerg are implemented
usinglong in C, which gives them at least 32 bits of precision. Long integers have unlimited precision. Floating
point numbers are implemented usihguble in C. All bets on their precision are off unless you happen to know
the machine you are working with.

Complex numbers have a real and imaginary part, which are each implementediosbig in C. To extract
these parts from a complex numlzeusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex and octal numbers) yield plain integers unless the value they denote is too large to be

2.2. Built-in Types 15

represented as a plain integer, in which case they yield a long integer. Integer literals vitloar * suffix yield
long integers (L' is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal
point or an exponent sign yield floating point numbers. Appendingr ‘ J’ to a numeric literal yields a complex
number with a zero real part. A complex numeric literal is the sum of a real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric
types, the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than
long integer is narrower than floating point is narrower than complex. Comparisons between numbers of mixed
type use the same rufeThe constructorgit() ,long() ,float() ,andcomplex() can be used to produce
numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in
the same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
X/ y guotient ofx andy Q)
X %y remainderok / vy 4)
- X X negated
+X x unchanged
abs(x) absolute value or magnitude f
int(x) X converted to integer (2)
long(x) x converted to long integer 2)
float(x) x converted to floating point
complex(re, im) | a complex number with real pag, imaginary parim. im defaults to zero|
c.conjugate() conjugate of the complex number
divmod(%, V) thepair(x / 'y, X %) 34
pow(Xx,) X to the powery
X ¥y x to the powely

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus
infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either
operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() andceil() inthemath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, atiamod()
Deprecated since release 2.3stead convert to float usiraps() if appropriate.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’'s complement value (for long integers, this assumes a sufficiently large number of bits that
no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the
comparisons; the unary operatiori has the same priority as the other unary numeric operatiens(id ‘-).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same
priority):

6As a consequence, the ljgt, 2] is considered equal {d.0, 2.0] , and similarly for tuples.

16 Chapter 2. Built-In Objects

Operation | Result Notes
X|y bitwise or of x andy

X"y bitwise exclusive oiof x andy
X &Yy bitwiseandof x andy

X << n | xshifted left byn bits 1), (2
X >> n | xshifted right byn bits (D), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.
(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.2.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter __()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp _iter slot of the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together farattre
protocot

__iter __()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for andin statements. This method corresponds totgheiter slot of the type structure for Python
objects in the Python/C API.

next ()
Return the next item from the container. If there are no further items, raiStapéeration exception.
This method corresponds to ttpe _iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratoext() method raiseStoplteration , itwill continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint
was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter __() method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the.iter __() andnext() methods.

2.2.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

2.2. Built-in Types 17

String literals are written in single or double quotésyzzy’ , "frobozz" . See chapter 2 of thBython
Reference Manudbr more about string literals. Unicode strings are much like strings, but are specified in the
syntax using a preceeding’‘characteru’abc’ ,u"def" . Lists are constructed with square brackets, separating
items with commas[a, b, c] . Tuples are constructed by the comma operator (not within square brackets),
with or without enclosing parentheses, but an empty tuple must have the enclosing parenthesesbe.g.,

or () . A single item tuple must have a trailing comma, e(d,)

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They don't support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using
thexrange() function. They don’t support slicing, concatenation or repetition, and usingot in , min()
ormax() on them is inefficient.

Most sequence types support the following operations. théand ‘not in ' operations have the same priori-
ties as the comparison operations. Thegnd *’ operations have the same priority as the corresponding numeric
operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the tables andt are sequences of the same typgd;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tox, else0 (1)
X not in s | Oifanitem ofsis equal tax, elsel (1)
s+t the concatenation afandt
s * n, n * s | nshallow copies of concatenated (2)
9] i'th item of s, origin O (3)
g i:] slice ofsfromito]j 3), (4)
gi:j: K slice ofsfromi to j with stepk 3), (5)
len() length ofs
min(s) smallest item of
max(s) largest item of

Notes:

(1) Whensis a string or Unicode string object tire andnot in operations act like a substring test. In Python
versions before 2.3 had to be a string of length 1. In Python 2.3 and beyonghay be a string of any
length.

(2) Values ofn less tharD are treated a (which yields an empty sequence of the same typs).ablote also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] * 3
>>> lists

i 0 m
>>> |ists[0].append(3)
>>> |ists

(131, [3, 31

What has happened is thiggts is a list containing three copies of the li§f] (a one-element list
containing an empty list), but the contained list is shared by each copy. You can create a list of different lists
this way:

"They must have since the parser can't tell the type of the operands.

18 Chapter 2. Built-In Objects

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)

>>> |ists[1].append(5)

>>> |ists[2].append(7)

>>> ists

(3], 58], [71

(3) If i orj is negative, the index is relative to the end of the strieg(s) + iorlen(s) + |is substituted.
But note thatO is still O.

(4) The slice ofsfromi toj is defined as the sequence of items with indesuch thai <= k < j. Ifiorjis
greater thatten(), uselen(s). If i is omitted, usd. If j is omitted, usden(9) . If i is greater than or
equal tgj, the slice is empty.

(5) The slice ofsfromi to j with stepk is defined as the sequence of items with index i + n*k such thaO
<=n<abs(i-)) . Ifiorjisgreaterthaten(s),uselen(). Ifiorjare ommitted then they become
“end” values (which end depends on the sigrkpf

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize 0
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of lengthdth. Padding is done using spaces.

count (sut{, starl[, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart and
endare interpreted as in slice notation.

decode ([encodingi, errors]])
Decodes the string using the codec registereéhmoding encodingdefaults to the default string encoding.

errors may be given to set a different error handling scheme. The defalgtrist’ , meaning that
encoding errors rais#alueError . Other possible values atignore’ andreplace’ . New in
version 2.2,

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string encerdang.

may be given to set a different error handling scheme. The defaudtrfors is 'strict’ , meaning that
encoding errors raise\dalueError . Other possible values alignore’ and’replace’ . Newin
version 2.0.

endswith (suffiy{, starf, end]])
ReturnTrue if the string ends with the specifieliffix otherwise returriralse . With optionalstart, test
beginning at that position. With optionahd stop comparing at that position.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are expanded using spéaiesizés not given, a tab
size of8 characters is assumed.

find (sul{, starl{, end]])
Return the lowest index in the string where substsnis found, such thasubis contained in the range
[start, end. Optional argumentstart andendare interpreted as in slice notation. Retutnif subis not
found.

index (sut{, starl{, end]])
Like find() , butraiseValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

2.2. Built-in Types 19

isalpha ()

Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
isdigit ()

Return true if there are only digit characters, false otherwise.
islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and the string is not empty, false otherwise.

istitle 0
Return true if the string is a titlecased string: uppercase characters may only follow uncased characters and
lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join (seq
Return a string which is the concatenation of the strings in the seqeeqcEhe separator between elements
is the string providing this method.

ljust (width)
Return the string left justified in a string of lengthidth. Padding is done using spaces. The original string
is returned ifwidthis less tharen(s) .

lower ()
Return a copy of the string converted to lowercase.

Istrip ([chars])
Return a copy of the string with leading characters removecthdfrsis omitted orNone, whitespace
characters are removed. If given and Natne, charsmust be a string; the characters in the string will be
stripped from the beginning of the string this method is called on. Changed in version 2.2.2: Support for
thecharsargument.

replace (old, nevs[, maxsplit])
Return a copy of the string with all occurrences of substdlityeplaced bynew If the optional argument
maxsplitis given, only the firstmaxsplitoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substsog is found, such thasubis contained within
s[start,end]. Optional argumerdtart andendare interpreted as in slice notation. Retutnon failure.

rindex (sul{, starl[, end]])
Like rfind() but raises/alueError when the substringubis not found.

rjust (width)
Return the string right justified in a string of lengtidth. Padding is done using spaces. The original string
is returned ifwidthis less thaden(s) .

rstrip ([chars])
Return a copy of the string with trailing characters removedchiéirsis omitted orNone, whitespace
characters are removed. If given and Naine, charsmust be a string; the characters in the string will be
stripped from the end of the string this method is called on. Changed in version 2.2.2: Supportfarthe
argument.

split ([sep[,maxsplit]])
Return a list of the words in the string, usisgpas the delimiter string. Hhaxsplitis given, at mostnaxsplit
splits are done. Iepis not specified oNone, any whitespace string is a separator.

splitlines ([keepend];)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unles&eependss given and true.

20 Chapter 2. Built-In Objects

startswith (prefix[, starl[, end]])
ReturnTrue if string starts with therefix otherwise returiralse . With optionalstart, test string begin-
ning at that position. With optiona&nd stop comparing string at that position.

strip ([chars])
Return a copy of the string with leading and trailing characters removedhalfsis omitted orNone,
whitespace characters are removed. If given andNmote, charsmust be a string; the characters in the
string will be stripped from the both ends of the string this method is called on. Changed in version 2.2.2:
Support for thecharsargument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

titte ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased charac-
ters are lowercase.

translate (table[, deletechari)
Return a copy of the string where all characters occurring in the optional argdeletgcharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string
of length 256.

For Unicode objects, thganslate() method does not accept the optiodeletecharsargument. In-
stead, it returns a copy of tlewhere all characters have been mapped through the given translation table
which must be a mapping of Unicode ordinals to Unicode ordinals, Unicode stringsrer. Unmapped
characters are left untouched. Characters mappétbte are deleted. Note, a more flexible approach is

to create a custom character mapping codec usingdtiecs module (seencodings.cp1251 for an

example).
upper ()

Return a copy of the string converted to uppercase.
zfill - (‘width)

Return the numeric string left filled with zeros in a string of lengidth. The original string is returned if
widthis less thartlen(s). New in version 2.2.2.

String Formatting Operations

String and Unicode objects have one unique built-in operatiorbgerator (modulo). This is also known as the
string formattingor interpolationoperator. Giverformat %values(whereformatis a string or Unicode object),
%conversion specifications flormatare replaced with zero or more elementwvalues The effect is similar to
the usingsprintf() in the C language. Hormatis a Unicode object, or if any of the objects being converted
using thedsconversion are Unicode objects, the result will also be a Unicode object.

If formatrequires a single argumentaluesmay be a single non-tuple objed. Otherwise,valuesmust be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

The 9% character, which marks the start of the specifier.

Mapping key (optional), consisting of a parenthesised sequence of characters (for efgonpeame)).

Conversion flags (optional), which affect the result of some conversion types.

R

Minimum field width (optional). If specified as an’ (asterisk), the actual width is read from the next
element of the tuple inalues and the object to convert comes after the minimum field width and optional
precision.

8To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

2.2. Built-in Types 21

5. Precision (optional), given as a’* (dot) followed by the precision. If specified as’*(an asterisk), the
actual width is read from the next element of the tupleatues and the value to convert comes after the
precision.

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in therstrgtonclude a
parenthesised mapping key into that dictionary inserted immediately aftevdloharacter. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print '%(language)s has %(#)03d quote types.” % \
{language’: "Python", "#": 2}
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘#' | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded for numeric values.

‘-’ | The converted value is left adjusted (overrides Biecbnversion if both are given).

c (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+' | Asign character ¢ or ‘- ") will precede the conversion (overrides a "space” flag).

The length modifier may bk, | , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

Conversion | Meaning Notes
‘o’ Signed integer decimal.
i Signed integer decimal.
‘o’ Unsigned octal. (2)
‘u’ Unsigned decimal.
‘X’ Unsigned hexidecimal (lowercase). (2)
‘X Unsigned hexidecimal (uppercase). (2)
‘e’ Floating point exponential format (lowercase).
‘B Floating point exponential format (uppercase).
“f’ Floating point decimal format.
‘F Floating point decimal format.
‘g’ Same asé’ if exponent is greater than -4 or less than precisibhptherwise.
‘G Same asE’ if exponent is greater than -4 or less than precisiéfptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr()). 3)
‘s’ String (converts any python object usisiy()). 4)
‘% No argument is converted, results in% tharacter in the result.

Notes:

(1) The alternate form causes a leading ze®) (o be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

(2) The alternate form causes a leadig’ or’'0X’ (depending on whether thg”or * X' format was used) to
be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

22 Chapter 2. Built-In Objects

(3) The%r conversion was added in Python 2.0.

(4) If the object or format provided is@nicode string, the resulting string will also henicode .

Since Python strings have an explicit lendg¥bs conversions do not assume tA@t is the end of the string.

For safety reasons, floating point precisions are clipped t&@&Gonversions for numbers whose absolute value
is over 1e25 are replaced Pggconversion$. All other errors raise exceptions.

Additional string operations are defined in standard modstlésy andre .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type
is that an xrange object will always take the same amount of memory, no matter the size of the range it represents.
There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, anerif)e function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence
types (when added to the language) should also support these operations. Strings and tuples are immutable se-
guence types: such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

Operation Result Notes
qi] = X itemi of sis replaced by
qgi:j] =t slice ofsfromi toj is replaced by
del di:j] same ag i: j] = []
qJi:j: K = t the elements off i: j: k] are replaced by those bf Q)
del g i:j: K] removes the elements gfi: j: k] from the list
s.append(X) same agllen(9s)ylen(9] = [X (2)
sextend(X) same asllen(s)ylen(9] = x ©))
s.count(Xx) return number of’s for whichg[i] == X
sindex([, i[, j]]) | retumn smallesksuchthas{ K] == xandi <= k < j (4)
sinsert(i, X) sameag i:i] = [X (5)
s.pop([i]) same ax = di]; del di]; return X (6)
sremove(X) same aslel 9 s.index(X)] 4)
s.reverse() reverses the items afin place @)
s.sort([cmpfunc:Noné) sort the items o§in place (7), (8), (9), (10)

Notes:

(1) t must have the same length as the slice it is replacing.

(2) The Cimplementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(3) Raises an exception wheris not a list object. Thextend()

mutable sequence types other than lists.

(4) RaisesValueError
parameter to thendex()

method is experimental and not supported by

whenx is not found ins. When a negative index is passed as the second or third

method, the list length is added, as for slice indices. If it is still negative, it is

truncated to zero, as for slice indices. Changed in version 2.3: Previoggy()
for specifying start and stop positions.

didn’t have arguments

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct
use and without having to know the exact precision of floating point values on a particular machine.

2.2. Built-in Types

23

(5) When a negative index is passed as the first parameter tostb() method, the list length is added, as
for slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3:
Previously, all negative indices were truncated to zero.

(6) Thepop() method is only supported by the list and array types. The optional argurdefgults to-1 , so
that by default the last item is removed and returned.

(7) Thesort() andreverse() methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed
list.

(8) Thesort() method takes an optional argument specifying a comparison function of two arguments (list
items) which should return a negative, zero or positive number depending on whether the first argument
is considered smaller than, equal to, or larger than the second argument. Note that this slows the sorting
process down considerably; for example to sort a list in reverse order it is much faster sort@ll
followed byreverse() thantousesort() with a comparison function that reverses the ordering of the
elements. Passingone as the comparison function is semantically equivalent to caiort() with no
comparison function. Changed in version 2.3: SupporiNone as an equivalent to omittingmpfunowas
added.

As an example of using trempfuncargument to theort() method, consider sorting a list of sequences
by the second element of that list:

def mycmp(a, b):
return cmp(a[l], b[1])

mylist.sort(mycmp)

A more time-efficient approach for reasonably-sized data structures can often be used:

tmplist = [(x[1], x) for x in mylist]
tmplist.sort()
mylist = [x for (key, x) in tmplist]

(9) Whether thesort() method is stable is not defined by the language (a sort is stable if it guarantees not
to change the relative order of elements that compare equal). In the C implementation of Python, sorts
were stable only by accident through Python 2.2. The C implementation of Python 2.3 introduced a stable
sort() method, but code that intends to be portable across implementations and versions must not rely on
stability.

(10) While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C
implementation of Python 2.3 makes the list appear empty for the duration, andVaise&rror if it
can detect that the list has been mutated during a sort.

2.2.7 Mapping Types

A mappingobject maps immutable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, tbietionary. A dictionary’s keys are almost arbitrary values. Only values
containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity)
may not be used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two
numbers compare equal (e..and1.0) then they can be used interchangeably to index the same dictionary
entry.

Dictionaries are created by placing a comma-separated liseyf value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or{4098: ‘jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wlaeredb are mappingsk is a key, and andx are arbitrary
objects):

24 Chapter 2. Built-In Objects

Operation Result Notes
len(a) the number of items ia
al K the item ofa with key k D
akl = v seta[k] tov
del a[K] removea] k] froma Q)
a.clear() remove all items frona
a.copy() a (shallow) copy of
a.has _key(k) 1if ahas a ke, else0
kin a Equivalent toa.has_key(K) (2)
k notin a Equivalent tonot a.has key(K) (2)
a.items() a copy ofa’s list of (key, valug pairs 3)
a.keys() a copy ofa’s list of keys 3)
a.update(b) for k in b.keys(): al k] = b[K]
a.fromkeys(sec[, value]) Creates a new dictionary with keys frasagand values set tealue)
a.values() a copy ofa’s list of values 3)
a.get(k[, x|) a[K] ifk in a,elsex (4)
a.setdefault(K|, x]) a[K] if k in a, elsex (also setting it) (5)
a.pop(k[, x|) a[K] if k in a, elsex (and remove k) (8)
a.popitem() remove and return an arbitrargey, value pair (6)
a.iteritems() return an iterator ovekgy, value pairs (2), (3)
a.iterkeys() return an iterator over the mapping’s keys (2), (3)
a.itervalues() return an iterator over the mapping’s values (2), (3)

Notes:

(1) Raises &KeyError exception ifk is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in random order. itdms() , keys() , values() , iteritems() ,
iterkeys() , and itervalues() are called with no intervening modifications to the dictionary,
the lists will directly correspond. This allows the creation (ofalug key) pairs usingzip()

‘pairs = zip(a.values(), akeys()) . The same relationship holds for thterkeys()
and itervalues() methods: pairs = zip(a.itervalues(), a.iterkeys()) ' provides
the same value fgpairs . Another way to create the same list pairs = [(v, k) for (k, V)

in a.teritems()] '

(4) Never raises an exceptionkfis not in the map, instead it returmsx is optional; wherx is not provided and
k is not in the mapNone is returned.

(5) setdefault() is like get() , exceptthatikis missingxis both returned and inserted into the dictionary
as the value ok.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.
(7) fromkeys() is a class method that returns a new dictionagjuedefaults toNone. New in version 2.3.

(8) pop() raises &KeyError when no default value is given and the key is not found. New in version 2.3.

2.2.8 File Objects

File objects are implemented using G&lio package and can be created with the built-in constrdied)
described in section 2.1, “Built-in Function¥File objects are also returned by some other built-in functions and
methods, such ass.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/O-related reason, the excep@@mror is raised. This includes situations
where the operation is not defined for some reason,déek() on a tty device or writing a file opened for
reading.

1%ile() is new in Python 2.2. The older built-bpen() is an alias foffile()

2.2. Built-in Types 25

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the
file be open will raise &alueError after the file has been closed. Callidgse() = more than once is
allowed.

flush ()
Flush the internal buffer, liketdio s fflush() . This may be a no-op on some file-like objects.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request 1/O operations
from the operating system. This can be useful for other, lower level interfaces that use file descriptors, such
as thefcntl module oros.read() and friends.Note: File-like objects which do not have a real file
descriptor shouldiot provide this method!

isatty ()
ReturnTrue if the file is connected to a tty(-like) device, elBalse . Note: If a file-like object is not
associated with a real file, this method showdd be implemented.

next ()
A file object is its own iterator, i.eiter(f) returnsf (unlessf is closed). When a file is used as an
iterator, typically in &or loop (for examplefor line in f: print line), thenext() method
is called repeatedly. This method returns the next input line, or r&igsteration whenEOFis hit.
In order to make dor loop the most efficient way of looping over the lines of a file (a very common
operation), thaext() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead
buffer, combiningnext() with other file methods (likeeadline()) does not work right. However,
usingseek() to reposition the file to an absolute position will flush the read-ahead buffer. New in version
2.3.

read ([size])
Read at mossizebytes from the file (less if the read hiioF before obtainingsizebytes). If thesize
argument is negative or omitted, read all data ik is reached. The bytes are returned as a string object.
An empty string is returned wheroF is encountered immediately. (For certain files, like ttys, it makes
sense to continue reading after maF is hit.) Note that this method may call the underlying C function
fread() more than once in an effort to acquire as clossiebytes as possible. Also note that when
in non-blocking mode, less data than what was requested may be returned, eveizdparameter was
given.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $trilogt may be absent
when a file ends with an incomplete line). If thizeargument is present and non-negative, it is a maximum
byte count (including the trailing newline) and an incomplete line may be returned. An empty string is
returnedonly wheneoris encountered immediateliote: Unlike stdio ’s fgets() , the returned string
contains null character8@’) if they occurred in the input.

readlines ([sizehint])
Read untileor usingreadline() and return a list containing the lines thus read. If the optisizhint
argument is present, instead of reading ug &, whole lines totalling approximatelsizehintbytes (pos-
sibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may
choose to ignorsizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thingtes(f) . New in version 2.1.Deprecated since release 2.8lse
for line in file instead.

seek (offse{, Whencd)
Set the file’s current position, liketdio 's fseek() . Thewhenceargument is optional and defaults@o
(absolute file positioning); other values dréseek relative to the current position) abdseek relative to
the file’s end). There is no return value. Note that if the file is opened for appending (aloder 'a+’),

11The advantage of leaving the newline on is that returning an empty string is then an unamlsigeduication. It is also possible (in
cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a
file ended in a newline or not (yes this happens!).

26 Chapter 2. Built-In Objects

anyseek() operations will be undone at the next write. If the file is only opened for writing in append
mode (modea’), this method is essentially a no-op, but it remains useful for files opened in append mode
with reading enabled (moda+').

tell ()
Return the file’s current position, likgdio s ftell()

truncate ([size])
Truncate the file’s size. If the optionaizeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined
new content. Availability: Windows, many NUx variants.

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in
the file until theflush() orclose() method is called.

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a
list of strings. There is no return value. (The name is intended to mesahines() ; writelines()
does not add line separators.)

Files support the iterator protocol. Each iteration returns the same reéildtreadline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but
should be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attributegltise() = method
changes the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte
strings using this encoding. In addition, when the file is connected to a terminal, the attribute gives the
encoding that the terminal is likely to use (that information might be incorrect if the user has misconfigured
the terminal). The attribute is read-only and may not be present on all file-like objects. It may Aleodye
in which case the file uses the system default encoding for converting Unicode strings.

New in version 2.3.

mode
The 1/0O mode for the file. If the file was created using tpen() built-in function, this will be the value
of themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usimpen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the fornx!..> . This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the-with-universal-newlines option (the default) this read-only at-
tribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can tak8rare ,"\n’ ,"\r\n’ , None (unknown, no
newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conven-
tions were encountered. For files not opened in universal newline read mode the value of this attribute will
beNone.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the
print statement. Classes that are trying to simulate a file object should also have a veodfédpace
attribute, which should be initialized to zero. This will be automatic for most classes implemented in Python
(care may be needed for objects that override attribute access); types implemented in C will have to provide
a writablesoftspace attribute. Note: This attribute is not used to control tpeint statement, but to

2.2. Built-in Types 27

allow the implementation gfrint to keep track of its internal state.

2.2.9 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute accessiame wherem is a module anchameaccesses a
name defined im’'s symbol table. Module attributes can be assigned to. (Note thatihert statement is not,
strictly speaking, an operation on a module obj@ofport foo does not require a module object nanfedto
exist, rather it requires an (externdgfinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment ta thet

attribute is not possible (you can write __dict __['a] = 1 , which defineam.a to bel, but you can’t
writem. __dict __ = {}).

Modules built into the interpreter are written like thianodule 'sys’ (built-in)> . If loaded from a file,
they are written asmodule 'os’ from ‘/usr/local/lib/python2.3/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manutdr these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
fung argument-lis} .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attribufefsinc _code is a function’scode objecisee be-
low) andf.func _globals is the dictionary used as the function’s global namespace (this is the same as
m. __dict __ wheremis the module in which the functidhwas defined).

Function objects also support getting and setting arbitrary attributes, which can be used to, e.g. attach metadata to
functions. Regular attribute dot-notation is used to get and set such attriblatesthat the current implementa-

tion only supports function attributes on user-defined functions. Function attributes on built-in functions may be
supported in the future.

Functions have another special attribfite__dict __ (a.k.a. f.func _dict) which contains the namespace
used to support function attributes. dict __ andfunc _dict can be accessed directly or set to a dictionary
object. A function’s dictionary cannot be deleted.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance meittiods:self is the object on
which the method operates, andim _func is the function implementing the method. Callim§arg-1, arg-
2, ..., arg-n) is completely equivalent to callingh.im _func(m.im _self, arg-1, arg-2, ..., arg-

n .

Class instance methods are eitheundor unbound referring to whether the method was accessed through an
instance or a class, respectively. When a method is unboumah, itself ~ attribute will beNone and if called, an

28 Chapter 2. Built-In Objects

explicitself object must be passed as the first argument. In this salfe, must be an instance of the unbound
method’s class (or a subclass of that class), otherwiggaError s raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objetigth.im _func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resulByipedrror being raised. In

order to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass
c =C(

c.method.im_func.whoami = 'my name is ¢’

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don't contain a reference to their global execution
environment. Code objects are returned by the buitteimpile() function and can be extracted from function
objects through theifiunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgxecthgtatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypet{dn .
There are no special operations on types. The standard mtyghde defines names for all standard built-in

types.
Types are written like thisstype 'int’>

The Null Object

This object is returned by functions that don'’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (se@tlieon Reference Manyalt supports no special operations.
There is exactly one ellipsis object, nanteltipsis (a built-in name).

It is written asEllipsis
Boolean Values
Boolean values are the two constant objéaitse andTrue . They are used to represent truth values (although

other values can also be considered false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in flbadiGn can be

2.2. Built-in Types 29

used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written afalse andTrue , respectively.

Internal Objects

See thePython Reference Manu#dr this information. It describes stack frame objects, traceback objects, and
slice objects.

2.2.10 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

__dict __
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods __
Deprecated since release 2.2Jse the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__members__
Deprecated since release 2.2Jse the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

2.3 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the rerdeggions . This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as wetbazfitens
module.

Note: In past versions of Python string exceptions were supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are encouraged to do the same. String exceptions will
raise aPendingDeprecationWarning . In future versions, support for string exceptions will be removed.

Two distinct string objects with the same value are considered different exceptions. This is done to force program-
mers to use exception names rather than their string value when specifying exception handlers. The string value of
all built-in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined
by library modules.

For class exceptions, intey statement with aexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes front istdehived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where men-
tioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple
containing several items of information (e.g., an error code and a string explaining the code). The associated value
is the second argument to thaise statement. For string exceptions, the associated value itself will be stored

in the variable named as the second argument oéxeept clause (if any). For class exceptions, that variable
receives the exception instance. If the exception class is derived from the standard roBxckgstson |, the
associated value is present as the exception instaaigss attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

30 Chapter 2. Built-In Objects

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from thexception base class. More information on defining exceptions is available in
the Python Tutorialunder the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedstff)e function, when applied to
an instance of this class (or most derived classes) returns the string value of the argument or arguments, or
an empty string if no arguments were given to the constructor. When used as a sequence, this accesses the
arguments given to the constructor (handy for backward compatibility with old code). The arguments are
also available on the instanceisgs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions excgfuplteration andSystemExit . StandardError
itself is derived from the root clagsxception

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic ©@werowError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: IndexError , KeyError . This can be raised directly tsys.setdefaultencoding()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syi€@&mor , OSError . When
exceptions of this type are created with a 2-tuple, the first item is available on the insemice’s attribute
(it is assumed to be an error number), and the second item is available stdfver attribute (it is
usually the associated error message). The tuple itself is also available argtheattribute. New in
version 1.5.2.

When arEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tlilename attribute. However, for backwards compatibility,
theargs attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentseifine
andstrerror attributes are alsblone when the instance was created with other than 2 or 3 arguments.
In this last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when anssert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references
or attribute assignments at allypeError is raised.)

exceptionEOFError
Raised when one of the built-in functionsgut() orraw _input()) hits an end-of-file conditiore0F)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty
string when they hiEOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERYmbol is defined in
the ‘pyconfig.h’ file.

exceptionlOError
Raised when an 1/O operation (such gwimt statement, the built-iopen() function or a method of a
file object) fails for an 1/0O-related reason, e.g., “file not found” or “disk full”.

This class is derived fronEnvironmentError . See the discussion above for more information on
exception instance attributes.

2.3. Built-in Exceptions 31

exceptionimportError
Raised when amport statement fails to find the module definition or whefneam ... import fails
to find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError is raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm@iytrol-C or Delete). During execution, a check
for interrupts is made regularly. Interrupts typed when a built-in fundtipoit() orraw _input() s
waiting for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecturméBc() function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived frorRuntimeError . In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived frorEnvironmentError and is used primarily as thes module’sos.error
exception. Se&nvironmentError above for a description of the possible associated values. New in
version 1.5.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits
than raise an exception.

exceptionReferenceError
This exception is raised when a weak reference proxy, created byedh&ref .proxy() function,
is used to access an attribute of the referent after it has been garbage collected. For more informa-
tion on weak references, see theakref module. New in version 2.2: Previously known as the
weakref .ReferenceError exception.

exceptionRuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of
the interpreter; it is not used very much any more.)

exceptionStoplteration
Raised by an iterator'sext() method to signal that there are no further values. This is derived from
Exception rather tharStandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuiritpart statement, in aexec
statement, in a call to the built-in functiaeval() or input() , or when reading the initial script or
standard input (also interactively).

Instances of this class have atttribufdsname , lineno , offset andtext for easier access to the

32 Chapter 2. Built-In Objects

details.str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpretesys.version it is also printed at the start of an interactive Python session),

the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exceptionSystemExit
This exception is raised by ttsys.exit() function. When it is not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status
(passed to C'exit() function); if it is None, the exit status is zero; if it has another type (such as a
string), the object’s value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulting to
None). Also, this exception derives directly froException and notStandardError , since it is not
technically an error.

A call to sys.exit() is translated into an exception so that clean-up handieelly clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately

(for example, in the child process after a calfdok()).

exceptionTypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated
value is a string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclassiémeError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. Itis a subdladsesrror . New
in version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclasgofieError . Newin
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclasgofieError . Newin
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. Itis a subcldegcofieError . New
in version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegError

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not correspoadrto an
value. Theerrno andstrerror values are created from the return values of@etLastError()
and FormatMessage() functions from the Windows Platform API. This is a subclassO&Error .
New in version 2.0.

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seediméngs module for more information.

exceptionWarning

2.3. Built-in Exceptions 33

Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning
Base class for warnings about constructs that will change semantically in the future.

The class hierarchy for built-in exceptions is:

34 Chapter 2. Built-In Objects

Exception

+-- SystemExit

+-- Stoplteration

+-- StandardError
+-- Keyboardinterrupt
+-- ImportError
+-- EnvironmentError

| +-- 10Error

| +-- OSError

| +-- WindowsError
+-- EOFETrror

I
I
I
I
I
I
I
| +-- RuntimeError
| | +-- NotImplementedError
| +-- NameError
| | +-- UnboundLocalError
| +-- AttributeError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- TypeError
| +-- AssertionError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- ArithmeticError
| | +-- OverflowError
| | +-- ZeroDivisionError
| | +-- FloatingPointError
| +-- ValueError
| | +-- UnicodeError
| | +-- UnicodeEncodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeTranslateError
| +-- ReferenceError
| +-- SystemError
| +-- MemoryError
+---Warning
+-- UserWarning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- SyntaxWarning
+-- OverflowWarning
+-- RuntimeWarning
+-- FutureWarning

2.4 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False
The false value of thbool type. New in version 2.3.

True
The true value of theool type. New in version 2.3.

None
The sole value ofypes .NoneType . None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function.

2.4. Built-in Constants 35

Notlmplemented
Special value which can be returned by the “rich comparison” special methoég (() , It __() ,
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

36 Chapter 2. Built-In Objects

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its
interaction with its environment. Here’s an overview:

sys Access system-specific parameters and functions.

gc Interface to the cycle-detecting garbage collector.
weakref Support for weak references and weak dictionaries.
fpectl Provide control for floating point exception handling.
atexit Register and execute cleanup functions.

types Names for built-in types.

UserDict Class wrapper for dictionary objects.

UserList Class wrapper for list objects.

UserString Class wrapper for string objects.

operator All Python’s standard operators as built-in functions.
inspect Extract information and source code from live objects.
traceback Print or retrieve a stack traceback.

linecache This module provides random access to individual lines from text files.
pickle Convert Python objects to streams of bytes and back.
cPickle Faster version gpickle , but not subclassable.

copy _reg Registempickle support functions.

shelve Python object persistence.

copy Shallow and deep copy operations.

marshal Convert Python objects to streams of bytes and back (with different constraints).
warnings Issue warning messages and control their disposition.
imp Access the implementation of tiraport statement.
pkgutil Utilities to support extension of packages.

code Base classes for interactive Python interpreters.
codeop Compile (possibly incomplete) Python code.

pprint Data pretty printer.

repr Alternaterepr() implementation with size limits.
new Interface to the creation of runtime implementation objects.
site A standard way to reference site-specific modules.
user A standard way to reference user-specific modules.
__builtin - __ The set of built-in functions.

__main __ The environment where the top-level script is run.
__future __ Future statement definitions

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python serigw[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed ustg the

37

command line option to the interpretargv[0] is set to the string-c’ . If no script name was passed
to the Python interpreteargv has zero length.

byteorder

An indicator of the native byte order. This will have the valoig' on big-endian (most-signigicant byte
first) platforms, andittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin _module _names

A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This
information is not available in any other way modules.keys() only lists the imported modules.)

copyright

A string containing the copyright pertaining to the Python interpreter.

dllhandle

Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value

If valueis notNone, this function prints it tesys.stdout , and saves itin__builtin ~ __. _.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook

excepthook (type, value, tracebagk

This function prints out a given traceback and exceptiosygstderr

When an exception is raised and uncaught, the interpretersyallexcepthook with three arguments,

the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook

__displayhook
__excepthook __

These objects contain the original valueslisplayhook andexcepthook at the start of the program.
They are saved so thaisplayhook andexcepthook can be restored in case they happen to get
replaced with broken objects.

exc _info ()

This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception”
is defined as “executing or having executed an except clause.” For any stack frame, only information about
the most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNtbreevalues is returned.
Otherwise, the values returned drigpe value tracebacl . Their meaning istypegets the exception

type of the exception being handled (a class objeetljegets the exception parameter @ssociated value

or the second argument taise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

If exc _clear() s called, this function will return threlone values until either another exception is
raised in the current thread or the execution stack returns to a frame where another exception is being
handled.

Warning: Assigning tharacebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don’t need access to the traceback,
the best solution is to use something likrctype, value = sys.exc _info()[:2] to extract

only the exception type and value. If you do need the traceback, make sure to delete it after use (best
done with atry ... finally statement) or to caéxc _info() in a function that does not itself handle

an exception.Note: Beginning with Python 2.2, such cycles are automatically reclaimed when garbage
collection is enabled and they become unreachable, but it remains more efficient to avoid creating cycles.

38

Chapter 3. Python Runtime Services

exc _clear ()
This function clears all information relating to the current or last exception that occured in the current thread.
After calling this functionexc _info() will return threeNone values until another exception is raised in
the current thread or the execution stack returns to a frame where another exception is being handled.

This function is only needed in only a few obscure situations. These include logging and error handling
systems that report information on the last or current exception. This function can also be used to try to free
resources and trigger object finalization, though no guarantee is made as to what objects will be freed, if
any. New in version 2.3.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%Jseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handied, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed;
by default, this is als&/usr/local’ . This can be set at build time with theexec-prefixargument
to the configure script. Specifically, all configuration files (e.g. ths/éonfig.h’ header file) are installed
in the directoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are
installed inexec _prefix + ’/lib/python versiorlib-dynload’ , Whereversionis equal to
version[:3]

executable
A string giving the name of the executable binary for the Python interpreter, on systems where this makes
sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified
by finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer
level. The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another
type of object. If it is an integer, zero is considered “successful termination” and any nonzero value is
considered “abnormal termination” by shells and the like. Most systems require it to be in the range 0-127,
and produce undefined results otherwise. Some systems have a convention for assigning specific meanings
to specific exit codes, but these are generally underdevelopead; pfograms generally use 2 for command
line syntax errors and 1 for all other kind of errors. If another type of object is passee,is equivalent to
passing zero, and any other object is printegyte.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify
a clean-up action at program exit. When set, it should be a parameterless function. This function will be
called when the interpreter exits. Only one function may be installed in this way; to allow multiple functions
which will be called at termination, use tl¢exit module. Note: The exit function is not called when
the program is killed by a signal, when a Python fatal internal error is detected, orogherexit() is

called.
getcheckinterval 0
Return the interpreter’s “check interval”; ssetcheckinterval() . New in version 2.3.

getdefaultencoding 0
Return the name of the current default string encoding used by the Unicode implementation. New in
version 2.0.

getdlopenflags 0
Return the current value of the flags that are usedlfopen() calls. The flag constants are defined in
thedl andDLFCNmodules. Availability: Wix. New in version 2.2.

getfilesystemencoding 0
Return the name of the encoding used to convert Unicode filenames into system file naNw drthe

3.1. sys — System-specific parameters and functions 39

system default encoding is used. The result value depends on the operating system:

¢On Windows 9x, the encoding is “mbcs”.

¢On Mac OS X, the encoding is “utf-8”".

o¢On Unix, the encoding is the user’s preference according to the resultlaiginfo(CODESET), or
None if the nLlanginfo(CODESET) failed.

¢On Windows NT+, file names are Unicode natively, so no conversion is performed.

New in version 2.3.

getrefcount (objec)
Return the reference count of thbject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgetrescount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This

limit prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set
by setrecursionlimit()

_getframe ([depth])
Return a frame object from the call stack. If optional intedepthis given, return the frame object that
many calls below the top of the stack. If that is deeper than the call st@keError s raised. The
default fordepthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

getwindowsversion ()
Return a tuple containing five components, describing the Windows version currently running. The elements

aremajor, minor, build, platform, andtext textcontains a string while all other values are integers.

platformmay be one of the following values:

0 (VER_PLATFORMWIN32s)Win32s on Windows 3.1.

1 (VER_.PLATFORMWIN32_WINDOWSVindows 95/98/ME
2 (VER_PLATFORMWIN32_NT)Windows NT/2000/XP

3 (VER_.PLATFORMWIN32_CEWindows CE.

This function wraps the Win3&etVersionEx() function; see the Microsoft Documentation for more
information about these fields.

Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including

proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ' since it only really looks meaningful when viewed as the result of passing
it to the built-inhex() function. Theversion _info value may be used for a more human-friendly
encoding of the same information. New in version 1.5.2.

last _type
last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the inter-

preter prints an error message and a stack traceback. Their intended use is to allow an interactive user to

40 Chapter 3. Python Runtime Services

import a debugger module and engage in post-mortem debugging without having to re-execute the command
that caused the error. (Typical useimmport pdb; pdb.pm() ' to enter the post-mortem debugger; see
chapter 9, “The Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return valueskoninfo() above. (Since
there is only one interactive thread, thread-safety is not a concern for these variables, ueice_fiype

etc.)
maxint
The largest positive integer supported by Python'’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
maxunicode

An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be ma-
nipulated to force reloading of modules and other tricks. Note that removing a module from this dictionary
is notthe same as callinggload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this IEth[0] , is the directory containing the script

that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter
is invoked interactively or if the script is read from standard inpp&th[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is inserted
beforethe entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.
Changed in version 2.3: Unicode strings are no longer ignored..

platform
This string contains a platform identifier, e.¢gsunos5’ or 'linux1’ . This can be used to append
platform-specific components pmth , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the stringusr/local’ . This can be set at build time with theprefix argument to
theconfigure script. The main collection of Python library modules is installed in the direqioefix +
"llib/python versiori while the platform independent header files (all exceptonfig.h’) are stored
in prefix + 'finclude/python version , whereversionis equal toversion[:3]

psl

ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the inter-
preter is in interactive mode. Their initial values in this case’are * and’... ' . If a hon-string

object is assigned to either variable,sts() is re-evaluated each time the interpreter prepares to read a
new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for
periodic things such as thread switches and signal handlers. The defa0l jameaning the check is
performed every 100 Python virtual instructions. Setting it to a larger value may increase performance for
programs using threads. Setting it to a vadwe0 checks every virtual instruction, maximizing responsive-
ness as well as overhead.

setdefaultencoding (namg
Set the current default string encoding used by the Unicode implementatinamiédoes not match any
available encodind,ookupError israised. This function is only intended to be used bysitee module
implementation and, where needed difecustomize . Once used by theite module, it is removed
from thesys module’s namespace. New in version 2.0.

3.1. sys — System-specific parameters and functions 41

setdlopenflags (n)
Set the flags used by the interpreter &open() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called assys.setdlopenflags(0) . To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD _NOW | dI.RTLD _GLOBAL). Symbolic names for the flag mod-
ules can be either found in tli#2 module, or in theDLFCNmodule. IfDLFCNis not available, it can be
generated fromvusr/include/dlfcn.h’ using theh2py script. Availability: UNIX. New in version 2.2.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See chapter 10 for more information on the Python profiler. The system’s profile function is called similarly
to the system’s trace function (ssettrace()), but it isn’t called for each executed line of code (only
on call and return, but the return event is reported even when an exception has been set). The function is
thread-specific, but there is no way for the profiler to know about context switches between threads, so it
does not make sense to use this in the presence of multiple threads. Also, its return value is not used, so it
can simply returiNone.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stadkrtit. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a
program that requires deep recursion and a platform that supports a higher limit. This should be done with
care, because a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific;
for a debugger to support multiple threads, it must be registered settrgce() for each thread being
debugged.

stdin
stdout
stderr
File objects corresponding to the interpreter’s standard input, output and error stsédims. is used for all
interpreter input except for scripts but including callsriput() andraw _input() . stdout is used
for the output oforint and expression statements and for the prompitspaft() andraw _input()
The interpreter’s own prompts and (almost all of) its error messagessidéa . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it haide) method that takes a
string argument. (Changing these objects doesn't affect the standard 1/0O streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions intheos module.)

__stdin __

__stdout __

__stderr __
These objects contain the original valuestfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in
case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback
information printed when an unhandled exception occurs. The defal®8. When set td or less, all
traceback information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the
build number and compiler used. It has a value of the fowersion (# build_number build_date
build_time) [compilef]’ . The first three characters are used to identify the version in the installation
directories (where appropriate on each platform). An example:

>>> import sys
>>> gys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

42 Chapter 3. Python Runtime Services

api _version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules. New in version 2.3.

version _info
A tuple containing the five components of the version numbajor, minor, micro, releaselevelandse-

rial. All values excepteleaselevebre integers; the release levelaipha’ |, ’beta’ , 'candidate’ ,
or ‘final . Theversion _info value corresponding to the Python version 2.04s 0, O,
final’, 0) . New in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to the
warnings module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource
1000 in the Python DLL. The value is normally the first three charactex®isfion . It is provided in
thesys module for informational purposes; modifying this value has no effect on the registry keys used by
Python. Availability: Windows.

See Also:

Modulesite (section 3.28):
This describes how to use .pth files to extayd.path

3.2 gc — Garbage Collector interface

Thegc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, &mportError is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector,
tune the collection frequency, and set debugging options. It also provides access to unreachable objects that the
collector found but cannot free. Since the collector supplements the reference counting already used in Python, you
can disable the collector if you are sure your program does not create reference cycles. Automatic collection can be
disabled by callingyc.disable() . To debug a leaking program cajt.set _debug(gc.DEBUG _LEAK).

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug (flag9
Set the garbage collection debugging flags. Debugging information will be writteystetderr . See
below for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

get _objects ()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set _threshold (threshold(f, threshold{, thresholdj])
Set the garbage collection thresholds (the collection frequency). StttegholdOto zero disables collec-
tion.

The GC classifies objects into three generations depending on how many collection sweeps they have sur-

3.2. gc — Garbage Collector interface 43

vived. New objects are placed in the youngest generation (genefgtidhan object survives a collection

it is moved into the next older generation. Since gener&i@the oldest generation, objects in that gener-
ation remain there after a collection. In order to decide when to run, the collector keeps track of the number
object allocations and deallocations since the last collection. When the number of allocations minus the
number of deallocations exceetiisesholdQ collection starts. Initially only generatidhis examined. If
generatiorD has been examined more thdmeshold1times since generatioh has been examined, then
generatiorl is examined as well. Similarlyhreshold2controls the number of collections of generatibn
before collecting generatidh

get _threshold ()
Return the current collection thresholds as a tuplétbfesholdQ threshold]l threshold? .

get _referrers (*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers
which support garbage collection; extension types which do refer to other objects but do not support garbage
collection will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been
collected by the garbage collector can be listed among the resulting referrers. To get only currently live
objects, calkollect() before callingget _referrers()

New in version 2.2.

get _referents (*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects
visited by the arguments’ C-levgp _traverse methods (if any), and may not be all objects actually
directly reachabletp _traverse methods are supported only by objects that support garbage collection,
and are only required to visit objects that may be involved in a cycle. So, for example, if an integer is
directly reachable from an argument, that integer object may or may not appear in the result list.

New in version 2.3.
The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
By default, this list contains only objects with_del __() methods. Objects that have _del __()
methods and are part of a reference cycle cause the entire reference cycle to be uncollectable, including
objects not necessarily in the cycle but reachable only from it. Python doesn't collect such cycles automati-
cally because, in general, it isn’t possible for Python to guess a safe order in which to rurdile__()
methods. If you know a safe order, you can force the issue by examinirgatbagelist, and explicitly
breaking cycles due to your objects within the list. Note that these objects are kept alive even so by virtue of
being in thegarbagelist, so they should be removed fragarbagetoo. For example, after breaking cycles,
dodel gc.garbage[:] to empty the list. It's generally better to avoid the issue by not creating cycles
containing objects with._del __() methods, angarbagecan be examined in that case to verify that no
such cycles are being created.

If DEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than freed.
The following constants are provided for use wset _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to thewbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIES set, print information about instance ob-
jects found.

1Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only thosedeith__() methods.

44 Chapter 3. Python Runtime Services

DEBUGOBJECTS
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, printinformation about objects other

than instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendeggtbagerather than being freed. This can be
useful for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking pro-
gram (equal toDEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES |
DEBUGOBJECTS | DEBUGSAVEALL.

3.3 weakref — Weak references

New in version 2.1.
Theweakref module allows the Python programmer to creaak reference® objects.
In the discussion which follows, the temaferentmeans the object which is referred to by a weak reference.

XXX — need to say more here!

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), and methods (both bound and unbound). Extension types can easily be made to support
weak references; see section 3.3.3, “Weak References in Extension Types,” for more information.

ref (objec{, callback])
Return a weak reference tdject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will ddaee to be
returned. Ifcallbackis provided, it will be called when the object is about to be finalized; the weak reference
object will be passed as the only parameter to the callback; the referent will no longer be available.

Itis allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an objed€s __() method.

Weak references are hashable if tigectis hashable. They will maintain their hash value even after the
objectwas deleted. Ihash() is called the first time only after thebjectwas deleted, the call will raise
TypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardlessaaittreck). If either referent has been
deleted, the references are equal only if the reference objects are the same object.

proxy (objec{, callback])
Return a proxy tmbjectwhich uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of eitheProxyType or CallableProxyType , depending on whethabjectis callable.
Proxy objects are not hashable regardless of the referent; this avoids a number of problems related to their
fundamentally mutable nature, and prevent their use as dictionarydaisackis the same as the parameter
of the same name to thef() function.

getweakrefcount (objec)
Return the number of weak references and proxies which refabjeaxt

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebfject

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with

3.3. weakref — Weak references 45

objects that override attribute accesses.

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong

reference to the value exists any more.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy

without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same

as the standareferenceError exception.
See Also:

PEP 0205, Weak Referencés
The proposal and rationale for this feature, including links to earlier implementations and information about

similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:

pass
>>> 0 = Object()
>>> r = weakref.ref(o)

>>> 02 = r()
>>> 0 is 02

If the referent no longer exists, calling the reference object reiNome:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresgjoris not None
Normally, application code that needs to use a reference object should follow this pattern:

46 Chapter 3. Python Runtime Services

r is a weak reference object
0 = r()
if o is None:
referent has been garbage collected

print "Object has been allocated; can't frobnicate."
else:

print "Object is still live!"
0.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The

IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must incleg©hject* field in the instance structure
for the use of the weak reference mechanism; it must be initializédUiol by the object’s constructor. It must
also set thép _weaklistoffset field of the corresponding type object to the offset of the field. Also, it needs

to addPy_TPFLAGS HAVE WEAKREF® the tp_flags slot. For example, the instance type is defined with the
following structure:

typedef struct {
PyObject_ HEAD

PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PylnstanceObject;

The statically-declared type object for instances is defined this way:

3.3. weakref — Weak references 47

PyTypeObject Pylnstance_Type = {
PyObject HEAD_INIT(&PyType_Type)
0,
"module.instance”,

/* Lots of stuff omitted for brevity... */

Py TPFLAGS_DEFAULT | Py TPFLAGS_HAVE_WEAKREFS /* tp_flags */

0, [* tp_doc */

0, [* tp_traverse */

0, [* tp_clear */

0 [* tp_richcompare */

offsetof(PylnstanceObject, in_weakreflist), /* tp_weaklistoffset */

The type constructor is responsible for initializing the weak reference INtitoL:

static PyObject *
instance_new() {
/* Other initialization stuff omitted for brevity */

self->in_weakreflist = NULL;

return (PyObject *) self;

The only further addition is that the destructor needs to call the weak reference manager to clear any weak ref-
erences. This should be done before any other parts of the destruction have occurred, but is only required if the
weak reference list is noNULL

static void
instance_dealloc(PylnstanceObject *inst)

{
/* Allocate temporaries if needed, but do not begin
destruction just yet.
*/

if (inst->in_weakreflist = NULL)
PyObject_ClearWeakRefs((PyObject *) inst);

I* Proceed with object destruction normally. */

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any

real computer, some floating point operations produce results that cannot be expressed as a hormal floating point
value. For example, try

48 Chapter 3. Python Runtime Services

>>> import math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) "Inf’ is a special, non-
numeric value in IEEE-754 that stands for "infinity”, and "nan” means "not a number.” Note that, other than the
non-numeric results, nothing special happened when you asked Python to carry out those calculations. That is in
fact the default behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. Thgectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generaB6@FFE whenever

any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair

of wrapper macros that are inserted into the C code comprising your python sY&I&FPE is trapped and
converted into the PythdrloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon _sigfpe ()
Turn on the generation @IGFPE, and set up an appropriate signal handler.

turnoff _sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon _sigfpe() has been executed, a floating point operation that raises one of the IEEE-754
exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operationfpigtte module.

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero
[more output from test elided]

>>> import math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

3.4.2 Limitations and other considerations
Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-
architecture basis. You may have to modifgctl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECTandPyFPE_END PROTECTbe inserted into your code in an appropriate fashion.

3.4. fpectl — Floating point exception control 49

Python itself has been modified to support fhectl module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The in-
clude file ‘include/pyfpe.h’ discusses the implementation of this module at some lenitbddles/fpetestmodule.c’
gives several examples of use. Many additional examples can be foubbjéets/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are auto-
matically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bysygexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thasgstexitfunc . In partic-
ular, other core Python modules are free to aexit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usg¢exit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit ~ and register the function that had been bounsgymexitfunc

register (func[, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be passed to
funcmust be passed as argumentsagister()

At normal program termination (for instance,sys.exit() is called or the main module’s execution
completes), all functions registered are called in last in, first out order. The assumption is that lower level
modules will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

Modulereadline (section 7.20):
Useful example ofitexit to read and writeeadline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter”).read())
except IOError:

—count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

50 Chapter 3. Python Runtime Services

Positional and keyword arguments may also be passedgister() to be passed along to the registered
function when it is called:

def goodbye(name, adjective):
print 'Goodbye, %s, it was %s to meet you.'" % (name, adjective)

import atexit
atexit.register(goodbye, 'Donny’, ’nice’)

or:
atexit.register(goodbye, adjective="nice’, name="Donny’)

3.6 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for
the types defined by various extension modules. Also, it does not include some of the types that arise during
processing such thigstiterator type. It is safe to usefrom types import * " — the module does

not export any names besides the ones listed here. New names exported by future versions of this module will all
end in Type’.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove(item)

Starting in Python 2.2, built-in factory functions suchrg$) andstr() are also names for the corresponding
types. This is now the preferred way to access the type instead of usitgpt®e module. Accordingly, the
example above should be written as follows:

def delete(mylist, item):
if isinstance(item, int):
del mylist[item]
else:
mylist.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).

BooleanType
The type of thébool valuesTrue andFalse ; this is an alias of the built-ibool() function. New in
version 2.3.

IntType

The type of integers (e.d.).
LongType

The type of long integers (e.gL).

3.6. types — Names for built-in types 51

FloatType
The type of floating point numbers (e.3.0).

ComplexType
The type of complex numbers (e.50j). Thisis not defined if Python was built without complex number
support.

StringType
The type of character strings (e!§pam’).
UnicodeType

The type of Unicode character strings (eigSpam’). This is not defined if Python was built without
Unicode support.

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).

ListType
The type of lists (e.g[0, 1, 2, 3]).

DictType

The type of dictionaries (e.g'Bacon’: 1, 'Ham’. 0}).
DictionaryType

An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returneaompile()

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdviethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects suchsgs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Isjice()

EllipsisType
The type ofEllipsis

52 Chapter 3. Python Runtime Services

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

StringTypes
A sequence containingtringType andUnicodeType used to facilitate easier checking for any string
object. Using this is more portable than using a sequence of the two string types constructed elsewhere
since it only contain®nicodeType if it has been built in the running version of Python. For example:
isinstance(s, types.StringTypes) . New in version 2.2.

3.7 UserDict — Class wrapper for dictionary objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from thediailt-in

type.

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way
one can add new behaviors to dictionaries.

The module also defines a mixin defining all dictionary methods for classes that already have a minimum mapping
interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such as the shelve
module).

TheUserDict module defines thElserDict class andictMixin

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. lfinitialdata is provided,data is initialized with its
contents; note that a referencendialdata will not be kept, allowing it be used used for other purposes.

In addition to supporting the methods and operations of mappings (see sectioni2s2rDjict instances pro-
vide the following attribute:

data
A real dictionary used to store the contents of theerDict class.

classDictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem __() , __setitem __() ,__delitem __() , andkeys()

This mixin should be used as a superclass. Adding each of the above methods adds progressively more
functionality. For instance, defining all but_delitem __ will preclude onlypop andpopitem from
the full interface.

In addition to the four base methods, progessively more efficiency comes with defining
__contains __() ,__iter __() , anditeritems()

Since the mixin has no knowledge of the subclass constructor, it does not deiitie __() orcopy()

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from thellstilt-in

type.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new

3.7. UserDict — Class wrapper for dictionary objects 53

behaviors to lists.
TheUserList module defines thEserList class:

classUserList ([Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessibléatia the
attribute ofUserList instances. The instance’s contents are initially set to a copigtpéiefaulting to the
empty list[] . list can be either a regular Python list, or an instancdsdrList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiobgeP.&t in-
stances provide the following attribute:

data
A real Python list object used to store the contents oftkerList class.

Subclassing requirements:Subclasses dfiserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no
parameters, and offer a mutaldata attribute. Earlier versions of Python did not attempt to create instances of
the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are
writing code that does not need to work with versions of Python earlier than Python 2.2, please consider sub-
classing directly from the built-istr type instead of usin@gyserString (there is no built-in equivalent to
MutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own
string-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is
especially the case fdutableString

TheUserString module defines the following classes:

classUserString ([sequenc})
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible viadlaga attribute ofUserString instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode
string, an instance dfiserString (or a subclass) or an arbitrary sequence which can be converted into a
string using the built-irstr() ~ function.

classMutableString ([sequenc]e)
This class is derived from thdserString above and redefines strings to ieitable Mutable strings
can’t be used as dictionary keys, because dictionaries reiquinatableobjects as keys. The main intention
of this class is to serve as an educational example for inheritance and necessity to remove (override) the
__hash __() method in order to trap attempts to use a mutable object as dictionary key, which would be
otherwise very error prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.2.6, “String
Methods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content diseeString class.

54 Chapter 3. Python Runtime Services

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of
Python. For examplegperator.add(x, y) is equivalent to the expressiorty . The function names are
those used for special class methods; variants without leading and trailihgre also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations,
sequence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

It (a, b

le (a, b

eq(a, b

ne(a,b)

ge(a, b

ot (a, b

__It __(a,b

_le__(a/b

__eq__(a,b

__ne__(ab

__ge__(a/b

_ot__(ab
Perform “rich comparisons” betweerandb. Specificallylt(a, b) isequivalentta < b,le(a, b)
is equivalentta <= b,eq(a, b) isequivalentta == b,ne(a, b) isequivalentta != b,gt(a,
b) is equivalenttaa > bandge(a, b) is equivalentta >= b. Note that unlike the built-ikmp() ,
these functions can return any value, which may or may not be interpretable as a Boolean value. See the
Python Reference Manufdr more informations about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and
boolean operations:

not _(o)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the
interpreter core defines this operation. The result is affected by thenzero __() and__len __()

methods.)
truth (o)

ReturnTrue if ois true, and~alse otherwise. This is equivalent to using theol constructor.
is _(a,b

Returna is b. Tests object identity.

is _not (a, b
Returna is not b. Tests object identity.

The mathematical and bitwise operations are the most numerous:

abs (0)
__abs__(0)
Return the absolute value of

add(a, b
__add__(a,b
Returna + b, for aandb numbers.

and_(a, b
__and__(a, b
Return the bitwise and & andb.
div (a, b
__div __(a,b

3.10. operator — Standard operators as functions. 55

......

Returna/ bwhen__future __.division is not in effect. This is also known as “classic” division.

floordiv (&, b)
__floordiv. __(a,b
Returna// b. New in version 2.2.

inv (0)

invert (0)

__inv __(0)

__invert __(0)
Return the bitwise inverse of the number This is equivalent t6' 0. The namesnvert() and
__invert __() were added in Python 2.0.

Ishift (a, b
__Ishift __(a,b
Returna shifted left byb.

mod(a, b)
__mod__(a,b
Returna %b.

mul (a, b)
__mul__(a,b
Returna* b, for aandb numbers.

neg(o)
__neg__(0)
Returno negated.

or (a, b
__or__(ab
Return the bitwise or o andb.

pos (0)
__pos__(0)
Returno positive.

pow(a, b)
__pow__(a, b
Returna** b, for aandb numbers. New in version 2.3.

rshift (&, b
__rshift __(a, b
Returna shifted right byb.

sub (a, b)
__sub__(a,b
Returna - b.

truediv (a, b

__truediv __(a,b)
Returna/ bwhen__future __.division is in effect. This is also known as division. New in version
2.2.

xor (a,b)
__xor __(a,b)
Return the bitwise exclusive or afandb.

Operations which work with sequences include:

concat (a,b)
__concat __(a,b
Returna + b for a andb sequences.

contains (a, b
__contains __(a,b

56 Chapter 3. Python Runtime Services

Return the outcome of the telstin a. Note the reversed operands. The nameontains __() was
added in Python 2.0.

countOf (a, b
Return the number of occurrencesah a.

delitem (a, b
__delitem __(a,b)
Remove the value af at indexb.

delslice (a,b,9
__delslice __(a,b,9
Delete the slice o& from indexb to indexc-1 .

getitem (a, b
__getitem __(a,b)
Return the value o at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

indexOf (a, b)

Return the index of the first of occurrenceloih a.
repeat (a, b
__repeat __(a,b

Returna* b whereais a sequence artgis an integer.

sequencelncludes (...
Deprecated since release 2.Qsecontains() instead.

Alias for contains()
setitem (a,b, 9

__setitem __(a,b,q
Set the value o& at indexb to c.

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o& from indexb to indexc-1 to the sequence

Theoperator module also defines a few predicates to test the type of objRct®: Be careful not to misin-

terpret the results of these functions; oidZallable() has any measure of reliability with instance objects.

For example:

>>> class C:
pass

>>> import operator

>>> 0 = C()

>>> operator.isMappingType(0)
1

isCallable (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the object can be called like a function, otherwise it returns false. True is returned for func-

tions, bound and unbound methods, class objects, and instance objects which suppadathe __()
method.

isMappingType (0)

Returns true if the objea supports the mapping interface. This is true for dictionaries and all instance
objects.Warning: There is no reliable way to test if an instance supports the complete mapping protocol

since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

3.10. operator — Standard operators as functions. 57

isNumberType (0)
Returns true if the objectrepresents a number. This is true for all numeric types implemented in C, and for
all instance objectdiVarning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeat supports the sequence protocol. This returns true for all objects which define
seqguence methods in C, and for all instance obj&¥taning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less
useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions
in theoperator module.

58 Chapter 3. Python Runtime Services

Operation Syntax Function
Addition a+b add(a, b)
Concatenation seql + seq2 | concat(seql seq3l
Containment Test 0 in seq contains(seq 0)
Division al b div(a, b) # without__future __.division
Division al b truediv(a, b) # with __future __.division
Division all b floordiv(a, b
Bitwise And aé&hb and _(a, b)
Bitwise Exclusive Or a" b xor(a, b)
Bitwise Inversion - invert(a)
Bitwise Or al b or _(a b
Exponentiation a*™ b pow(a, b)
Identity ais b is _(a b)
Identity aisnot b is _not(a, b)
Indexed Assignment okl = v setitem(o, k, V)
Indexed Deletion del o[K] delitem(o, k)
Indexing o[K] getitem(o, K)
Left Shift a<<b Ishift(&, b)
Modulo a%b mod(a, b)
Multiplication a* b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not _(a)
Right Shift a>>b rshiftf(a, b)
Sequence Repitition seq* i repeat(seq i)
Slice Assignment seq i: j] =values| setslice(seq i, j, value3
Slice Deletion del seqi:j] delslice(seq i, j)
Slicing seq i: |] getslice(seq i, j)
String Formatting s %o mod(s, 0)
Subtraction a-»b sub(a, b)
Truth Test o] truth(o)
Ordering a<bhb lt(a b)
Ordering a<=b le(a, b)
Equality a==>b eq(a, h)
Difference al=»b ne(a, b)
Ordering a>=b ge(a, b)
Ordering a>hb ot(a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

Theinspect module provides several useful functions to help get information about live objects such as mod-
ules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you
examine the contents of a class, retrieve the source code of a method, extract and format the argument list for a
function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting
classes and functions, and examining the interpreter stack.

3.11.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The nine func-
tions whose names begin with “is” are mainly provided as convenient choices for the second argument to
getmembers() . They also help you determine when you can expect to find the following special attributes:

3.11. inspect — Inspect live objects 59

Type Attribute Description Notes
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class | __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object that asked for this method Q)
im_func function object containing implementation of method
im_self instance to which this method is bound,None
function | __doc__ documentation string
__name__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as__doc__)
func_globals global namespace in which this function was defined
func_name (same as__name__)
traceback| tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame | f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback| traceback if raised in this frame, bione
f_exc_type exception type if raised in this frame, Nione
f_exc_value exception value if raised in this frame, None
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, ddone
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized 2=newlocald 4=*arg| 8=**arg
co_lnotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound,Nwone

Note:

(1) Changed in version 2.2n _class used to refer to the class that defined the method.

getmembers (objec{, predicatd)
Return all the members of an object in a list of (hame, value) pairs sorted by name. If the opteatichte
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path
Return a tuple of values that describe how Python will interpret the file identifiguhthf it is a module,

60 Chapter 3. Python Runtime Services

or None if it would not be identified as a module. The return tuplé ame suffix mode mtypg,
wherenameis the name of the module without the name of any enclosing pacgafiixis the trailing part

of the file name (which may not be a dot-delimited extensiom)deis theopen() mode that would be
used ' or’rb’), andmtypeis an integer giving the type of the modulatypewill have a value which
can be compared to the constants defined inirtie module; see the documentation for that module for
more information on module types.

getmodulename (path)
Return the name of the module named by theddéh, without including the names of enclosing packages.
This uses the same algortihm as the interpreter uses when searching for modules. If the name cannot be
matched according to the interpreter’s ruldsne is returned.

ismodule (objec)
Return true if the object is a module.

isclass (objec)
Return true if the object is a class.

ismethod (objec)
Return true if the object is a method.

isfunction (objec)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (objec)
Return true if the object is a traceback.

isframe (objec)
Return true if the object is a frame.

iscode (objec)
Return true if the object is a code.

isbuiltin (objech
Return true if the object is a built-in function.

isroutine (objec)
Return true if the object is a user-defined or built-in function or method.

ismethoddescriptor (objec)
Return true if the object is a method descriptor, but not if ismethod() or isclass() or isfunction() are true.

This is new as of Python 2.2, and, for example, is true of inrhdd__. An object passing this test has a
__get__ attribute but not a__set__ attribute, but beyond that the set of attributes varieshame__ is
usually sensible, and_doc__ often is.

Methods implemented via descriptors that also pass one of the other tests return false from the ismethod-
descriptor() test, simply because the other tests promise more — you can, e.g., count on havinfutine im
attribute (etc) when an object passes ismethod().

isdatadescriptor (objec)
Return true if the object is a data descriptor.

Data descriptors have both aget _ and a__set__ attribute. Examples are properties (defined in Python)

and getsets and members (defined in C). Typically, data descriptors will alsa hasene__and__doc__

attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed. New
in version 2.3.

3.11.2 Retrieving source code

getdoc (objec)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second
line onwards is removed.

getcomments (objec)

3.11. inspect — Inspect live objects 61

Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (objec)
Return the name of the (text or binary) file in which an object was defined. This will fail viliftpaError
if the object is a built-in module, class, or function.

getmodule (objec)
Try to guess which module an object was defined in.

getsourcefile (objec)
Return the name of the Python source file in which an object was defined. This will fail WitheError
if the object is a built-in module, class, or function.

getsourcelines (objec)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines corre-
sponding to the object and the line number indicates where in the original source file the first line of code
was found. AnOError s raised if the source code cannot be retrieved.

getsource (objec)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single stril@Emar s raised if
the source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classeg, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains
classes derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing
a class and a tuple of its base classes. Ifuh@ueargument is true, exactly one entry appears in the
returned structure for each class in the given list. Otherwise, classes using multiple inheritance and their
descendants will appear multiple times.

getargspec (fung
Get the names and default values of a function’s arguments. A tuple of four things is ret(argd;
varargs varkw, defaultd . argsis a list of the argument names (it may contain nested ligtsjargsand
varkware the names of theand** arguments oNone. defaultsis a tuple of default argument values; if
this tuple has elements, they correspond to the lagtiements listed imrgs

getargvalues (framé
Get information about arguments passed into a particular frame. A tuple of four things is reiuangs!:
varargs varkw, locals) . argsis a list of the argument names (it may contain nested liseargsand
varkware the names of tHeand** arguments oNone. localsis the locals dictionary of the given frame.

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultfo}bnat
Format a pretty argument spec from the four values returnegtargspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, vaIuefoﬂmat

Format a pretty argument spec from the four values returnegebgrgvalues() . The other four ar-
guments are the corresponding optional formatting functions that are called to turn names and values into
strings.

getmro (cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

62 Chapter 3. Python Runtime Services

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the
filename, the line number of the current line, the function name, a list of lines of context from the source code,
and the index of the current line within that list. The optionahtextargument specifies the number of lines of
context to return, which are centered around the current line.

Warning: Keeping references to frame objects, as found in the first element of the frame records these functions
return, can cause your program to create reference cycles. Once a reference cycle has been created, the lifespan of
all objects which can be accessed from the objects which form the cycle can become much longer even if Python’s
optional cycle detector is enabled. If such cycles must be created, it is important to ensure they are explicitly
broken to avoid the delayed destruction of objects and increased memory consumption which occurs.

getframeinfo (frame[, contexﬂ)
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record. The optional second argument specifies the number of lines of context to return, which are
centered around the current line.

getouterframes (frame[, contexﬂ)
Get a list of frame records for a frame and all higher (calling) frames.

getinnerframes (tracebacl{, contexﬂ)
Get a list of frame records for a traceback’s frame and all lower frames.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([contexﬂ)
Return a list of frame records for the stack above the caller’s frame.

trace ([contexﬂ)
Return a list of frame records for the stack below the current exception.

Stackframes stored directly or indirectly in local variables can easily cause reference cycles. Though the cycle
detector will catch these, destruction of the frames (and local variables) can be made deterministic by removing the
cycle in afinally clause. This is also important if the cycle detector was disabled when Python was compiled
or usinggc.disable() . For example:

def handle_stackframe_without_leak():
frame = inspect.currentframe()

try:
do something with the frame
finally:
del frame
3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print
stack traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vajaldes _traceback
(deprecated) anslys.last _traceback and returned as the third item frosgs.exc _info()

The module defines the following functions:

print _tb (tracebacl[, Iimit[, file]])
Print up tolimit stack trace entries fromnaceback If limit is omitted orNone, all entries are printed. file
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object
to receive the output.

print _exception (type, value, traceba{klimit[, file]])

3.12. traceback — Print or retrieve a stack traceback 63

Print exception information and up tonit stack trace entries fromracebackto file. This differs from

print _tb() inthe following ways: (1) itracebackis notNone, it prints a headefTraceback (most

recent call last): ", (2) it prints the exceptiortype andvalue after the stack trace; (3) typeis
SyntaxError andvaluehas the appropriate format, it prints the line where the syntax error occurred
with a caret indicating the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file). (In fact, it usessys.exc _info() to retrieve the same
information in a thread-safe way instead of using the deprecated variables.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, timit[, file]]])
This function prints a stack trace from its invocation point. The optiéreeigument can be used to spec-
ify an alternate stack frame to start. The optiollit andfile arguments have the same meaning as for
print _exception()

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback thssthack
It is useful for alternate formatting of stack traceslirfit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilienameline numberfunction nametext) representing the
information that is usually printed for a stack trace. Téetis a string with leading and trailing whitespace
stripped; if the source is not available ithione.

extract _stack ([f[, Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract _tb() . The optionaF andlimit arguments have the same meaning apfort _stack()

format _list (list)
Given alist of tuples as returned bytract _tb() orextract _stack() ,returnalistof strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument
list. Each string ends in a newline; the strings may contain internal newlines as well, for those items whose
source text line is ndlone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given
by sys.last _type andsys.last _value . The return value is a list of strings, each ending in a
newline. Normally, the list contains a single string; however,3gntaxError exceptions, it contains
several lines that (when printed) display detailed information about where the syntax error occurred. The
message indicating which exception occurred is the always last string in the list.

format _exception (type, value, tb, Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the cor-
responding arguments fint _exception() . The return value is a list of strings, each ending in a
newline and some containing internal newlines. When these lines are concatenated and printed, exactly the
same text is printed as dopgnt _exception()

format _tb (tb[, limit)

A shorthand foformat _list(extract _tb(th, limit)) .
format _stack ([f[,limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)
This function returns the current line number set in the traceback object. This function was necessary
because in versions of Python prior to 2.3 when-tBdlag was passed to Python ttietb _lineno was
not updated correctly. This function has no use in versions past 2.3.

64 Chapter 3. Python Runtime Services

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refecdothenodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print '-*60
traceback.print_exc(file=sys.stdout)
print '-*60
envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using
a cache, the common case where many lines are read from a single file. This is usettdoyetteck module
to retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelinenofrom file namedilename This function will never throw an exception — it will retuth
on errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search patys.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously readyasiing()

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you
require the updated version.

Example:

>>> import linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a
Python object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte
stream, and “unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierar-
chy. Pickling (and unpickling) is alternatively known as “serialization”, “marshalligg™flattening”, however,

2Don’t confuse this with thenarshal module

3.13. linecache — Random access to text lines 65

to avoid confusion, the terms used here are “pickling” and “unpickling”.

This documentation describes both fhiekle module and thePickle module.

3.14.1 Relationship to other Python modules

The pickle module has an optimized cousin called tfeickle module. As its name impliegPickle

is written in C, so it can be up to 1000 times faster tippckle . However it does not support subclassing

of the Pickler() and Unpickler() classes, because @Pickle these are functions, not classes. Most
applications have no need for this functionality, and can benefit from the improved performacieieldé

Other than that, the interfaces of the two modules are nearly identical; the common interface is described in this
manual and differences are pointed out where necessary. In the following discussions, we use the term “pickle” to
collectively describe thpickle andcPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module calteatshal , but in generapickle should always be the
preferred way to serialize Python objeatsarshal exists primarily to support Python'spyc’ files.

Thepickle module differs frommarshal several significant ways:

e Thepickle module keeps track of the objects it has already serialized, so that later references to the same
object won't be serialized agaimarshal doesn’t do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive
objects will crash your Python interpreter. Object sharing happens when there are multiple references to the
same object in different places in the object hierarchy being serializiellle stores such objects only

once, and ensures that all other references point to the master copy. Shared objects remain shared, which
can be very important for mutable objects.

e marshal cannot be used to serialize user-defined classes and their instpickés. can save and restore
class instances transparently, however the class definition must be importable and live in the same module
as when the object was stored.

e Themarshal serialization format is not guaranteed to be portable across Python versions. Because its
primary job in life is to support.pyc’ files, the Python implementers reserve the right to change the serial-
ization format in non-backwards compatible ways should the need arisepidiie serialization format
is guaranteed to be backwards compatible across Python releases.

Warning: Thepickle module is not intended to be secure against erroneous or maliciously constructed data.
Never unpickle data received from an untrusted or unauthenticated source.

Note that serialization is a more primitive notion than persistence; althpicgle reads and writes file objects,

it does not handle the issue of nhaming persistent objects, nor the (even more complicated) issue of concurrent
access to persistent objects. Tgiekle module can transform a complex object into a byte stream and it can
transform the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do
with these byte streams is to write them onto a file, but it is also conceivable to send them across a network or store
them in a database. The modsleelve provides a simple interface to pickle and unpickle objects on DBM-style
database files.

3.14.2 Data stream format

The data format used lpickle is Python-specific. This has the advantage that there are no restrictions imposed
by external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python
programs may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printabdscii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printabtal (and of some other characteristicgpidkle 's
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

66 Chapter 3. Python Runtime Services

There are currently 3 different protocols which can be used for pickling.

e Protocol version 0 is the original ASCII protocol and is backwards compatible with earlier versions of
Python.

e Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

e Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style
classes.

Refer to PEP 307 for more information.

If a protocol is not specified, protocol 0 is used. [frotocol is specified as a negative value or
HIGHEST_PROTOCAQIthe highest protocol version available will be used.

Changed in version 2.3: THan parameter is deprecated and only provided for backwards compatibility. You
should use therotocolparameter instead.

A binary format, which is slightly more efficient, can be chosen by specifying a true value foirtlegument
to thePickler constructor or thelump() anddumps() functions. Aprotocolversion ¢= 1 implies use of a
binary format.

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the piclllerip() method. To de-
serialize a data stream, you first create an unpickler, then you call the unpitddel(3 method. Theickle
module provides the following constant:

HIGHEST_PROTOCOL
The highest protocol version available. This value can be passepramaolvalue.

Thepickle module provides the following functions to make this process more convenient:

dump(object, file[, protoco[, bin]])
Write a pickled representation objectto the open file objedile. This is equivalent tdickler(file,
protocol bin).dump(objec) .
If the protocol parameter is ommitted, protocol O is used.ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQIthe highest protocol version will be used.

Changed in version 2.3: Tharotocol parameter was added. Thén parameter is deprecated and only
provided for backwards compatibility. You should use pinetocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (for backwards compatibility, this is the default).

file must have avrite() ~ method that accepts a single string argument. It can thus be a file object opened
for writing, aStringlO object, or any other custom object that meets this interface.

load (file)
Read a string from the open file objefie and interpret it as a pickle data stream, reconstructing and
returning the original object hierarchy. This is equivalenttickler(file).load()

file must have two methodsyread() method that takes an integer argument, arehalline() method
that requires no arguments. Both methods should return a string.fildnaan be a file object opened for
reading, eStringlO object, or any other custom object that meets this interface.

This function automatically determines whether the data stream was written in binary mode or not.
dumps(objec{, protoco[, bin]])
Return the pickled representation of the object as a string, instead of writing it to a file.

If the protocol parameter is ommitted, protocol O is used.ptbtocol is specified as a negative value or
HIGHEST_PROTOCAQLlthe highest protocol version will be used.

Changed in version 2.3: Tharotocol parameter was added. Thén parameter is deprecated and only
provided for backwards compatibility. You should use pinetocol parameter instead.

3.14. pickle — Python object serialization 67

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (this is the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representa-
tion are ignored.

Thepickle module also defines three exceptions:

exceptionPickleError
A common base class for the other exceptions defined below. This inherité&ikoeption

exceptionPicklingError
This exception is raised when an unpicklable object is passed thuthe() method.

exceptionUnpicklingError
This exception is raised when there is a problem unpickling an object. Note that other exceptions may also
be raised during unpickling, including (but not necessarily limited&tiibuteError , EOFError
ImportError , andindexError

Thepickle module also exports two callabfe®ickler andUnpickler
classPickler (file[, protoco[, bin]])
This takes a file-like object to which it will write a pickle data stream.

If the protocol parameter is ommitted, protocol 0 is usedpibtocolis specified as a negative value, the
highest protocol version will be used.

Changed in version 2.3: THan parameter is deprecated and only provided for backwards compatibility.
You should use thprotocolparameter instead.

Optional bin if true, tells the pickler to use the more efficient binary pickle format, otherwiseriw|
format is used (this is the default).

file must have avrite() method that accepts a single string argument. It can thus be an open file object,
aStringlO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump(objec)
Write a pickled representation objectto the open file object given in the constructor. Either the binary or
Ascll format will be used, depending on the value of tieflag passed to the constructor.

clear _memd)
Clears the pickler’'s “memo”. The memo is the data structure that remembers which objects the pickler has
already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

Note: Prior to Python 2.3¢clear _memo() was only available on the picklers createdd®ickle . In
thepickle module, picklers have an instance variable cailfeemowhich is a Python dictionary. So to
clear the memo for pickle module pickler, you could do the following:

mypickler.memo.clear()

Code that does not need to support older versions of Python should simaiease _memo() .

It is possible to make multiple calls to tlleimp() method of the samBickler instance. These must then be
matched to the same number of calls to fibed() method of the correspondingnpickler instance. If the
same object is pickled by multiptump() calls, theload() ~ will all yield references to the same objéct

Unpickler objects are defined as:

3In the pickle module these callables are classes, which you could subclass to customize the behavior. HoweveRiaklthe
modules these callables are factory functions and so cannot be subclassed. One of the common reasons to subclass is to control what objects
can actually be unpickled. See section 3.14.6 for more details.

4Warning this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify
an object and then pickle it again using the sdPiekler instance, the object is not pickled again — a reference to it is pickled and the
Unpickler will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a
minimal set of changes. Garbage Collection may also become a problem here.

68 Chapter 3. Python Runtime Services

classUnpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag aBicklie
factory.

file must have two methodsraad() method that takes an integer argument, areballine() method
that requires no arguments. Both methods should return a string.fildhaan be a file object opened for
reading, eStringlO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load ()
Read a pickled object representation from the open file object given in the constructor, and return the recon-
stituted object hierarchy specified therein.

noload ()
This is just likeload() except that it doesn’t actually create any objects. This is useful primarily for
finding what's called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5
below for more details.

Note: the noload() method is currently only available obnpickler objects created with the
cPickle module.pickle moduleUnpickler s do not have thaoload() method.

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

e None, True , andFalse

e integers, long integers, floating point numbers, complex numbers
e normal and Unicode strings

e tuples, lists, and dictionaries containing only picklable objects

¢ functions defined at the top level of a module

e built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

e instances of such classes whasedict __ or __setstate __() is picklable (see section 3.14.5 for
details)
Attempts to pickle unpicklable objects will raise tReklingError exception; when this happens, an unspec-

ified number of bytes may have already been written to the underlying file.

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither
the function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable
in the unpickling environment, and the module must contain the named object, otherwise an exception will be
raised.

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply.
Note that none of the class’s code or data is pickled, so in the following example the class adttibutes not
restored in the unpickling environment:

class Foo:
attr = 'a class attr’

picklestring = pickle.dumps(Foo)

5The exception raised will likely be dmportError or anAttributeError but it could be something else.

3.14. pickle — Python object serialization 69

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and
still load objects that were created with an earlier version of the class. If you plan to have long-lived objects that
will see many versions of a class, it may be worthwhile to put a version number in the objects so that suitable
conversions can be made by the class'setstate __() method.

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the ob-
jects that are being serialized. This protocol provides a standard way for you to define, customize, and control how
your objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations
that you can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see
section 3.14.6 for more details.

Pickling and unpickling normal class instances

When a pickled class instance is unpickled,itsnit __() method is normallynotinvoked. If it is desirable
that the__init __() method be called on unpickling, a class can define a methagbtinitargs 0,
which should return #uple containing the arguments to be passed to the class constructar (irgt __()).

The __getinitargs __() method is called at pickle time; the tuple it returns is incorporated in the pickle for
the instance.

Classes can further influence how their instances are pickled; if the class defines the mefbistate __() ,
it is called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s
dictionary. If there is na__getstate __() method, the instance’s_dict __ is pickled.

Upon unpickling, if the class also defines the methagetstate __() , itis called with the unpickled stdte

If there is no__setstate __() method, the pickled state must be a dictionary and its items are assigned to the
new instance’s dictionary. If a class defines botlgetstate __() and__setstate __() , the state object
needn't be a dictionary and these methods can do what they’want.

Warning: For new-style classes, if_getstate __() returns a false value, the setstate __() method
will not be called.

Pickling and unpickling extension types

When thePickler encounters an object of a type it knows nothing about — such as an extension type — it looks
in two places for a hint of how to pickle it. One alternative is for the object to implementraduce __()
method. If provided, at pickling time_reduce __() will be called with no arguments, and it must return either

a string or a tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. When a tuple is returned,
it must be of length two or three, with the following semantics:

e A callable object, which in the unpickling environment must be either a class, a callable registered as a “safe
constructor” (see below), or it must have an attributesafe _for _unpickling __ with a true value.
Otherwise, arUnpicklingError will be raised in the unpickling environment. Note that as usual, the
callable itself is pickled by name.

e A tuple of arguments for the callable object, done. Deprecated since release 2.3Use the tuple of
arguments instead

e Optionally, the object’s state, which will be passed to the objectsetstate __() method as described
in section 3.14.5. If the object has no setstate __() method, then, as above, the value must be a
dictionary and it will be added to the object’sdict __.

6These methods can also be used to implement copying class instances.
"This protocol is also used by the shallow and deep copying operations definedirpthenodule.

70 Chapter 3. Python Runtime Services

Upon unpickling, the callable will be called (provided that it meets the above criteria), passing in the tuple of
arguments; it should return the unpickled object.

If the second item walslone, then instead of calling the callable directly, itsbasicnew __() method is called
without arguments. It should also return the unpickled object.

Deprecated since release 2.8Ise the tuple of arguments instead

An alternative to implementing a_reduce __() method on the object to be pickled, is to register the callable

with the copy _reg module. This module provides a way for programs to register “reduction functions”

and constructors for user-defined types. Reduction functions have the same semantics and interface as the
__reduce __() method described above, except that they are called with a single argument, the object to be
pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

Pickling and unpickling external objects

For the benefit of object persistence, fliekle module supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of
printableascii characters. The resolution of such names is not defined byitckkee module; it will delegate

this resolution to user defined functions on the pickler and unpftkler

To define external persistent id resolution, you need to sgbéngistent _id attribute of the pickler object
and thepersistent _load attribute of the unpickler object.
To pickle objects that have an external persistent id, the pickler must have a eswiatent _id() method

that takes an object as an argument and returns ditbee or the persistent id for that object. Wh&lone is
returned, the pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will
pickle that string, along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a cugtersistent _load() function that takes a
persistent id string and returns the referenced object.

Here’s a silly example thahightshed more light:

8The actual mechanism for associating these user defined functions is slightly diffengickfer andcPickle . The description given
here works the same for both implementations. Users gbitide module could also use subclassing to effect the same results, overriding
thepersistent _id() andpersistent _load() methods in the derived classes.

3.14. pickle — Python object serialization 71

import pickle
from c¢StringlO import StringlO

src = StringlO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, 'X):
return 'the value %d’ % obj.x
else:
return None

p.persistent_id = persistent_id

class Integer:
def __init__ (self, x):
self.x = x
def __str__ (self):
return 'My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringlO(datastream)

up = pickle.Unpickler(dst)

class Fancylnteger(Integer):
def _ str_ (self):
return 'l am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith('the value °):
value = int(persid.split()[2])
return Fancylnteger(value)
else:
raise pickle.UnpicklingError, ’'Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j
In the cPickle module, the unpicklerpersistent _load attribute can also be set to a Python list, in

which case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this
list. This functionality exists so that a pickle data stream can be “sniffed” for object references without actually
instantiating all the objects in a picRleSettingpersistent _load to a list is usually used in conjunction with
thenoload() method on the Unpickler.

3.14.6 Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data. You can control exactly what gets
unpickled and what gets called by customizing your unpickler. Unfortunately, exactly how you do this is different

SWe'll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.

72 Chapter 3. Python Runtime Services

depending on whether you're usipigkle or cPickle .1°,

In the pickle module, you need to derive a subclass frompickler , overriding theload _global()

method. load _global() should read two lines from the pickle data stream where the first line will the the
name of the module containing the class and the second line will be the name of the instance’s class. It then
looks up the class, possibly importing the module and digging out the attribute, then it appends what it finds to the
unpickler’s stack. Later on, this class will be assigned ta thelass __ attribute of an empty class, as a way of
magically creating an instance without calling its class’snit __() . Your job (should you choose to accept

it), would be to havdoad _global() push onto the unpickler’s stack, a known safe version of any class you
deem safe to unpickle. Itis up to you to produce such a class. Or you could raise an error if you want to disallow
all unpickling of instances. If this sounds like a hack, you're right. Refer to the source code to make this work.

Things are a little cleaner withPickle , but not by much. To control what gets unpickled, you can set the
unpicklersfind _global attribute to a function oNone. If it is None then any attempts to unpickle instances

will raise anUnpicklingError . If it is a function, then it should accept a module name and a class name,
and return the corresponding class object. It is responsible for looking up the class and performing any necessary
imports, and it may raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file,
and returns the line number and line contents each tintedtdline() method is called. If &extReader
instance is pickled, all attributesxceptthe file object member are saved. When the instance is unpickled, the
file is reopened, and reading resumes from the last location_Thketstate __() and__getstate __()
methods are used to implement this behavior.

class TextReader:
""Print and number lines in a text file."™"
def __init__(self, file):
self.file = file
self.th = open(file)
self.lineno = 0

def readline(self):
self.lineno = selflineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):
line = line[:-1]
return "%d: %s" % (self.lineno, line)

def __ getstate__ (self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict['fh’] # remove filehandle entry
return odict

def __ setstate_ (self,dict):

fh = open(dict[‘file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1
self.__dict__.update(dict) # update attributes
self.th = fh # save the file object

10A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of
Python. We intend to someday provide a common interface for controlling this behavior, which will work inpgitkler or cPickle

3.14. pickle — Python object serialization 73

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,’'w’))

If you want to see thapickle works across Python processes, start another Python session, before continuing.
What follows can happen from either the same process or a new process.

>>> import pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file."

See Also:

Modulecopy _reg (section 3.16):
Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; upekle

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — A faster pickle

ThecPickle module supports serialization and de-serialization of Python objects, providing an interface and
functionality nearly identical to theickle module. There are several differences, the most important being
performance and subclassability.

First,cPickle can be up to 1000 times faster thgickle because the former is implemented in C. Second, in
thecPickle module the callableBickler() andUnpickler() are functions, not classes. This means that

you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance afRiiekle module.

The pickle data stream produced pigkle andcPickle are identical, so it is possible to up&ekle and
cPickle interchangeably with existing pickl¥s

There are additional minor differences in APl betwegickle andpickle , however for most applications,
they are interchangable. More documentation is provided ipitide = module documentation, which includes
a list of the documented differences.

3.16 copy _reg — Register pickle support functions

HSince the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will
always be able to read each other’s data streams.

74 Chapter 3. Python Runtime Services

Thecopy _reg module provides support for theckle andcPickle modules. Theopy module is likely
to use this in the future as well. It provides configuration information about object constructors which are not
classes. Such constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor. Ibbjectis not callable (and hence not valid as a constructor),
raisesTypeError

pickle (type, functimﬁ, constructoﬂ)
Declares thafunctionshould be used as a “reduction” function for objects of tiygee typemust not be
a “classic” class object. (Classic classes are handled differently; see the documentatiornpfokithe
module for details.Junctionshould return either a string or a tuple containing two or three elements.

The optionalconstructorparameter, if provided, is a callable object which can be used to reconstruct the
object when called with the tuple of arguments returnedumgtionat pickling time. TypeError — will be
raised ifobjectis a class oconstructoris not callable.

See thepickle module for more details on the interface expectefiinttionandconstructor

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the
keys!) in a shelf can be essentially arbitrary Python objects — anything thaittkie module can handle. This

includes most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are
ordinary strings.

open (filename[,flag:’c’ [,protocoI:None[,Writeback:FaIse [,binary:None]]]])
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default,
the underlying database file is opened for reading and writing. The opfiaggdararameter has the same
interpretation as thitag parameter oinydbm.open .

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocol parameter. Changed in version 2.3: Tpretocol parameter was added. Th@ary
parameter is deprecated and provided for backwards compatibility only.

By default, mutations to persistent-dictionary mutable entries are not automatically written back. If the
optionalwritebackparameter is set torue, all entries accessed are cached in memory, and written back at
close time; this can make it handier to mutate mutable entries in the persistent dictionary, but, if many entries
are accessed, it can consume vast amounts of memory for the cache, and it can make the close operation
very slow since all accessed entries are written back (there is no way to determine which accessed entries
are mutable, nor which ones were actually mutated).

Shelve objects support all methods supported by dictionaries. This eases the transition from dictionary based
scripts to those requiring persistent storage.

3.17.1 Restrictions

e The choice of which database package will be used (suatbas gdbm or bsddb) depends on which
interface is available. Therefore it is not safe to open the database directlydising he database is also
(unfortunately) subject to the limitations dbm, if it is used — this means that (the pickled representation
of) the objects stored in the database should be fairly small, and in rare cases key collisions may cause the
database to refuse updates.

e Depending on the implementation, closing a persistent dictionary may or may not be necessary to flush
changes to disk. The_del __ method of theShelf class calls thelose method, so the programmer
generally need not do this explicitly.

e Theshelve module does not supparbncurrentread/write access to shelved objects. (Multiple simulta-
neous read accesses are safe.) When a program has a shelf open for writing, no other program should have
it open for reading or writing. Wix file locking can be used to solve this, but this differs acrossxU
versions and requires knowledge about the database implementation used.

3.17. shelve — Python object persistence 75

classShelf (dict[, protocoI=None[, writeback=FaIs¥, binary=None]]])
A subclass ofJserDict.DictMixin which stores pickled values in tlaict object.

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be speci-
fied with theprotocol parameter. See thckle documentation for a discussion of the pickle protocols.
Changed in version 2.3: Th@rotocol parameter was added. Thaary parameter is deprecated and pro-
vided for backwards compatibility only.

If the writebackparameter igrue , the object will hold a cache of all entries accessed and write them back
to thedict at sync and close times. This allows natural operations on mutable entries, but can consume much
more memory and make sync and close take a long time.

classBsdDbShelf (dict[, protocoI:Non{, writeback:Falsé, binary:None]]])
A subclass oShelf which expose$irst |, next , previous ,last andset _location which are
available in thdosddb module but not in other database modules. @it object passed to the construc-
tor must support those methods. This is generally accomplished by calling drseldif.hashopen
bsddb.btopen or bsddb.rnopen . The optionalprotocol writeback andbinary parameters have the
same interpretation as for tighelf class.

classDbfilenameShelf (filename{, flag:’c’[, protocoI:Non({, Writeback:Falsé, binary:None]]]])
A subclass ofShelf which accepts dilenameinstead of a dict-like object. The underlying file will be
opened using@nydbm.open . By default, the file will be created and opened for both read and write.
The optionalflag parameter has the same interpretation as fooffen function. The optionaprotocol
writeback andbinary parameters have the same interpretation as fostedf class.

3.17.2 Example

To summarize the interfackdy is a stringdata is an arbitrary object):

import shelve

d = shelve.open(flename) # open -- file may get suffix added by low-level
library

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = dlkey] # retrieve a COPY of data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:

d['xx] = range(4) # this works as expected, but...

d['xx’].append(5) # *this doesn’t’* -- d['xx] is STILL range(4)!!

having opened d without writeback=True, you need to code carefully:

temp = d['xx] # extracts the copy
temp.append(5) # mutates the copy
d['xx’] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d['xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See Also:

Moduleanydbm (section 7.10):
Generic interface tdbm-style databases.

76 Chapter 3. Python Runtime Services

Modulebsddb (section 7.13):
BSD db database interface.

Moduledbhash (section 7.11):
Thin layer around thésddb which provides ampen function like the other database modules.

Moduledbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.14):
Portable implementation of thdbminterface.

Modulegdbm (section 8.7):
GNU database interface, based ondlbeninterface.

Modulepickle (section 3.14):
Obiject serialization used tshelve .

ModulecPickle (section 3.15):
High-performance version gfickle

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

X
X

copy.copy(y) # make a shallow copy of y
copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) ireferesmcesnto
it to the objects found in the original.

e A deep copyconstructs a new compound object and then, recursively, insgpissinto it of the objects
found in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may
cause a recursive loop.

e Because deep copy copiegerythingt may copy too much, e.g., administrative data structures that should
be shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memao” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket,
window, array, or any similar types.

3.18. copy — Shallow and deep copy operations 77

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods
called __getinitargs __() ,__getstate __() and__setstate __() . See the description of module
pickle for information on these methods. Thepy module does not use tlepy _reg registration module.

In order for a class to define its own copy implementation, it can define special methadgpy __() and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the__deepcopy __() implementation needs to make a deep copy of a component, it should call
thedeepcopy() function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific
to Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC,
transport the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may
change between Python versions (although it rarely ddes).

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modulgsckle andshelve . Themarshal module exists mainly to support reading and writing

the “pseudo-compiled” code for Python modules of¢’ files. Therefore, the Python maintainers reserve the

right to modify the marshal format in backward incompatible ways should the need arise. If you're serializing and
de-serializing Python objects, use thiekle module instead.

Warning: Themarshal module is not intended to be secure against erroneous or maliciously constructed data.
Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppdotesi:integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where
it should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein
are themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible

to create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a
machine where C'®ong int type has only 32 bits, a Python long integer object is returned instead. While of a
different type, the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the
least-significant 32 bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object
such assys.stdout or returned byopen() or posix.popen() . It must be opened in binary mode
(wb’ or'w+b’).
If the value has (or contains an object that has) an unsupported tyjady@Error exception is raised —
but garbage data will also be written to the file. The object will not be properly read bdokdb)

load (file)
Read one value from the open file and return it. If no valid value is read, E&i$e€Error , ValueError
or TypeError . The file must be an open file object opened in binary maté (or'r+b’).

Warning: If an object containing an unsupported type was marshalleddwuithp() , load() will substi-
tute None for the unmarshallable type.

12The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “mar-
shalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to
external form (in an RPC buffer for instance) and “unmarshalling” for the reverse process.

78 Chapter 3. Python Runtime Services

dumps(value
Return the string that would be written to a file bymp(value file) . The value must be a supported
type. Raise &alueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, rat€~Error , ValueError or TypeError
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a
program, where that condition (normally) doesn’t warrant raising an exception and terminating the program. For
example, one might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by callingwlaen() function defined in this module. (C programmers use
PyErr _Warn() ; see thePython/C API Reference Manufar details).

Warning messages are normally writtenslgs.stderr , but their disposition can be changed flexibly, from
ignoring all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning
category (see below), the text of the warning message, and the source location where it is issued. Repetitions of a
particular warning for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence
of matching rules and actions. Rules can be added to the filter by céltergvarnings() and reset to its
default state by callingesetwarnings()

The printing of warning messages is done by caliimgwwarning() , which may be overidden; the default
implementation of this function formats the message by caftingnatwarning() , Which is also available for
use by custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be
able to filter out groups of warnings. The following warnings category classes are currently defined:

Class Description

Warning This is the base class of all warning category classes. It is a subclassejftion
UserWarning The default category fowarn() .

DeprecationWarning Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.

RuntimeWarning Base category for warnings about dubious runtime features.

FutureWarning Base category for warnings about constructs that will change semantically in the future.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to
the warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A
warning category must always be a subclass oftfaening class.

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

3.20. warnings — Warning control 79

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of
the match. Each entry is a tuple of the forat{jon messagecategory module lineno), where:

e actionis one of the following strings:

Value Disposition

"error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default" print the first occurrence of matching warnings for each location where the warning is issued
"module” print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

e messages a string containing a regular expression that the warning message must match (the match is
compiled to always be case-insensitive)

e categoryis a class (a subclass @farning) of which the warning category must be a subclass in order to
match

e moduleis a string containing a regular expression that the module name must match (the match is compiled
to be case-sensitive)

e linenois an integer that the line number where the warning occurred must matéhtoomatch all line
numbers

Since théNarning class is derived from the built-lBxception class, to turn a warning into an error we simply
raisecategory(message)

The warnings filter is initialized byW options passed to the Python interpreter command line. The interpreter
saves the arguments for allV options without interpretation isys.warnoptions ; thewarnings module
parses these when it is first imported (invalid options are ignored, after printing a messggstderr).

3.20.3 Available Functions

warn (messag[a categor)[, stackleve]])
Issue a warning, or maybe ignore it or raise an exception.calegoryargument, if given, must be a warn-
ing category class (see above); it defaultdJserWarning . Alternativelymessagean be aNVarning
instance, in which caseategorywill be ignored andnessage. __class __ will be used. In this case the
message text will betr(message) . This function raises an exception if the particular warning issued
is changed into an error by the warnings filter see above.stdeklevelbrgument can be used by wrapper
functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer teprecation() 's caller, rather than to the sourceddprecation()
itself (since the latter would defeat the purpose of the warning message).

warn _explicit ~ (message, category, filename, Iinénmodult{, registry]])
This is a low-level interface to the functionality efarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry __ dictionary of the module). The module name defaults to the filename with
.py stripped,; if no registry is passed, the warning is never suppressessagenust be a string andat-
egorya subclass ofWarning or messagenay be awarning instance, in which caseategorywill be
ignored.

80 Chapter 3. Python Runtime Services

showwarning (message, category, flename, IinEnﬁie])
Write a warning to a file. The default implementation cédisnatwarning(message category file-
name lineno) and writes the resulting string fde, which defaults tesys.stderr . You may replace
this function with an alternative implementation by assigningi&nings.showwarning

formatwarning (message, category, filename, lingno
Format a warning the standard way. This returns a string which may contain embedded newlines and ends
in a newline.

filterwarnings (actior{, messag[e categor)[, module[, Iinenc{, appencl]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by defaagipénds true,
it is inserted at the end. This checks the types of the arguments, compiles the message and module regular
expressions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries
inserted earlier, if both match a particular warning. Omitted arguments default to a value that matches
everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous cafikgnvarnings() , including
that of the-W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implementghg statement. It defines the
following constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code figs {iles). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has thedoffix mode
type , wheresuffixis a string to be appended to the module name to form the filename to seantiodiar,
is the mode string to pass to the builtépen() function to open the file (this can ¢ for text files or
rb’ for binary files), andypeis the file type, which has one of the valu@¥_SOURCHY_COMPILED
or C_LEXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory hames, each directory
is searched for files with any of the suffixes returnedyby _suffixes() above. Invalid names in the
list are silently ignored (but all list items must be strings)pdthis omitted orNone, the list of directory
names given bgys.path is searched, but first it searches a few special places: it tries to find a built-in
module with the given nameC(BUILTIN), then a frozen moduldP(Y_FROZEN, and on some systems
some other places are looked in as well (on the Mac, it looks for a res@®RYc&RESOURCEoN Windows,
it looks in the registry which may point to a specific file).

If search is successful, the return value is a tr{diee, pathname descriptior) wherefile is an open file

object positioned at the beginningathnames the pathname of the file found, addscriptionis a triple as
contained in the list returned met _suffixes() describing the kind of module found. If the module
does not live in a file, the returndde is None, filenameis the empty string, and théescriptiontuple
contains empty strings for its suffix and mode; the module type is as indicate in parentheses above. If the
search is unsuccessflimportError is raised. Other exceptions indicate problems with the arguments

or environment.

This function does not handle hierarchical module names (names containing dots). In ordePtvlfititht
is, submoduléM of packageP, usefind _module() andload _module() to find and load package,
and then uséind _module() with thepathargument set t®. __path __. WhenP itself has a dotted
name, apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously found figd _module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module was already
imported, it is equivalent to eeload() ! The nameargument indicates the full module name (including

3.21. imp — Access the import internals 81

the package name, if this is a submodule of a package).filEh@rgument is an open file, aritenameis

the corresponding file name; these carNmme and” , respectively, when the module is not being loaded
from a file. Thedescriptionargument is a tuple, as would be returnedgey _suffixes() , describing
what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually
ImportError) is raised.

Important: the caller is responsible for closing tfile argument, if it was noone, even when an excep-
tion is raised. This is best done usingra ... finally statement.

new_module (nam§
Return a new empty module object callegime This object isnotinserted insys.modules

lock _held ()
ReturnTrue if the import lock is currently held, eldealse . On platforms without threads, always return
False .

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn
prevents other threads from seeing incomplete module objects constructed by the original thread while in
the process of completing its import (and the imports, if any, triggered by that).

acquire _lock ()
Acquires the interpreter’s import lock for the current thread. This lock should be used by import hooks to
ensure thread-safety when importing modules. On platforms without threads, this function does nothing.
New in version 2.3.

release _lock ()
Release the interpreter’s import lock. On platforms without threads, this function does nothing. New in
version 2.3.

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code obiject file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (se _frozen()).

The following constant and functions are obsolete; their functionality is available thfowegh_module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin ~ (nameg
Initialize the built-in module calledameand return its module object. If the module was already initialized,
it will be initialized again A few modules cannot be initialized twice — attempting to initialize these again
will raise anlmportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module callestemeand return its module object. If the module was already initialized,

82 Chapter 3. Python Runtime Services

it will be initialized again If there is no frozen module callethme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python'ereezeutility. See Tools/freeze/’ for now.)

is _builtin (nam@
Returnl if there is a built-in module calledamewhich can be initialized again. Returfh if there is a
built-in module callechamewhich cannot be initialized again (segt _builtin()). ReturnoO if there
is no built-in module calleciame

is _frozen (nam¢
ReturnTrue if there is afrozen module (sé@t _frozen()) calledname orFalse if thereis no such
module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeahain Thenameargument is used to create or access
a module object. Theathnameargument points to the byte-compiled code file. Titeeargument is the
byte-compiled code file, open for reading in binary mode, from the beginning. It must currently be a real
file object, not a user-defined class emulating a file.

load _dynamic (hame, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module
object. If the module was already initialized, it will be initializadain Some modules don't like that and
may raise an exception. Thmthnameargument must point to the shared library. TH@neargument is
used to construct the name of the initialization function: an external C function calied hamé) ’ in
the shared library is called. The optioridé argument is ignored. (Note: using shared libraries is highly
system dependent, and not all systems support it.)

load _source (nhame, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain Thenameargument is used to create or access a module
object. Thepathnameargument points to the source file. Tfie argument is the source file, open for
reading as text, from the beginning. It must currently be a real file object, not a user-defined class emulating
a file. Note that if a properly matching byte-compiled file (with suffpyt’ or ‘.pyo’) exists, it will be used
instead of parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical module
names). (Thismplementatiorwouldn’t work in that version, sinchd _module() has been extended and
load _module() has been addedin 1.4.)

3.21. imp — Access the import internals 83

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and inchadtesd) function can be
found in the modul&nee . Theknee module can be found irDemo/imputil/’ in the Python source distribution.

3.22 pkgutii — Package extension utility

New in version 2.3.

Warning: This is an experimental module. It may be withdrawn or completely changed up to an including the
release of Python 2.3 beta 1.

This module provides a single function:

extend _path (path, namg

Extend the search path for the modules which comprise a package. Intended use is to place the following
code in a package’s_"init__.py’:

from pkgutil import extend_path
__path__ = extend_path(__path__, _ name_)

This will add to the package’s_path __ all subdirectories of directories @ys.path named after the
package. This is useful if one wants to distribute different parts of a single logical package as multiple
directories.

It also looks for *.pkg’ files beginning where® matches thenameargument. This feature is similar to
‘* pth’ files (see thesite module for more information), except that it doesn't special-case lines starting
with import . A ‘*.pkg’ file is trusted at face value: apart from checking for duplicates, all entries found in
a *.pkg’ file are added to the path, regardless of whether they exist the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is
not modified; an extended copy is returned. Items are only appended to the copy at the end.

It is assumed thatys.path is a sequence. Items efs.path that are not (Unicode or 8-bit) strings
referring to existing directories are ignored. Unicode itemsysipath that cause errors when used as
filenames may cause this function to raise an exception (in lineagithath.isdir() behavior).

84

Chapter 3. Python Runtime Services

3.23 code — Interpreter base classes

Thecode module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

classinteractivelnterpreter ([Iocals])
This class deals with parsing and interpreter state (the user’'s namespace); it does not deal with input buffer-
ing or prompting or input file naming (the filename is always passed in explicitly). The optucsb
argument specifies the dictionary in which code will be executed; it defaults to a newly created dictionary

with key’ __name__' setto’ __console __' andkey __doc__' settoNone.

classinteractiveConsole ([Iocals[, filenamd])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
Interactivelnterpreter and adds prompting using the familisys.ps1 andsys.ps2 , and in-
put buffering.

interact ([bannel[, readfunc{, Iocal]]])
Convenience function to run a read-eval-print loop. This creates a new instance of
InteractiveConsole and setsreadfuncto be used as theaw _input() method, if provided.
If local is provided, it is passed to thkateractiveConsole constructor for use as the default
namespace for the interpreter loop. Tih&eract() method of the instance is then run witkanner

passed as the banner to use, if provided. The console object is discarded after use.

compile _command source[, filenamé, symboﬂ])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-
eval-print loop). The tricky part is to determine when the user has entered an incomplete command that can
be completed by entering more text (as opposed to a complete command or a syntax error). This function
almostalways makes the same decision as the real interpreter main loop.

sourceis the source stringfilenameis the optional filename from which source was read, defaulting to
<input>’ ; andsymbolis the optional grammar start symbol, which should be eitsiagle’ (the
default) oreval’

Returns a code object (the samecaspile(source filename symbo)) if the command is complete
and valid; None if the command is incomplete; rais&yntaxError if the command is complete and
contains a syntax error, or rais@verflowError or ValueError if the command cotains an invalid
literal.

3.23.1 Interactive Interpreter Objects

runsource (source[, filenamt{, symboﬂ])
Compile and run some source in the interpreter. Arguments are the samecamfite _command() ;
the default foffilenameis '<input>" , and forsymbolis 'single’ . One several things can happen:

eThe input is incorrect; compile _command() raised an exception SyntaxError or
OverflowError). A syntax traceback will be printed by calling tshowsyntaxerror()
method.runsource() returnsFalse .

eThe input is incomplete, and more input is requireimpile _command() returnedNone.
runsource() returnsTrue .

eThe input is completecompile _command() returned a code object. The code is executed
by calling theruncode() (which also handles run-time exceptions, except3gstemExit).
runsource() returnsFalse .

The return value can be used to decide whether tesysg@sl orsys.ps2 to prompt the next line.

runcode (code
Execute a code object. When an exception ocalrewtraceback() is called to display a traceback.
All exceptions are caught excepystemExit , which is allowed to propagate.

A note aboutKeyboardinterrupt . this exception may occur elsewhere in this code, and may not
always be caught. The caller should be prepared to deal with it.

3.23. code — Interpreter base classes 85

showsyntaxerror ([filenamd)
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for
syntax errors. Ifilenameis given, it is stuffed into the exception instead of the default filename provided
by Python’s parser, because it always ussfing>’ when reading from a string. The output is written
by thewrite() method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter
object implementation. The output is written by tdte() = method.

write (data)
Write a string to the standard error streasyq.stderr). Derived classes should override this to provide
the appropriate output handling as needed.

3.23.2 Interactive Console Objects

ThelnteractiveConsole class is a subclass tfteractivelnterpreter , and so offers all the meth-
ods of the interpreter objects as well as the following additions.

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print
before the first interaction; by default it prints a banner similar to the one printed by the standard Python
interpreter, followed by the class name of the console object in parentheses (so as not to confuse this with
the real interpreter — since it's so close!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreten'source() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was
appended. The return valueTsue if more input is requiredFalse if the line was dealt with in some
way (this is the same asnsource()).

resetbuffer ()
Remove any unhandled source text from the input buffer.

raw _input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user
enters theeoF key sequencezOFError is raised. The base implementation uses the built-in function
raw _input() ; a subclass may replace this with a different implementation.

3.24 codeop — Compile Python code

Thecodeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in
thecode module. As a result, you probably don’t want to use the module directly; if you want to include such a
loop in your program you probably want to use tltele module instead.

There are two parts to this job:
1. Being able to tell if a line of input completes a Python statement: in short, telling whether toprint or
‘ " next.
2. Remembering which future statements the user has entered, so subsequent input can be compiled with these
in effect.
Thecodeop module provides a way of doing each of these things, and a way of doing them both.
To do just the former:

compile _command source[, fiIenameE, symboﬂ])
Tries to compilesource which should be a string of Python code and return a code objeciuifceis

86 Chapter 3. Python Runtime Services

valid Python code. In that case, the filename attribute of the code object Viilkbame which defaults to
<input>' . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem witlsource an exception will be raisedSyntaxError s raised if there is invalid
Python syntax, an@verflowError or ValueError if there is an invalid literal.

Thesymbolargument determines whettsurceis compiled as a statemersifigle’ , the default) or as
an expressioni¢val’). Any other value will caus¥alueError to be raised.

Caveat: Itis possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example,
a backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the
API for the parser is better.

classCompile ()
Instances of this class have _call __() methods indentical in signature to the built-in function
compile() , but with the difference that if the instance compiles program text containingugure __
statement, the instance 'remembers’ and compiles all subsequent program texts with the statement in force.

classCommandCompiler ()
Instances of this class havecall __() methods identical in signature tmmpile _command() ; the
difference is that if the instance compiles program text containingfature __ statement, the instance
‘remembers’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: th€Eompile andCommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you
can either write

try:
from codeop import CommandCompiler
compile_command = CommandCompiler()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:
from codeop import CommandCompiler
except ImportError:
def CommandCompiler():
from codeop import compile_command
return compile_command

and then calCommandCompiler every time you need a fresh compiler object.

3.25 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can

be used as input to the interpreter. If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or
instances are included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don't fit within the allowed width. Constru@rettyPrinter objects explicitly if you need to adjust the width
constraint.

Thepprint module defines one class:

classPrettyPrinter (..)

3.25. pprint — Data pretty printer 87

Construct aPrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using teieeamkeyword; the only method used on the stream object is the
file protocol'swrite() method. If not specified, thBrettyPrinter adoptssys.stdout . Three
additional parameters may be used to control the formatted representation. The keywordsrdrdepth
andwidth. The amount of indentation added for each recursive level is specifigtbynt the default is

one. Other values can cause output to look a little odd, but can make nesting easier to spot. The number

of levels which may be printed is controlled bigpth if the data structure being printed is too deep, the
next contained level is replaced by.' '. By default, there is no constraint on the depth of the objects
being formatted. The desired output width is constrained usingvitith parameter; the default is eighty
characters. If a structure cannot be formatted within the constrained width, a best effort will be made.

>>> jmport pprint, sys
>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff[:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)
I
'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
'lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’],
"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]
>>>
>>> jmport parser
>>> tup = parser.ast2tuple(
parser.suite(open(’pprint.py’).read()))[1][1][1]
>>> pp = pprint.PrettyPrinter(depth=6)
>>> pp.pprint(tup)
(266, (267, (307, (287, (288, (..))N))

The PrettyPrinter class supports several derivative functions:

pformat (objec)
Return the formatted representatiorobfectas a string. The default parameters for formatting are used.

pprint (objec{, stream])
Prints the formatted representation albject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteacpohfa statement for
inspecting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

"lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’]

isreadable (objec)
Determine if the formatted representationadifjectis “readable,” or can be used to reconstruct the value
usingeval() . This always returns false for recursive objects.

88 Chapter 3. Python Runtime Services

>>> pprint.isreadable(stuff)
0

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representationabject protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representeldexzifsion on type-
name with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", '/usr/local/lib/pythonl.5’, 'fusr/loca
I/lib/pythonl.5/test’, '/usr/local/lib/pythonl.5/sunos5’, '/usr/local/lib/python
1.5/sharedmodules’, ’/ust/local/lib/pythonl.5/tkinter’]"

3.25.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation @bject This takes into Account the options passed to the
PrettyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using
these methods on an instance is slightly more efficient sinceRvettyPrinter objects don't need to be
created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value usingeval() . Note that this returns false for recursive objects. If tepthparameter of the
PrettyPrinter is set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The
default implementation uses the internals of shéerepr() implementation.

format (object, context, maxlevels, leyel
Returns three values: the formatted versiorobjectas a string, a flag indicating whether the result is
readable, and a flag indicating whether recursion was detected. The first argument is the object to be
presented. The second is a dictionary which containsdf)e of objects that are part of the current
presentation context (direct and indirect containerefijectthat are affecting the presentation) as the keys;
if an object needs to be presented which is already representzhiax} the third return value should
be true. Recursive calls to tHermat() = method should add additionaly entries for containers to this
dictionary. The fourth argumeniaxlevels gives the requested limit to recursion; this will 8ef there
is no requested limit. This argument should be passed unmodified to recursive calls. The fourth argument,
levelgives the current level; recursive calls should be passed a value less than that of the current call. New
in version 2.3.

3.26 repr — Alternate repr() implementation

3.26. repr — Alternate repr() implementation 89

Therepr module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

classRepr ()
Class which provides formatting services useful in implementing functions similar to the breipif) ;
size limits for different object types are added to avoid the generation of representations which are exces-
sively long.

aRepr
This is an instance dRepr which is used to provide thepr() function described below. Changing the
attributes of this object will affect the size limits useddepr() and the Python debugger.

repr (obj)
This is therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

3.26.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defafilt is

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The defanbixdict is 4, for
the othersg.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default i40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation
of the string is used as the character source: if escape sequences are needed in the representation, these may
be mangled when the representation is shortened. The def&alt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on
theRepr object. Itis applied in a similar manner agxstring . The default i20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used bgpr() . This uses the type abbj to determine which formatting
method to call, passing @bj andlevel The type-specific methods should aa&prl() to perform recur-
sive formatting, withevel - 1 for the value oflevelin the recursive call.

repr _typq obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name.
In the method nameypeis replaced bystring.join(string.split(type(obj). __name__,
" ")) . Dispatch to these methods is handledregrl() . Type-specific methods which need to recur-
sively format a value should cakélf.repri(subobj level - 1) .

3.26.2 Subclassing Repr Objects

The use of dynamic dispatching ®epr.reprl() allows subclasses depr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special

90 Chapter 3. Python Runtime Services

support for file objects could be added:

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in [<stdin>', '<stdout>', '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.27 new — Creation of runtime internal objects

The new module allows an interface to the interpreter object creation functions. This is for use primarily in
marshal-type functions, when a new object needs to be created “magically” and not by using the regular creation
functions. This module provides a low-level interface to the interpreter, so care must be exercised when using this
module.

Thenew module defines the following functions:

instance (class[, dict])
This function creates an instanceatdsswith dictionarydict without calling the__init __() constructor.
If dictis omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, cla¥s
This function will return a method object, bounditstance or unbound ifinstances None. functionmust
be callable.

function (code, gIobaIE, name{, argdefs]])
Returns a (Python) function with the given code and globalsatheis given, it must be a string ddone.
If it is a string, the function will have the given name, otherwise the function name will be taken from
codeco _name. If argdefsis given, it must be a tuple and will be used to determine the default values of
parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno,

Inota) =~~~ :
This function is an interface to tHeyCode _New() C function.

module (namg
This function returns a new module object with nanane namemust be a string.

classobj (name, baseclasses, dict
This function returns a new class object, with nanaene derived frombaseclasseéwvhich should be a
tuple of classes) and with namespaloet.

3.28 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific
modules would placamport site ' somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

3.27. new — Creation of runtime internal objects 91

It starts by constructing up to four directories from a head and a tail part. For the head partsitsipesfix
andsys.exec _prefix ; empty heads are skipped. For the tail part, it uses the empty string (on Macintosh
or Windows) or it uses firstlib/python2.3/site-packages’ and then lib/site-python’ (on UNIX). For each of the
distinct head-tail combinations, it sees if it refers to an existing directory, and if so, addy#.pmth and also
inspects the newly added path for configuration files.

A path configuration file is a file whose name has the foparckagepth’; its contents are additional items (one
per line) to be added teys.path . Non-existing items are never addedstgs.path , but no check is made

that the item refers to a directory (rather than a file). No item is addegistpath more than once. Blank lines

and lines beginning witl are skipped. Lines starting wittmport are executed.

For example, supposgys.prefix andsys.exec _prefix are set to/usr/local’. The Python 2.3 library
is then installed in/usr/local/lib/python2.3’ (where only the first three characters ofs.version are used to
form the installation path name). Suppose this has a subdiredtamidcal/lib/python2.3/site-packages’ with
three subsubdirectoriespd’, ‘ bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume
‘foo.pth’ contains the following:

foo package configuration

foo
bar
bletch

and ar.pth’ contains:

bar package configuration

bar

Then the following directories are addedslys.path , in this order:

lusr/local/lib/python2.3/site-packages/bar
Jusr/localllib/python2.3/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; thieal’ directory precedes thefdo’ directory because
‘bar.pth’ comes alphabetically befordob.pth’; and ‘spam’ is omitted because it is not mentioned in either path
configuration file.

After these path manipulations, an attempt is made to import a module nsiteedstomize , which can
perform arbitrary site-specific customizations. If this import fails witHraportError ~ exception, it is silently
ignored.

Note that for some non-Mix systemssys.prefix andsys.exec _prefix are empty, and the path manip-
ulations are skipped; however the importsitecustomize is still attempted.

3.29 user — User-specific configuration hook

As a policy, Python doesn't run user-specified code on startup of Python programs. (Only interactive sessions
execute the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use
the mechanism must execute the statement

import user

92 Chapter 3. Python Runtime Services

Theuser module looks for a file.pythonrc.py’ in the user's home directory and if it can be opened, executes it
(usingexecfile()) in its own (the modul@iser ’s) global namespace. Errors during this phase are not caught;
that's up to the program that imports theer module, if it wishes. The home directory is assumed to be named
by the HOME environment variable; if this is not set, the current directory is used.

The user’s pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending
on the Python version.

A warning to users: be very conservative in what you place in yguthonrc.py’ file. Since you don't know
which programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in theithonrc.py’ file that you test in your module. For example, a
modulespam that has a verbosity level can look for a variabfer.spam _verbose , as follows:

import user
try:

verbose = user.spam_verbose # user's verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shauddimport this module; a user can easily break into a program
by placing arbitrary code in thepythonrc.py’ file.

Modules for general use shouft import this module; it may interfere with the operation of the importing
program.

See Also:

Modulesite (section 3.28):
Site-wide customization mechanism.

3.30 __builtin __ — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.gbuiltin ~ __.open is the full
name for the built-in functiompen() . See section 2.1, “Built-in Functions.”

3.31 __main __ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes —
commands read either from standard input, from a script file, or from an interactive prompt. It is this environment
in which the idiomatic “conditional script” stanza causes a script to run:

if _name__ =="_ main__"
main()
3.32 __future __ — Future statement definitions
__future __is areal module, and serves three purposes:

e To avoid confusing existing tools that analyze import statements and expect to find the modules they're
importing.

3.30. __builtin __ — Built-in functions 93

e To ensure that futurestatements run under releases prior to 2.1 at least yield runtime exceptions (the import
of __future __ will fail, because there was no module of that name prior to 2.1).

e To document when incompatible changes were introduced, and when they will be — or were — made

mandatory. This is a form of executable documentation, and can be inspected programatically via importing
__future __ and examining its contents.

Each statment in_‘_future__.py’ is of the form:

FeatureName = "_Feature(" OptionalRelease "," MandatoryRelease ","
CompilerFlag ")"

where, normally, OptionalRelease is less then MandatoryRelease, and both are 5-tuples of the same form as
sys.version _info

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int

PY_MICRO_VERSION, # the 0; an int

PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int
)

OptionalRelease records the first release in which the feature was accepted.

In the case of MandatoryReleases that have not yet occurred, MandatoryRelease predicts the release in which the
feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after that, modules
no longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryRelease may also Hene, meaning that a planned feature got dropped.

Instances of class_Feature have two corresponding methodsgetOptionalRelease() and
getMandatoryRelease()

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the builtin furartipie()

to enable the feature in dynamically compiled code. This flag is stored inctmpiler _flag attribute on
_Future instances.

No feature description will ever be deleted framfuture

94 Chapter 3. Python Runtime Services

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.
fpformat General floating point formatting functions.
StringlO Read and write strings as if they were files.
cStringlO Faster version aBtringlO , but not subclassable.
textwrap Text wrapping and filling

encodings.idna Internationalized Domain Names implementation
unicodedata Access the Unicode Database.

stringprep String preparation, as per RFC 3453

Information on the methods of string objects can be found in section 2.2.6, “String Methods.”

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See
the modulere for string functions based on regular expressions.

The constants defined in this module are:

ascii _letters
The concatenation of thescii _lowercase andascii _uppercase constants described below. This
value is not locale-dependent.

ascii _lowercase
The lowercase letteraibcdefghijkimnopqgrstuvwxyz’ . This value is not locale-dependent and
will not change.

ascii _uppercase
The uppercase lette S BCDEFGHIJKLMNOPQRSTUVWXY Zhis value is not locale-dependent and will
not change.

digits
The string’0123456789

hexdigits
The string0123456789abcdefABCDEF’

letters
The concatenation of the strindgmwvercase anduppercase described below. The specific value is
locale-dependent, and will be updated wiaceale.setlocale() is called.

lowercase

A string containing all the characters that are considered lowercase letters. On most systems this is the
string'abcdefghijkimnopgrstuvwxyz’ . Do not change its definition — the effect on the routines

95

upper() andswapcase() is undefined. The specific value is locale-dependent, and will be updated
whenlocale.setlocale() is called.

octdigits
The string'01234567"

punctuation
String of AsciI characters which are considered punctuation characters iCtlueale.

printable
String of characters which are considered printable. This is a combinatialigité , letters
punctuation , andwhitespace

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the
string’ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routines
lower() andswapcase() is undefined. The specific value is locale-dependent, and will be updated
whenlocale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the char-
acters space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on
the routinesstrip() andsplit() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects; see
“String Methods” (section 2.2.6) for more information on those. The functions defined in this module are:

atof (s)
Deprecated since release 2.WUse thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point
literal in Python, optionally preceded by a siga’(br ‘-). Note that this behaves identical to the built-in
functionfloat() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

atoi (s[, basd)
Deprecated since release 2.Qse theint() built-in function.

Convert strings to an integer in the givebase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘-’). The basedefaults to 10. If it is 0, a default base is chosen depending
on the leading characters of the string (after stripping the sighy! 6r ‘0X’ means 16, 0’ means 8,
anything else means 10. bfseis 16, a leadingOx’ or ‘ 0X’ is always accepted, though not required. This
behaves identically to the built-in functidnt() when passed a string. (Also note: for a more flexible
interpretation of numeric literals, use the built-in functeral())

atol (s[, basd)
Deprecated since release 2.Q@se thelong() built-in function.

Convert stringsto a long integer in the givelbase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘- '). The baseargument has the same meaning asafoi() . A trailing ‘l * or
‘L"is not allowed, except if the base is 0. Note that when invoked withastor with baseset to 10, this
behaves identical to the built-in functideng() when passed a string.

capitalize ('word)
Return a copy ofvord with only its first character capitalized.

capwords (9)
Split the argument into words usirsglit() , capitalize each word usingppitalize() , and join the
capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space,
and removes leading and trailing whitespace.

expandtabs (s[, tabsizé)
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the
given tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t

96 Chapter 4. String Services

understand other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sut[, starl{,end]])
Return the lowest index is where the substringub is found such thasubis wholly contained in
q start end . Return-1 on failure. Defaults foistart andend and interpretation of negative values is
the same as for slices.

rfind (s, suk[, starl{, end]])
Like find() but find the highest index.

index (s, suk{, starl{, end]])
Like find() butraiseValueError when the substring is not found.

rindex (s, sul{, starl{, end]])
Like rfind() but raiseValueError ~ when the substring is not found.

count (s, suk{, starl[, end]])
Return the number of (non-overlapping) occurrences of subsitibgn string § start end . Defaults for
startandendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy o§, but with upper case letters converted to lower case.

maketrans (from, tg
Return a translation table suitable for passingrémslate() or regex.compile() , that will map
each character ifrominto the character at the same positionianfrom andto must have the same length.

Warning: Don't use strings derived frodowercase anduppercase as arguments; in some locales,
these don’t have the same length. For case conversions, alwalsvwes€ andupper()

split (s[, sep[, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesepis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the
second argumerstepis present and ndtlone, it specifies a string to be used as the word separator. The
returned list will then have one more item than the number of non-overlapping occurrences of the separator
in the string. The optional third argumemiaxsplitdefaults to O. If it is nonzero, at mostaxsplithumber
of splits occur, and the remainder of the string is returned as the final element of the list (thus, the list will
have at mosmaxsplit1 elements).

splitfields (s[, se;{, maxsplit]])
This function behaves identically split() . (In the pastsplit() was only used with one argument,
while splitfields() was only used with two arguments.)

join (Words[, sep])
Concatenate a list or tuple of words with intervening occurrencespiThe default value fosepis a single
space character. It is always true thatting.join(string.split(S, sep, sep’equalss.

joinfields (Words{, sep])
This function behaves identicallyjoin() . (Inthe pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there ioifields() method on
string objects; use thein() method instead.

Istrip (s[, chars])
Return a copy of the string with leading characters removecthéfrsis omitted orNone, whitespace
characters are removed. If given and Naine, charsmust be a string; the characters in the string will be
stripped from the beginning of the string this method is called on. Changed in version 2.2.&nhdarke
parameter was added. Thiearsparameter cannot be passed in earlier 2.2 versions.

rstrip (s[, chars])
Return a copy of the string with trailing characters removedchiéirsis omitted orNone, whitespace
characters are removed. If given and Naine, charsmust be a string; the characters in the string will be
stripped from the end of the string this method is called on. Changed in version 2.2 harsparameter
was added. Theharsparameter cannot be passed in 2.2 versions.

strip (s[, chars])
Return a copy of the string with leading and trailing characters removedhalfsis omitted orNone,

4.1. string — Common string operations 97

whitespace characters are removed. If given andNmate, charsmust be a string; the characters in the
string will be stripped from the both ends of the string this method is called on. Changed in version 2.2.3:
Thecharsparameter was added. Thlearsparameter cannot be passed in earlier 2.2 versions.

swapcase (9)
Return a copy o§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters frosthat are indeletechargif present), and then translate the characters usibig,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper ()
Return a copy o§, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They
return a string that is at leastidth characters wide, created by padding the stength spaces until the
given width on the right, left or both sides. The string is never truncated.

Zfill (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign
are handled correctly.

replace (str, old, nev[, maxsplit])
Return a copy of stringtr with all occurrences of substrirmjd replaced bynew If the optional argument
maxsplitis given, the firsmaxsplitoccurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte usingitihrebemotation. Both patterns
and strings to be searched can be Unicode strings as well as 8-bit stringg Tiedule is always available.

Regular expressions use the backslash chara&tgrt¢ indicate special forms or to allow special characters to

be used without invoking their special meaning. This collides with Python’s usage of the same character for the
same purpose in string literals; for example, to match a literal backslash, one might have td\Write as the

pattern string, because the regular expression mudt Beand each backslash must be expressed\ asinside

a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in
any special way in a string literal prefixed with’! So r"\n" is a two-character string containing’‘and ‘n’,

while "\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code
using this raw string notation.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O'Reilly. The second edition of the book no
longer covers Python at all, but the first edition covered writing good regular expression patterns in great
detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expresstomsgB are both regular expressions,
then AB is also a regular expression. If a stripgmatches A and another strigmatches B, the stringq

98 Chapter 4. String Services

will match AB if A andB do no specify boundary conditions that are no longer satisfigoigoyl hus, complex
expressions can easily be constructed from simpler primitive expressions like the ones described here. For details
of the theory and implementation of regular expressions, consult the Friedl book referenced above, or almost any
textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiapy/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary charactéis; dikeot

‘07, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
sollast ;matches the stringast’ . (In the rest of this section, we’ll write RE’s ithis special style I

usually without quotes, and strings to be matchedsingle quotes’)

Some characters, likg * or ‘ (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.

The special characters are:

‘.’ (Dot.) In the default mode, this matches any character except a newline.DIQAALLflag has been
specified, this matches any character including a newline.

>

(Caret.) Matches the start of the string, andMiULTILINE mode also matches immediately after
each newline.

&

Matches the end of the string or just before the newline at the end of the string, &dLmILINE
mode also matches before a newlirfimo ; matches both *foo’ and 'foobar’, while the regular ex-
pressionfoo$; matches only 'foo’. More interestingly, searching ft@o.$; in 'fool\nfoo2\n’
matches 'foo2’ normally, but 'fool” IMULTILINE mode.

‘*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as
are possiblelab* ; will match ’a’, 'ab’, or 'a’ followed by any number of 'b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the precedinggB& will match 'a’
followed by any non-zero number of 'b’s; it will not match just 'a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the precedindgaBE.will match either 'a’
or’ab’.

*?,+?,?? The *’, '+, and ‘?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE.*> | is matched againstH1>title</H1>’ , it will match
the entire string, and not justH1>" . Adding ‘?’ after the qualifier makes it perform the match
in non-greedyor minimalfashion; afewcharacters as possible will be matched. USitg | in the
previous expression will match onlgH1>’

{m} Specifies that exactly copies of the previous RE should be matched; fewer matches cause the entire
RE not to match. For exampl@{6} ;will match exactly six &’ characters, but not five.

{m, n} Causes the resulting RE to match fromto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For examf@€3,5} ;will match from 3 to 5 &’ characters. Omitting
m specifies a lower bound of zero, and omittimgpecifies an infinite upper bound. As an example,
fa{4,}b ;willmatchaaaab or a thousandd’ characters followed by b, but notaaab . The comma
may not be omitted or the modifier would be confused with the previously described form.

{m, n}? Causes the resulting RE to match fromo n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on
the 6-character stringaaaaa’ |, a{3,5} will match 5 ‘a’ characters, whiléa{3,5}? ;will only
match 3 characters.

—

Either escapes special characters (permitting you to match characters’|ik@’; and so forth), or
signals a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash
as an escape sequence in string literals; if the escape sequence isn't recognized by Python's parser,
the backslash and subsequent character are included in the resulting string. However, if Python would

4.2. re — Regular expression operations 99

(.)

..)

(?iLmsux)

(?:...)

recognize the resulting sequence, the backslash should be repeated twice. This is complicated and
hard to understand, so it's highly recommended that you use raw strings for all but the simplest
expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by &pecial characters are not active
inside sets. For exampl§akm$] ;will match any of the charactera® ‘k’, ‘m, or ‘$’; Ta-z] will

match any lowercase letter, afatzA-Z0-9] matches any letter or digit. Character classes such
as\w or\S (defined below) are also acceptable inside a range. If you want to incljdena ‘-’

inside a set, precede it with a backslash, or place it as the first character. The fattewill match

T ,forexample.

You can match the characters not within a rangecbgnplementinghe set. This is indicated by
including a “ ’ as the first character of the set; ‘elsewhere will simply match thé * character. For
example['5] ;will match any character excef@”, and[™] ;will match any character except"

A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by [hén' this way. This can be used inside groups
(see below) as well. REs separated pydre tried from left to right, and the first one that allows the
complete pattern to match is considered the accepted branch. This meansithatfhesB will

never be tested, even if it would produce a longer overall match. In other word$, theerator is

never greedy. To match a literdl’; use\| j, or enclose it inside a character class, afjin ..

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a
group; the contents of a group can be retrieved after a match has been performed, and can be matched
later in the string with thd numberspecial sequence, described below. To match the litefalsr’

), usel\(jor\) , or enclose them inside a character cldgk:[)] .

This is an extension notation (2" following a *(’ is not meaningful otherwise). The first character
after the ?’ determines what the meaning and further syntax of the construct is. Extensions usually
do not create a new grouff?P< name-...) ;is the only exception to this rule. Following are the
currently supported extensions.

(One or more letters fromthe sét,; ‘L', ‘m, ‘s’, “u’, *x’.) The group matches the empty string; the
letters set the corresponding flags.(,re.L ,re.M ,re.S ,re.U ,re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression, instead of
passing dlag argument to theompile() function.

Note that the(?x) ,flag changes how the expressionis parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the
flag, the results are undefined.

A non-grouping version of regular parentheses. Matches whatever regular expression is inside the
parentheses, but the substring matched by the granpotbe retrieved after performing a match or
referenced later in the pattern.

(?P<name-...) Similar to regular parentheses, but the substring matched by the group is accessible via the

symbolic group hamaame Group names must be valid Python identifiers, and each group name
must be defined only once within a regular expression. A symbolic group is also a numbered group,
just as if the group were not named. So the group named ’'id’ in the example above can also be
referenced as the numbered group 1.

For example, if the pattern i€?P<id>[a-zA-Z _]\w*) , the group can be referenced by its name
in arguments to methods of match objects, suctmagoup(’id’) or m.end(’id") , and also
by name in pattern text (for exampl§?P=id)) and replacement text (such\assid>).

(?P=namg Matches whatever text was matched by the earlier group naaed

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=..) Matches if... ; matches next, but doesn't consume any of the string. This is called a lookahead
assertion. For exampldisaac (?=Asimov) will match’lsaac * only if it's followed by
'AsimoV’

100 Chapter 4. String Services

(?<!L.)

Matches if’... ;doesn’t match next. This is a negative lookahead assertion. For exdisaies,
(?!Asimov) jwill match’lsaac ' only if it's notfollowed by’Asimov’

Matches if the current position in the string is preceded by a match.for that ends at the cur-

rent position. This is called positive lookbehind assertiori{(?<=abc)def ;| will find a match in
‘abcdef ’, since the lookbehind will back up 3 characters and check if the contained pattern matches.
The contained pattern must only match strings of some fixed length, meanirigtibatr 'ajb | are
allowed, buta* ;anda{3,4} are not. Note that patterns which start with positive lookbehind asser-
tions will never match at the beginning of the string being searched; you will most likely want to use
thesearch() function rather than thmatch() function:

>>> import re

>>> m = re.search('(?<=abc)def’, 'abcdef’)
>>> m.group(0)

‘def’

This example looks for a word following a hyphen:

>>> m = re.search(’(?<=-)\w+’, 'spam-egg’)
>>> m.group(0)
'egy

Matches if the current position in the string is not preceded by a match.for. This is called a
negative lookbehind assertioSimilar to positive lookbehind assertions, the contained pattern must
only match strings of some fixed length. Patterns which start with negative lookbehind assertions
may match at the beginning of the string being searched.

The special sequences consist\dfand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exarfplenatches the charactes’

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For

\b

\B

\d
\D
\s

\S

example/(.+) \1 ;matchesthe the’ or’55 55 |, butnot'the end” (note the space after

the group). This special sequence can only be used to match one of the first 99 groups. If the first
digit of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as
the character with octal valueimber Inside the[' and ‘] ’ of a character class, all numeric escapes

are treated as characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence
of alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-
alphanumeric, non-underscore character. Notékhas$ defined as the boundary betwaenand\W,

so the precise set of characters deemed to be alphanumeric depends on the valueNeEOBE
andLOCALEflags. Inside a character rangdb, represents the backspace character, for compatibility
with Python’s string literals.

Matches the empty string, but only when itriet at the beginning or end of a word. This is just the
opposite ofb , so is also subject to the settingsLdCALEandUNICODE

Matches any decimal digit; this is equivalent to the e8] .
Matches any non-digit character; this is equivalent to th €8] .
Matches any whitespace character; this is equivalent to thHe &i\r\fiv] .

Matches any non-whitespace character; this is equivalent to ti{e $8n\r\fiv] i

4.2. re — Regular expression operations 101

\w When theLOCALEandUNICODEflags are not specified, matches any alphanumeric character and
the underscore; this is equivalent to the fzA-Z0-9 _] .. With LOCALE it will match the set
T0-9 _], plus whatever characters are defined as alphanumeric for the current lodal!CGODE
is set, this will match the characteff-9 _], plus whatever is classified as alphanumeric in the
Unicode character properties database.

\W When theLOCALEandUNICODEHEflags are not specified, matches any non-alphanumeric character;
this is equivalent to the s§ta-zA-Z0-9 _],. With LOCALE it will match any character not in the
set0-9 _],, and not defined as alphanumeric for the current local&JNfCODEis set, this will
match anything other the[0-9 _] ;and characters marked as alphanumeric in the Unicode character
properties database.

\Z Matches only at the end of the string.
Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \X
\\

Octal escapes are included in a limited form: If the first digitis a 0, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference.

4.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are
accustomed to Perl’s semantics, the search operation is what you're looking for. Seartt®) function and
corresponding method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning withi * matches only at the start

of the string, or INMULTILINE mode also immediately following a newline. The “match” operation succeeds
only if the pattern matches at the start of the string regardless of mode, or at the starting position given by the
optionalposargument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start

re.compile(""a", re.M).search(\na", 1) # succeeds
re.compile("a", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using
its match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifigggvalue. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

102 Chapter 4. String Services

result = re.match(pat, str)

but the version usingompile() is more efficient when the expression will be used several times in a
single program.

|

IGNORECASE
Perform case-insensitive matching; expressions/likeZ] ; will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE
Make \w, \W,, \b |, and\B, dependent on the current locale.
M
MULTILINE
When specified, the pattern charactermatches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara8tenatches at the end of the string and
at the end of each line (immediately preceding each newline). By defaufhdtches only at the beginning
of the string, and$’ only at the end of the string and immediately before the newline (if any) at the end of
the string.
S
DOTALL
Make the !’ special character match any character at all, including a newline; without this flagill
match anythingexcepta newline.
U
UNICODE
Make \w , "W, \b ;, and\B , dependent on the Unicode character properties database. New in version 2.0.
X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,

except when in a character class or preceded by an unescaped backslash, and, when a line cihtains a *
neither in a character class or preceded by an unescaped backslash, all characters from the leftr#ost such
through the end of the line are ignored.

search (pattern, string{, flags])
Scan througlstringlooking for a location where the regular expresspatternproduces a match, and return
a correspondingatchObject instance. ReturiNone if no position in the string matches the pattern;
note that this is different from finding a zero-length match at some point in the string.

match (pattern, string{, flags])
If zero or more characters at the beginningsbfng match the regular expressigattern return a corre-
spondingMatchObject instance. ReturiNone if the string does not match the pattern; note that this is
different from a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

split (pattern, string{, maxsplit = 0])
Split string by the occurrences gfattern If capturing parentheses are usegattern then the text of all
groups in the pattern are also returned as part of the resulting listaxgplitis nonzero, at mosnaxsplit
splits occur, and the remainder of the string is returned as the final element of the list. (Incompatibility note:
in the original Python 1.5 releasmaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(\W+', 'Words, words, words.’)
[Words', 'words’, 'words’, "]

>>> re.split((\W+)’, 'Words, words, words.’)
[Words', ’, ', 'words’, ', ', 'words’, ", "]
>>> re.split(\W+', 'Words, words, words.’, 1)
[Words’, 'words, words.’]

4.2. re — Regular expression operations 103

This function combines and extends the functionality of the alelysub.split() and
regsub.splitx()

findall ~ (pattern, string
Return a list of all non-overlapping matchespaftternin string. If one or more groups are present in the
pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty
matches are included in the result. New in version 1.5.2.

finditer (pattern, string
Return an iterator over all non-overlapping matches for theg&Eernin string. For each match, the iterator
returns a match object. Empty matches are included in the result. New in version 2.2.

sub (pattern, repl, strin&, count])
Return the string obtained by replacing the leftmost non-overlapping occurrenpastein string by
the replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a
function; if it is a string, any backslash escapes in it are processed. Thet ids‘converted to a single
newline character\f ' is converted to a linefeed, and so forth. Unknown escapes sucl aafe left
alone. Backreferences, such & * are replaced with the substring matched by group 6 in the pattern. For
example:

>>> re.sub(rdefis+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\).",
r'static PyObject®\npy_\1(void)\n{’,

'def myfunc():’)

‘static PyObject*\npy_myfunc(void)\n{’

If replis a function, it is called for every non-overlapping occurrencgatfern The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == ’-": return
else: return -’
>>> re.sub(’-{1,2}, dashrepl, 'pro----gram-files’)
‘pro--gram files’

[

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must
use a RE object, or use embedded modifiers in a pattern; for exast; (?i)b+", "x", "bbbb
BBBB") ' returns’x X’

The optional argumentountis the maximum number of pattern occurrences to be replammadt must

be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the
pattern are replaced only when not adjacent to a previous matayls@x*’, '-', 'abc’) "returns
"-a-b-c-’

In addition to character escapes and backreferences as described @smame> ’ will use the substring
matched by the group nameaddme’, as defined by th§?P<name>...) | syntax. \g<number> ' uses

the corresponding group numbeg<2> ' is therefore equivalent td2 ’, but isn’t ambiguous in a replace-
ment such as\g<2>0 . ‘\20 ' would be interpreted as a reference to group 20, not a reference to group 2
followed by the literal characte®'. The backreferenceag<0> ’ substitutes in the entire substring matched

by the RE.

subn (pattern, repl, strini, count])
Perform the same operationsugh() , but return a tuplé new_string, number.of_subs madg .

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation or
matching. It is never an error if a string contains no match for a pattern.

104 Chapter 4. String Services

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string[, pos[, endpo§])
If zero or more characters at the beginningstifng match this regular expression, return a corresponding
MatchObject instance. ReturiNone if the string does not match the pattern; note that this is different

from a zero-length match.
Note: If you want to locate a match anywheregtring, usesearch() instead.

The optional second paramefos gives an index in the string where the search is to start; it defaults to

0. This is not completely equivalent to slicing the string; tfie pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the search
is to start.

The optional parametegndposlimits how far the string will be searched; it will be as if the string is
endposcharacters long, so only the characters frposto endpos- 1 will be searched for a match. If
endposs less tharpos no match will be found, otherwise, ik is a compiled regular expression object,
rx.match(string, 0, 50) is equivalent tax.match(string[:50], 0)

search (string[, pos[, endpoﬁ])
Scan througtstring looking for a location where this regular expression produces a match, and return a
correspondingMatchObject instance. Returilone if ho position in the string matches the pattern; note
that this is different from finding a zero-length match at some point in the string.

The optionaposandendpogarameters have the same meaning as fomaeh() method.

split (string[, maxsplit = 0])
Identical to thesplit() function, using the compiled pattern.

findall (' string)
Identical to theindall() function, using the compiled pattern.

finditer ('string)
Identical to thefinditer() function, using the compiled pattern.

sub (repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compildétiifaro flags were provided.

groupindex
A dictionary mapping any symbolic group names defined ®i< id>) ; to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

expand (template
Return the string obtained by doing backslash substitution on the templatetstriptate as done by the
sub() method. Escapes such as ‘ are converted to the appropriate characters, and numeric backrefer-
ences ({1 ', *\2 ’) and named backreference$g&l> ', ‘\g<name>) are replaced by the contents of the
corresponding group.

group ([groupl,])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if

there are multiple arguments, the result is a tuple with one item per argument. Without arggreems,

4.2. re — Regular expression operations 105

defaults to zero (the whole match is returned). KgraupN argument is zero, the corresponding return
value is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the
corresponding parenthesized group. If a group number is negative or larger than the number of groups
defined in the pattern, dndexError exception is raised. If a group is contained in a part of the pattern
that did not match, the corresponding resulNisne. If a group is contained in a part of the pattern that
matched multiple times, the last match is returned.

If the regular expression uses tff@P< name-...) | syntax, thegroupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", '3.14’)

After performing this matchm.group(1) is '3’ , as ism.group(int’) , andm.group(2) is
14"

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. Thalefaultargument is used for groups that did not participate in the match; it defallisrie.
(Incompatibility note: in the original Python 1.5 release, if the tuple was one element long, a string would
be returned instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all theamedsubgroups of the match, keyed by the subgroup name. The
defaultargument is used for groups that did not participate in the match; it defaltsrte.

start ([group])

end([group])
Return the indices of the start and end of the substring matchegdooys group defaults to zero (meaning
the whole matched substring). Retufn if group exists but did not contribute to the match. For a match
objectm, and a group that did contribute to the match, the substring matched by ggofgguivalent to

m.group(Q))is

m.string[m.start(g):m.end(g)]

Note thatm.start(group will equal m.end(group) if group matched a null string. For example,
afterm = re.search(’b(c?)’, 'cba’) , m.start(0) is 1, mend(0) is 2, m.start(1)
andm.end(1) are both 2, andh.start(2) raises afindexError exception.

span ([group])
ForMatchObject m, return the 2-tuplé m.start(group, m.end(group) . Note thatifgroupdid
not contribute to the match, this(sl, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to theearch() or match() method of theRegexObject . This
is the index into the string at which the RE engine started looking for a match.

endpos
The value ofendposwhich was passed to theearch() or match() method of theRegexObject
This is the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing groupame if no group was matched at all. For example,
the expression$a)b ;, ((a)(b)) ,, and((ab)) will havelastindex == if applyied to the string
‘ab’ , while the expressioffa)(b) ;will havelastindex == , if applyied to the same string.

lastgroup
The name of the last matched capturing groug\one if the group didn’t have a name, or if no group was
matched at all.

re
The regular expression object whasatch() orsearch() method produced thislatchObject in-

106 Chapter 4. String Services

stance.

string
The string passed tmatch() or search()

4.2.6 Examples
Simulating scanf()

Python does not currently have an equivalens¢anf() . Regular expressions are generally more powerful,
though also more verbose, thacanf() format strings. The table below offers some more-or-less equivalent
mappings betweescanf() format tokens and regular expressions.

scanf() Token | Regular Expression

%cC l |

%5c {5} |

%d T-+]Ad+

%e %E %f, %g | [-+]2(\d+(\\d*)?\d*\.\d+)([eE]\d+)?]
%i T-+]?(O[xX][\dA-Fa-f]+|0[0-7]*\d+) |
%0 o[o-71* |

%s \S+]

%u \d+ |

%X, %X O[xX][\dA-Fa-f]+]

To extract the filename and numbers from a string like

/usr/sbin/sendmail - O errors, 4 warnings

you would use acanf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be
(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a
RuntimeError exception with the messagaximum recursion limit exceeded. For example,

>>> import re
>>> s = 'Begin ' + 1000*a very long string ' + 'end’
>>> re.match(’'Begin (\w|)*? end’, s).end()
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "/usr/localllib/python2.3/sre.py", line 132, in match

return _compile(pattern, flags).match(string)

RuntimeError: maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of th, pattern are special-cased to avoid recursion. Thus, the above reg-
ular expression can avoid recursion by being reca3egin [a-zA-Z0-9 _]*?end .. As a further benefit,
such regular expressions will run faster than their recursive equivalents.

4.2. re — Regular expression operations 107

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. It uses
format stringgexplained below) as compact descriptions of the lay-out of the C structs and the intended conversion
to/from Python values. This can be used in handling binary data stored in files or from network connections, among
other sources.

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2,..)
Return a string containing the values v2, ... packed according to the given format. The arguments
must match the values required by the format exactly.

unpack (fmt, string
Unpack the string (presumably packedfmck(fmt, ...)) according to the given format. The result is
a tuple even if it contains exactly one item. The string must contain exactly the amount of data required by
the format [en(string) must equatalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious
given their types:

Format | C Type Python Notes
X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char integer
‘h’ short integer
‘H unsigned short integer
i int integer
‘1’ unsigned int long
‘1 long integer
‘L unsigned long long
‘q’ long long long (1)
‘Q unsigned long long long Q)
‘f float float
‘d’ double float
‘s’ char(] string
‘p’ charf] string
‘P void * integer

Notes:

(1) The ‘g’ and ‘Q conversion codes are available in native mode only if the platform C compiler supports C
long long , or, on Windows,__int64 . They are always available in standard modes. New in version
2.2.

A format character may be preceded by an integral repeat count. For example, the form&atktrinmeans
exactly the same @shhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the 5’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; for exampld,0s’ means a single 10-byte string, whilEdc’ means 10 characters. For
packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting
string always has exactly the specified number of bytes. As a special'@sise,means a single, empty string
(while’0c’ means 0 characters).

108 Chapter 4. String Services

The ‘p’ format character encodes a "Pascal string”, meaning a short variable-length string stored in a fixed number
of bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255,
whichever is smaller. The bytes of the string follow. If the string passed patk() is too long (longer than

the count minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1,
it is padded with null bytes so that exactly count bytes in all are used. Note thanfaick() , the p’ format
character consumes count bytes, but that the string returned can never contain more than 255 characters.

Forthe1’,'L’, 'q’ and ‘Q format characters, the return value is a Python long integer.

For the P’ format character, the return value is a Python integer or long integer, depending on the size needed to
hold a pointer when it has been cast to an integer typ&UA L pointer will always be returned as the Python
integer0. When packing pointer-sized values, Python integer or long integer objects may be used. For example,
the Alpha and Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold
the pointer; other platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by
skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of
the packed data, according to the following table:

Character | Byte order Size and alignment
‘@ native native
= native standard
< little-endian standard
> big-endian standard
‘e network (= big-endian) standard

If the first character is not one of thes@ls assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun
processors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compdieméof expression. This is always combined
with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes;int andlong are 4 bytesjong long (__int64 on Windows) is 8 bytesfloat and
double are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference betweei@ and ‘=": both use native byte order, but the size and alignment of the latter is
standardized.

The form 1’ is available for those poor souls who claim they can’t remember whether network byte order is
big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of".

The ‘P’ format character is only available for the native byte ordering (selected as the default or wit® the *
byte order character). The byte order charactéchooses to use little- or big-endian ordering based on the host
system. The struct module does not interpret this as native ordering, 98 foemat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(hhl’, 1, 2, 3)
"\x00\x01\x00\x02\x00\x00\x00\x03’

>>> unpack(hhl’, "\x00\x01\x00\x02\x00\x00\x00\x03")

1, 2, 3)
>>> calcsize(’hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. For example, the forina’ specifies two pad bytes at the end,

4.3. struct — Interpret strings as packed binary data 109

assuming longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect;
standard size and alignment does not enforce any alignment.

See Also:

Modulearray (section 5.11):
Packed binary storage of homogeneous data.

Modulexdrlib (section 12.17):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

classSequenceMatcher
This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
are hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late
1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find
the longest contiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp
algorithm doesn’t address junk). The same idea is then applied recursively to the pieces of the sequences to
the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but does
tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected caseSequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

classDiffer
This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ useSequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of eDiffer delta begins with a two-letter code:
Code | Meaning
- line unique to sequence 1

+ line unique to sequence 2
T line common to both sequences
2 line not present in either input sequence

Lines beginning with? ' attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

context _diff (a, b[fromfile[, tofile [fromfiledat{, tofiledate[, n [Iineterm]]]]]])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in context diff
format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines isrsathigh defaults to three.

By default, the diff control lines (those wittt* or ---) are created with a trailing newline. This is
helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set linetermargument to™ so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings fisomfile tofile, fromfiledate andtofiledate The modification times are
normally expressed in the format returned thye.ctime() . If not specified, the strings default to
blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.

110 Chapter 4. String Services

get _close _matches (word, possibilitieg, n[, cutoff]])

ndiff

Return a list of the best “good enough” matchesrd is a sequence for which close matches are desired
(typically a string), angossibilitiesis a list of sequences against which to matadrd (typically a list of
strings).

Optional argument (default3) is the maximum number of close matches to retarmust be greater than
0.

Optional argumentutoff (default0.6) is a float in the range [0, 1]. Possibilities that don’t score at least
that similar toword are ignored.

The best (no more tham) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches('appel’, ['ape’, 'apple’, 'peach’, 'puppy’])
['apple’, "ape’]

>>> import keyword

>>> get_close_matches('wheel’, keyword.kwlist)

['while’]

>>> get_close_matches('apple’, keyword.kwlist)

I

>>> get_close_matches('accept’, keyword.kwlist)
[except’]

(a, b[Iinejunk[, charjunk]])
Comparea andb (lists of strings); return ®iffer -style delta (a generator generating the delta lines).

Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The defaultisNlone), starting with Python 2.3. Before then, the default was the module-level function
IS _LINE _JUNK() , which filters out lines without visible characters, except for at most one pound char-
acter (#'). As of Python 2.3, the underlyin§equenceMatcher class does a dynamic analysis of which
lines are so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level functit® _CHARACTERIUNK() , which filters out whitespace
characters (a blank or tab; note: bad idea to include newline in this!).

‘Tools/scripts/ndiff.py’ is a command-line front-end to this function.

>>> diff = ndiffCone\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> print ".join(diff),
- one

?
+ ore
o -

two

three
tree
emu

+ + 0

restore (sequence, whigh

Return one of the two sequences that generated a delta.

Given asequenceroduced byDiffer.compare() or ndiff) , extract lines originating from file 1
or 2 (parametewhich), stripping off line prefixes.

Example:

4.4. difflib — Helpers for computing deltas 111

>>> diff = ndiffCone\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print ”.join(restore(diff, 1)),

one

two

three

>>> print ".join(restore(diff, 2)),

ore

tree

emu

unified _diff (a, b, fromfild], tofile [, fromfiledat¢, tofiledatd, n [, lineterm]]]1]])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in unified diff
format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is
set byn which defaults to three.

By default, the diff control lines (those with- , +++, or @ @are created with a trailing newline. This
is helpful so that inputs created frofike.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set linetermargument tc™ so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings fisomfile tofile, fromfiledate andtofiledate The modification times are
normally expressed in the format returned thye.ctime() . If not specified, the strings default to
blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.
IS _LINE _JUNKline)

Return true for ignorable lines. The lifiae is ignorable ifline is blank or contains a singlét*, otherwise
it is not ignorable. Used as a default for paramétexjunkin ndiff() before Python 2.3.

IS _CHARACTERIUNK ch)
Return true for ignorable characters. The characités ignorable ifchis a space or tab, otherwise it is not
ignorable. Used as a default for parametearjunkin ndiff()

See Also:

Pattern Matching: The Gestalt Approach
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was publistiedirobb’s
Journalin July, 1988.

4.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

classSequenceMatcher ([isjunk[, a[b]]])
Optional argumenisjunk must beNone (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Paksiegor b is
equivalent to passinggmbda x: 0 ;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you're comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional argumentsandb are sequences to be compared; both default to empty strings. The elements
of both sequences must be hashable.

112 Chapter 4. String Services

SequenceMatcher objects have the following methods:

set _segs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequencesgtusseg2() to set the commonly used sequence once and
callset _seql() repeatedly, once for each of the other sequences.

set _seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set _seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find _longest _match (alo, ahi, blo, bh)
Find longest matching block ia alo: ahi] andb[blo: bhi] .

If isjunkwas omitted oNone, get _longest _match() returns(i, j, k) suchtha#[i: i+k] isequal
to b[j: j+K] , wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. Forall(V', |, k')
meeting those conditions, the additional condititns= k', i <= ', and ifi == i’,j <= | are also

met. In other words, of all maximal matching blocks, return one that starts earliastimd of all those
maximal matching blocks that start earliesgirreturn the one that starts earliestin

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
0, 4, 5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That preadad’ from
matching the abcd’ at the tail end of the second sequence directly. Instead onllabiw’ can
match, and matches the leftmésibcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
1, o, 4)

If no blocks match, this returnsalo, blo, 0) .

get _matching _blocks ()
Return list of triples describing matching subsequences. Each triple is of the formy n), and means
thata[i: i+n] == b[j: j+n] . The triples are monotonically increasingiiandj.

The last triple is a dummy, and has the va(len(a), len(b), 0) . Itis the only triple withn ==
0.

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks()
[0, 0, 2), (3, 2, 2), (5, 4, 0)]

get _opcodes ()
Return list of 5-tuples describing how to tuarinto b. Each tuple is of the forritag, i1, 2, j1, j2).
The firsttuple hagl == j1 == 0, and remaining tuples havkequal to thaé2 from the preceeding tuple,
and, likewisej1 equal to the previoug.

Thetag values are strings, with these meanings:

Value | Meaning

replace’ al il: i2] should be replaced ly j1: j2] .

‘delete’ a[i1: i2] should be deleted. Note thidt == j2 in this case.

'insert’ b[j1: j2] should be inserted &f i1: i1] . Note thail == i2 in this case.
‘'equal’ alil:i2] == b[j1:]2] (the sub-sequences are equal).

4.4. difflib — Helpers for computing deltas 113

For example:

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)

>>> for tag, il, i2, j1, j2 in s.get_opcodes():
print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %

(tag, i1, i2, ail:i2], j1, j2, b[j1:j2])
delete a[0:1] (q) b[0:0] ()

equal a[l1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)

equal a[4:6] (cd) b[3:5] (cd)

insert a[6:6] () b[5:6] (f)

get _grouped _opcodes ([n])

ratio

Return a generator of groups with uprtéines of context.

Starting with the groups returned gt _opcodes() , this method splits out smaller change clusters and
eliminates intervening ranges which have no changes.
The groups are returned in the same formagets_opcodes() . New in version 2.3.

0
Return a measure of the sequences’ similarity as a float in the range [0, 1].
Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M
/ T. Note that this is1.0 if the sequences are identical, ah@ if they have nothing in common.

This is expensive to computeget _matching _blocks() orget _opcodes() hasn't already been
called, in which case you may want to tguick _ratio() orreal _quick _ratio() first to get an
upper bound.

quick _ratio ()

real

Return an upper bound aatio() relatively quickly.
This isn't defined beyond that it is an upper boundatio() , and is faster to compute.

_quick _ratio ()
Return an upper bound aatio() very quickly.

This isn’t defined beyond that it is an upper boundratio() , and is faster to compute than either
ratio() orquick _ratio()

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, althougiuick _ratio() andreal _quick _ratio() are always at least as large
asratio()

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s ratio()

0.75

>>> s.quick_ratio()

0.75

>>> g.real_quick_ratio()

1.0

4.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

114

Chapter 4. String Services

>>> s = SequenceMatcher(lambda x: x == ,
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thuratip@
value over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you're only interested in where the sequences mageh,_matching _blocks() is handy:

>>> for block in s.get_matching_blocks():

. print "a[%d] and b[%d] match for %d elements" % block
al0] and b[0] match for 8 elements

a[8] and b[17] match for 6 elements

a[14] and b[23] match for 15 elements

a[29] and b[38] match for O elements

Note that the last tuple returned gt _matching _blocks() is always a dummylen(a), len(b),
0) , and this is the only case in which the last tuple element (number of elements matdhed) is

If you want to know how to change the first sequence into the secondetiseopcodes()

>>> for opcode in s.get_opcodes():

. print "%6s a[%d:%d] b[%d:%d]" % opcode
equal af0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:14] b[17:23]

equal a[14:29] b[23:38]

See also the functioget _close _matches() in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

4.4.3 Differ Objects

Note thatDiffer -generated deltas make no claim torbmimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing
a longer diff.

TheDiffer class has this constructor:
classDiffer ([Iinejunk[, charjunk]])
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk. The default
is None, meaning that no line is considered junk.

charjunk A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default idone, meaning that no character is considered junk.
Differ objects are used (deltas generated) via a single method:
compare (a, b
Compare two sequences of lines, and generate the delta (a sequence of lines).
Each sequence must contain individual single-line strings ending with newlines. Such sequences can be

4.4. difflib — Helpers for computing deltas 115

obtained from theeadlines() method of file-like objects. The delta generated also consists of newline-
terminated strings, ready to be printed as-is viawhigelines() method of a file-like object.

4.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained frone#uines() method of file-like objects):

>>> textl = " 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

. ".splitlines(1)

>>> |en(textl)

4

>>> text1[0][-1]

\n'

>>> text2 = ' 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

. ".splitlines(1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiatingRiffer object we may pass functions to filter out line and character “junk.” See
the Differ() constructor for details.

Finally, we compare the two:

>>> result = list(d.compare(textl, text2))

result is alist of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint(result)
[1. Beautiful is better than ugly.\n’,
2. Explicit is better than implicit.\n’,
- 3. Simple is better than complex.\n’,
3. Simple is better than complex.\n’,
? ++

4. Complex is better than complicated.\n’,

’

\n’,

? \n’,
'+ 4. Complicated is better than complex.\n’,
"
+

++++ .
5. Flat is better than nested.\n’]

\n’,

As a single multi-line string it looks like this:

116 Chapter 4. String Services

>>> import sys

>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

+ 3. Simple is better than complex.
? ++
- 4. Complex is better than complicated.
” - .
+ 4. Complicated is better than complex.
? ++++ 7)
+ 5. Flat is better than nested.
4.5 fpformat — Floating point conversions

Thefpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done vig#teng interpolation operator.

Thefpformat module defines the following functions and an exception:

fix (x,dig9
Formatx as[-]ddd.ddd with digsdigits after the point and at least one digit beforedijs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like afigsis an integer.
Return value is a string.
sci (%, dig9

Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedifjs <=
0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like digsis an integer.
Return value is a string.

exceptionNotANumber
Exception raised when a string passefix¢) orsci() as thexparameter does not look like a number.
This is a subclass dfalueError when the standard exceptions are strings. The exception value is the
improperly formatted string that caused the exception to be raised.

Example:

>>> jmport fpformat
>>> fpformat.fix(1.23, 1)
1.2

4.6 StringlO — Read and write strings as files

This module implements a file-like clasitringlO |, that reads and writes a string buffer (also knowmasnory
fileg). See the description of file objects for operations (section 2.2.8).

classStringlO ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, th&tringlO will start empty.

TheStringlO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as Aduaitl (that use the 8th bit) will cause a

4.5. fpformat — Floating point conversions 117

UnicodeError to be raised whegetvalue() is called.
The following methods o8tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before$ienglO object'sclose() method is
called. See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause
this method to rais&nicodeError

close ()
Free the memory buffer.

4.7 cStringl0O — Faster version of StringlO

The modulecStringlO provides an interface similar to that of ti&ringlO module. Heavy use of
StringlO.StringlO objects can be made more efficient by using the funcsitsmglO() from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your
own version using subclassing. Use the origitinglO module in that case.

Unlike the memory files implemented by théringlO module, those provided by this module are not able to
accept Unicode strings that cannot be encoded as p&in strings.

Another difference from th&tringlO module is that callingstringlO() with a string parameter creates a
read-only object. Unlike an object created without a string parameter, it does not have write methods.

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO with a string parameter.

OutputType
The type object of the objects returned by callBtginglO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.8 textwrap — Text wrapping and filling

New in version 2.3.

Thetextwrap module provides two convenience functiomsap() andfill() , as well asTextWrapper
the class that does all the work, and a utility functibedent() . If you're just wrapping or filling one or

two text strings, the convenience functions should be good enough; otherwise, you should use an instance of
TextWrapper for efficiency.

wrap (tex{, width[, ...]])
Wraps the single paragraphtext(a string) so every line is at mogtidth characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attribufBsxé¥Wrapper , documented below.
width defaults to70.

fill (texq, width[, ..]])
Wraps the single paragraphtext, and returns a single string containing the wrapped paragfaifh.
is shorthand for

"\n".join(wrap(text, ...))

In particularfill() accepts exactly the same keyword argumentsrap() .

Bothwrap() andfill() work by creating aextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create

118 Chapter 4. String Services

your ownTextWrapper object.

An additional utility function,dedent() , is provided to remove indentation from strings that have unwanted
whitespace to the left of the text.

dedent (tex®
Remove any whitespace than can be uniformly removed from the left of every liggtin

This is typically used to make triple-quoted strings line up with the left edge of screen/whatever, while still
presenting it in the source code in indented form.

For example:

def test():
end first line with \ to avoid the empty line!
s =™
hello
world

)

print repr(s) # prints ’ hello\n world\n
print repr(dedent(s)) # prints ’hello\n world\n’

classTextWrapper (...)
The TextWrapper constructor accepts a number of optional keyword arguments. Each argument corre-
sponds to one instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

wrapper = TextWrapper()
wrapper.initial_indent = "* "

You can re-use the sam@extWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

TheTextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer thanvidth , TextWrapper guarantees that no output line will be longer thaidth
characters.

expand _tabs
(default: True) If true, then all tab characters itext will be expanded to spaces using the
expand _tabs() method oftext

replace _whitespace
(default: True) If true, each whitespace character (as definedstriing.whitespace) remain-
ing after tab expansion will be replaced by a single spadéote: If expand _tabs is false and
replace _whitespace s true, each tab character will be replaced by a single space, whiait ke
same as tab expansion.

initial _indent
(default:”) String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line.

subsequent _indent
(default:”) String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix _sentence _endings
(default:False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase

4.8. textwrap — Text wrapping and filling 119

letter followed by one of.'”, ‘1 *, or *?’, possibly followed by one of*’ or *’ ’, followed by a space. One
problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

[..] Dr. Frankenstein's monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix _sentence _endings is false by default.

Since the sentence detection algorithm relieswimg.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break _long _words
(default: True) If true, then words longer thamidth will be broken in order to ensure that no lines are
longer tharwidth . If itis false, long words will not be broken, and some lines may be longenfdth .
(Long words will be put on a line by themselves, in order to minimize the amount by whidtth is
exceeded.)

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (tex?)
Wraps the single paragraphtiext(a string) so every line is at mogfdth characters long. All wrapping
options are taken from instance attributes of TextWrapper instance. Returns a list of output lines,
without final newlines.

fill (tex)
Wraps the single paragraphtiext and returns a single string containing the wrapped paragraph.

4.9 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search_function
Register a codec search function. Search functions are expected to take one argument, the encoding
name in all lower case letters, and return a tuple of functipescoder decoder stream.reader,
stream_writer) taking the following arguments:

encoderand decoder These must be functions or methods which have the same interface as the
encode() /decode() methods of Codec instances (see Codec Interface). The functions/methods are
expected to work in a stateless mode.

stream_readerandstream writer: These have to be factory functions providing the following interface:
factory(stream errors='strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors dgtrict’ (raise an exception in case of an encoding erfm@place’ (re-
place malformed data with a suitable replacement marker, suéh)adgnore’ (ignore malformed data
and continue without further noticéymicharrefreplace’ (replace with the appropriate XML char-
acter reference (for encoding only)) althckslashreplace’ (replace with backslashed escape se-
quences (for encoding only)) as well as any other error handling name definedjiger _error()

In case a search function cannot find a given encoding, it should rdtura.

lookup (‘encoding
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

120 Chapter 4. String Services

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found,@kupError is raised. Otherwise, the codecs tuple is stored in
the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions wHmbkupé)
for the codec lookup:

getencoder (encoding
Lookup up the codec for the given encoding and return its encoder function.

Raises d.ookupError in case the encoding cannot be found.

getdecoder (encoding
Lookup up the codec for the given encoding and return its decoder function.

Raises d.ookupError in case the encoding cannot be found.

getreader (encoding
Lookup up the codec for the given encoding and return its StreamReader class or factory function.

Raises d.ookupError in case the encoding cannot be found.

getwriter (encoding
Lookup up the codec for the given encoding and return its StreamWriter class or factory function.

Raises d ookupError in case the encoding cannot be found.

register _error (name, errorhandler)
Register the error handling functi@rror_handler under the nam@&ame error_handler will be called
during encoding and decoding in case of an error, wianeis specified as the errors parameter.

For encodingerror_handlerwill be called with aUnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different exception
or return a tuple with a replacement for the unencodable part of the input and a position where encoding
should continue. The encoder will encode the replacement and continue encoding the original input at the
specified position. Negative position values will be treated as being relative to the end of the input string. If
the resulting position is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the replacement from the error
handler will be put into the output directly.

lookup _error (nameg
Return the error handler previously register under the naanee

Raises d.ookupError in case the handler cannot be found.

strict _errors (exceptiol
Implements thestrict error handling.

replace _errors (exceptiol
Implements theeplace error handling.

ignore _errors (exceptiol
Implements thégnore error handling.

xmicharrefreplace _errors _errors (exception
Implements themicharrefreplace error handling.
backslashreplace _errors _errors (exception

Implements thévackslashreplace error handling.
To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, moc{e encodini, errors[, buffering]]])
Open an encoded file using the giverodeand return a wrapped version providing transparent encod-
ing/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects
for most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encodingspecifies the encoding which is to be used for the the file.

4.9. codecs — Codec registry and base classes 121

errors may be given to define the error handling. It defaultsstact’ which causes &alueError
to be raised in case an encoding error occurs.

bufferinghas the same meaning as for the builepen() function. It defaults to line buffered.

EncodedFile (file, inpul[, outpu{, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the giygn encoding and then written to
the original file as strings using tleitputencoding. The intermediate encoding will usually be Unicode
but depends on the specified codecs.

If outputis not given, it defaults tinput.

errors may be given to define the error handling. It defaultstact’ , which cause¥alueError to
be raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

BOM

BOMBE

BOMLE

BOMUTF8

BOMUTF16

BOMUTF16_BE

BOMUTF16_LE

BOMUTF32

BOMUTF32_BE

BOMUTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOMUTF16 is eitherBOMUTF16_BE or BOMUTF16_LE depending on the platform’s native byte or-
der,BOMs an alias foBOMUTF16, BOMLE for BOMUTF16_LE andBOMBE for BOMUTF16_BE
The others represent the BOM in UTF-8 and UTF-32 encodings.

See Also:

http://sourceforge.net/projects/python-codecs/
A SourceForge project working on additional support for Asian codecs for use with Python. They are in the
early stages of development at the time of this writing — look in their FTP area for downloadable files.

4.9.1 Codec Base Classes

Thecodecs defines a set of base classes which define the interface and can also be used to easily write you own
codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, thecode() anddecode() methods may implement different
error handling schemes by providing teeors string argument. The following string values are defined and
implemented by all standard Python codecs:

Value Meaning

strict’ RaiseUnicodeError (or a subclass); this is the default.

'ignore’ Ignore the character and continue with the next.

'replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPL,
'xmlcharrefreplace’ Replace with the appropriate XML character reference (only for encoding).
'backslashreplace’ Replace with backslashed escape sequences (only for encoding).

122 Chapter 4. String Services

The set of allowed values can be extendedre@ister _error

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

encode (input[, errors])
Encodes the objedhput and returns a tuple (output object, length consumed). While codecs are not re-
stricted to use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string
using a particular character set encoding (€gl252 oriso-8859-1).

errors defines the error handling to apply. It defaultsdtict’ handling.

The method may not store state in thedec instance. Us&treamCodec for codecs which have to keep

state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

decode (input[, errors])
Decodes the objedhput and returns a tuple (output object, length consumed). In a Unicode context,
decoding converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides thé _getreadbuf buffer slot. Python strings, buffer objects
and memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in thedec instance. Us&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encodings submodules very easily. Gemdings.utf _8 for an example on how this is
done.

StreamWriter Objects

TheStreamWriter class is a subclass Gfodec and defines the following methods which every stream writer
must define in order to be compatible to the Python codec registry.

classStreamWriter (strean{, errors])
Constructor for é&streamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing (binary) data.

The StreamWriter may implement different error handling schemes by providingetiiers keyword
argument. These parameters are predefined:

e’strict’ RaiseValueError (or a subclass); this is the default.

e’ignore’ Ignore the character and continue with the next.

e'replace’ Replace with a suitable replacement character

e’xmicharrefreplace’ Replace with the appropriate XML character reference
e’backslashreplace’ Replace with backslashed escape sequences.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime &titb@mWriter
object.

The set of allowed values for tlegrors argument can be extended wittgister _error()

4.9. codecs — Codec registry and base classes 123

write (objec)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusingite€) method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, tBeeamWriter must also inherit all other methods and attribute from the
underlying stream.

StreamReader Objects

TheStreamReader class is a subclass @odec and defines the following methods which every stream reader
must define in order to be compatible to the Python codec registry.

classStreamReader (strean{, errors])
Constructor for &streamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providingetiiers keyword
argument. These parameters are defined:

eo’strict’ RaiseValueError (or a subclass); this is the default.
e’'ignore’ Ignore the character and continue with the next.
e'replace’ Replace with a suitable replacement character.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime &titb@mReader
object.

The set of allowed values for tlegrors argument can be extended wittgister _error()
read ([size])
Decodes data from the stream and returns the resulting object.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes.
The decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as
much as possiblesizeis intended to prevent having to decode huge files in one step.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within
the definition of the encoding and the given size, e.g. if optional encoding endings or state markers are
available on the stream, these should be read too.

readline ([size])
Read one line from the input stream and return the decoded data.

Unlike thereadlines() method, this method inherits the line breaking knowledge from the underlying
stream’sreadline() method — there is currently no support for line breaking using the codec decoder
due to lack of line buffering. Sublcasses should however, if possible, try to implement this method using
their own knowledge of line breaking.

size if given, is passed as size argument to the streagaidline() method.

readlines ([sizehint])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list entries.
sizehint if given, is passed asizeargument to the stream’sad() method.

124 Chapter 4. String Services

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, tBeeamReader must also inherit all other methods and attribute from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may
provide useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned lyothep() function to construct the
instance.

classStreamReaderWriter (stream, Reader, Writer, erroys
Creates &treamReaderWriter instance.streammust be a file-like objectReaderand Writer must
be factory functions or classes providing tBeeamReader andStreamWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaceSteamReader andStreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned kgothep() function to construct the
instance.

classStreamRecoder (stream, encode, decode, Reader, Writer, ejrors
Creates &treamRecoder instance which implements a two-way conversiencodeanddecodework
on the frontend (the input teead() and output ofwrite()) while Readerand Writer work on the
backend (reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
streammust be a file-like object.

encode decodemust adhere to th€odec interface,Reader Writer must be factory functions or classes
providing objects of the th8treamReader andStreamWriter interface respectively.

encodeanddecodeare needed for the frontend translati®®®aderandWriter for the backend translation.
The intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use
Unicode as intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaceSwéamReader andStreamWriter classes.
They inherit all other methods and attribute from the underlying stream.

4.9.2 Standard Encodings

Python comes with a number of codecs builtin, either implemented as C functions, or with dictionaries as mapping

tables. The following table lists the codecs by name, together with a few common aliases, and the languages for
which the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive.

Notice that spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid
aliases.

4.9. codecs — Codec registry and base classes 125

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

e an ISO 8859 codeset

e a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control
characters with additional graphic characters

e an IBM EBCDIC code page

e an IBM PC code page, which isscii compatible

Codec Aliases Languages
ascii 646, us-ascii English
cp037 IBM037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, 1BM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Europe
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedonian, Russian, Serbi
cp856 Hebrew
cp857 857, IBM857 Turkish
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwegian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cpl006 Urdu
cp1026 ibm1026 Turkish
cp1140 ibm1140 Western Europe
cpl250 windows-1250 Central and Eastern Europe
cpl251 windows-1251 Bulgarian, Byelorussian, Macedonian, Russian, Serbi
cpl252 windows-1252 Western Europe
cp1253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl1256 windows1256 Arabic
cpl257 windows-1257 Baltic languages
cpl1258 windows-1258 Vietnamese
latin_1 is0-8859-1, is08859-1, 8859, cp819, latin, latinl, L West Europe
is08859 2 is0-8859-2, latin2, L2 Central and Eastern Europe
is08859 3 is0-8859-3, latin3, L3 Esperanto, Maltese
i508859 4 iS0-8859-4, latin4, L4 Baltic languagues
is08859 5 is0-8859-5, cyrillic Bulgarian, Byelorussian, Macedonian, Russian, Serbi
508859 6 is0-8859-6, arabic Arabic
is08859 7 is0-8859-7, greek, greek8 Greek
i508859 8 i50-8859-8, hebrew Hebrew
is08859 9 is0-8859-9, latin5, L5 Turkish
is08859 10 | is0-8859-10, latinG, L6 Nordic languages
is08859 13 | is0-8859-13 Baltic languages
126 Chapter 4. String Services

Codec Aliases Languages

is08859 14 | is0-8859-14, latin8, L8 Celtic languages
is08859 15 | is0-8859-15 Western Europe

koi8_r Russian

koi8_u Ukrainian

mac_cyrillic | maccyrillic Bulgarian, Byelorussian, Macedonian, Russian, Serbi
mac_greek | macgreek Greek

mac_iceland | maciceland Icelandic

mac_latin2 | maclatin2, maccentraleurope Central and Eastern Europe
mac_roman | macroman Western Europe
mac_turkish | macturkish Turkish

utf_16 U16, utflé all languages

utf_16_be UTF-16BE all languages (BMP only)
utf_16_le UTF-16LE all languages (BMP only)
utf_7 u7 all languages

utf_8 U8, UTF, utf8 all languages

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don't convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery
that any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the
“decoding” direction is listed as operand type in the table.

Codec Aliases Operand type | Purpose

base64.codec base64, base-64 byte string Convert operand to MIME base64
hex_codec hex byte string Convert operand to hexadecimal repres
idna Unicode string| Implements RFC 3490. New in version
mbcs dbcs Unicode string| Windows only: Encode operand accord
palmos Unicode string| Encoding of PalmOS 3.5

punycode Unicode string| Implements RFC 3492. New in version
qguopri_codec quopri, quoted-printable, quotedprintahlebyte string Convert operand to MIME quoted printa
raw_unicode_escape Unicode string| Produce a string that is suitable as raw |
rot_13 rotl3 byte string Returns the Caesar-cypher encryption c
string_escape byte string Produce a string that is suitable as strin
undefined any Raise an exception for all conversion. C
unicode_escape Unicode string| Produce a string that is suitable as Unic
unicode_internal Unicode string| Return the internal represenation of the
uu_codec uu byte string Convert the operand using uuencode
zlib_codec zip, zlib byte string Compress the operand using gzip

4.9.3 encodings.idna

New in version 2.3.

— Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds uponpilveycode encoding and

stringprep

These RFCs together define a protocol to supporta®oH characters in domain names. A domain name contain-
ing nonAscli characters (such as “www.Alliancefrangaise.nu”) is converted inteasami-compatible encoding

(ACE, such as “www.xn—alliancefranaise-npb.nu”). The ACE form of the domain name is then used in all places
where arbitrary characters are not allowed by the protocol, such as DNS queries,Hd3iT Flelds, and so on.

This conversion is carried out in the application; if possible invisible to the user: The application should trans-
parently convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before
presenting them to the user.

4.9. codecs — Codec registry and base classes 127

Python supports this conversion in several ways: il codec allows to convert between Unicode and the

ACE. Furthermore, theocket module transparently converts Unicode host names to ACE, so that applications
need not be concerned about converting host names themselves when they pass them to the socket module. On top
of that, modules that have host names as function parameters, shtthléis andftplib , accept Unicode

host namesttplib then also transparently sends an IDNA hostname irdtise: field if it sends that field at

all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode
is performed: Applications wishing to present such host names to the user should decode them to Unicode.

The moduleencodings.idna also implements the nameprep procedure, which performs certain normaliza-
tions on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

nameprep (label)
Return the nameprepped version label. The implementation currently assumes query strings, so
AllowUnassigned s true.

ToASCII (label)
Convert a label tascii, as specified in RFC 349QUseSTD3ASCIIRules is assumed to be false.

ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

4.10 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based onutieotleData.txt’ file version 3.2.0 which is publically
available fromftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.2.0 (see
http://www.unicode.org/Public/lUNIDATA/UnicodeData.html). It defines the following functions:

lookup (namg
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found<eyError is raised.

name(unichr[, default])
Returns the name assigned to the Unicode charactehr as a string. If no name is definedefaultis
returned, or, if not givenyalueError s raised.

decimal (unichr[, default])
Returns the decimal value assigned to the Unicode chanawcighr as integer. If no such value is defined,
defaultis returned, or, if not giver\ValueError is raised.

digit (unichi, defaul])
Returns the digit value assigned to the Unicode charagt®hr as integer. If no such value is defined,
defaultis returned, or, if not giveriValueError s raised.

numeric (unichr[, default])
Returns the numeric value assigned to the Unicode charaiehr as float. If no such value is defined,
defaultis returned, or, if not giveriValueError is raised.

category (‘unichr)
Returns the general category assigned to the Unicode chauadtér as string.

bidirectional (‘unichr)
Returns the bidirectional category assigned to the Unicode charattdr as string. If no such value is
defined, an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode chanaicteras integer. Return® if no
combining class is defined.

128 Chapter 4. String Services

mirrored (unichr)
Returns the mirrored property of assigned to the Unicode charantehr as integer. Returns if the
character has been identified as a “mirrored” character in bidirectionabtetherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode chamadtteas string. An empty
string is returned in case no such mapping is defined.

normalize (form, unist)
Return the normal fornfiorm for the Unicode stringunistr. Valid values forform are 'NFC’, 'NFKC’,
'NFD’, and 'NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)

can also be expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING
CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD)
is also known as canonical decomposition, and translates each character into its decomposed form. Normal
form C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For
example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL
LETTER I). However, it is supported in Unicode for compatibility with existing character sets (e.g. gh2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility
characters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposi-
tion, followed by the canonical composition.

New in version 2.3.
In addition, the module exposes the following constant:

unidata _version
The version of the Unicode database used in this module.

New in version 2.3.

4.11 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications
for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it
should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only
identifications consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto
the wire, they are processed with the preparation procedure, after which they have a certain normalized form. The
RFC defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and
what other optional parts of thetringprep ~ procedure are part of the profile. One example stirengprep

profile isnameprep , which is used for internationalized domain names.

The modulestringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The module
source code itself was generated usingrttiestringprep.py utility.

As aresult, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a seitingprep provides the “characteristic function”, i.e. a function that returns true

if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

in _table _al(codd
Determine whethetodeis in tableA.1 (Unassigned code points in Unicode 3.2).

4.11. stringprep — Internet String Preparation 129

in

_table _b1(code
Determine whethetodeis in tableB.1 (Commonly mapped to nothing).

map_table _b2(code

Return the mapped value foodeaccording to tableB.2 (Mapping for case-folding used with NFKC).

map_table _b3(code

Return the mapped value foodeaccording to tableB.3 (Mapping for case-folding used with no normaliza-
tion).

_table _cl1(codg
Determine whethetodeis in tableC.1.1 (ASCII space characters).

_table _cl12(codg
Determine whethetodeis in tableC.1.2 (Non-ASCII space characters).

_table _cl11 _c12(code
Determine whethetodeis in tableC.1 (Space characters, union of C.1.1 and C.1.2).

_table _c21(codg
Determine whethetodeis in tableC.2.1 (ASCII control characters).

_table _c22(codg
Determine whethetodeis in tableC.2.2 (Non-ASCII control characters).

_table _c21 _c22(code
Determine whethetodeis in tableC.2 (Control characters, union of C.2.1 and C.2.2).

_table _c3(code
Determine whethetodeis in tableC.3 (Private use).

_table _c4(code
Determine whethetodeis in tableC.4 (Non-character code points).

_table _c5(codg
Determine whethetodeis in tableC.5 (Surrogate codes).

_table _c6(code
Determine whethetodeis in tableC.6 (Inappropriate for plain text).

_table _c7(code
Determine whethetodeis in tableC.7 (Inappropriate for canonical representation).

_table _c8(code
Determine whethetodeis in tableC.8 (Change display properties or are deprecated).

_table _c9(codg
Determine whethetodeis in tableC.9 (Tagging characters).

_table _d1(code
Determine whethetodeis in tableD.1 (Characters with bidirectional property “R” or “AL”).

_table _d2(code
Determine whethetodeis in tableD.2 (Characters with bidirectional property “L").

130 Chapter 4. String Services

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions.
Here’s an overview:

pydoc Documentation generator and online help system.

doctest A framework for verifying examples in docstrings.

unittest Unit testing framework for Python.

test.test _support Regression tests package containing the testing suite for Python.

math Mathematical functionssfn() etc.).

cmath Mathematical functions for complex numbers.

random Generate pseudo-random numbers with various common distributions.

whrandom Floating point pseudo-random number generator.

bisect Array bisection algorithms for binary searching.

heapq Heap queue algorithm (a.k.a. priority queue).

array Efficient arrays of uniformly typed numeric values.

sets Implementation of sets of unique elements.

itertools Functions creating iterators for efficient looping.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
xreadlines Efficient iteration over the lines of a file.

calendar Functions for working with calendars, including some emulation of thexital program.
cmd Build line-oriented command interpreters.

shlex Simple lexical analysis for Nix shell-like languages.

5.1 pydoc — Documentation generator and online help system

New in version 2.1.

The pydoc module automatically generates documentation from Python modules. The documentation can be
presented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in functionhelp() invokes the online help system in the interactive interpreter, whichus#sc to

generate its documentation as text on the console. The same text documentation can also be viewed from outside
the Python interpreter by runningydoc as a script at the operating system’s command prompt. For example,
running

pydoc sys

at a shell prompt will display documentation on thes module, in a style similar to the manual pages shown by
the UNIX man command. The argument piydoc can be the name of a function, module, or package, or a dotted
reference to a class, method, or function within a module or module in a package. If the argupettdtooks

like a path (that is, it contains the path separator for your operating system, such as a slash)jrabd refers to

an existing Python source file, then documentation is produced for that file.

131

Specifying aw flag before the argument will cause HTML documentation to be written out to a file in the current
directory, instead of displaying text on the console.

Specifying a-k flag before the argument will search the synopsis lines of all available modules for the keyword
given as the argument, again in a manner similar to thexUnan command. The synopsis line of a module is
the first line of its documentation string.

You can also uspydoc to start an HTTP server on the local machine that will serve documentation to visiting
Web browserspydoc -p 1234will start a HTTP server on port 1234, allowing you to browse the documentation
athttp://localhost: 1234/ in your preferred Web browsepydoc -gwill start the server and additionally
bring up a smallrkinter -based graphical interface to help you search for documentation pages.

Whenpydocgenerates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spamdocuments precisely the version of the module you would get if you started the Python interpreter
and typedimport spam '

5.2 doctest — Test docstrings represent reality

Thedoctest module searches a module’s docstrings for text that looks like an interactive Python session, then
executes all such sessions to verify they still work exactly as shown. Here’s a complete but small example:

132 Chapter 5. Miscellaneous Services

This is module example.
Example supplies one function, factorial. For example,

>>> factorial(5)
120

def factorial(n):
""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]

>>> factorial(30)
265252859812191058636308480000000L
>>> factorial(30L)
265252859812191058636308480000000L
>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

OverflowError: n too large

5.2. doctest — Test docstrings represent reality 133

If you run ‘example.py’ directly from the command linejoctest

import math
if not n >= 0:
raise ValueError("n must be >= 0")
if math.floor(n) != n:
raise ValueError("n must be exact integer")

if n+1 == n: # catch a value like 1e300
raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:
try:

result *= factor
except OverflowError:
result *= long(factor)
factor += 1
return result

def _test():
import doctest, example
return doctest.testmod(example)

if _name__ == "_ main__"
_test()

$ python example.py
$

works its magic:

There’s no output! That's normal, and it means all the examples worked. -P&sshe script, andloctest
prints a detailed log of what it's trying, and prints a summary at the end:

$ python example.py -v

Running example.__doc__

Trying: factorial(5)

Expecting: 120

ok

0 of 1 examples failed in example.__doc__
Running example.factorial.__doc___

Trying: [factorial(n) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: [factorial(long(n)) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: factorial(30)

Expecting: 265252859812191058636308480000000L
ok

And so on, eventually ending with:

134

Chapter 5. Miscellaneous Services

Trying: factorial(1e100)
Expecting:
Traceback (most recent call last):

OverflowError: n too large
ok
0 of 8 examples failed in example.factorial.__doc__
2 items passed all tests:
1 tests in example
8 tests in example.factorial
9 tests in 2 items.
9 passed and O failed.
Test passed.
$

That's all you need to know to start making productive usdaftest ! Jump in. The docstrings indbctest.py’
contain detailed information about all aspectslo€test , and we’ll just cover the more important points here.

5.2.1 Normal Usage

In normal use, end each modWNewith:

def _test():
import doctest, M # replace M with your module’s name
return doctest.testmod(M) # ditto

if _name__ == "_ main__"
_test()

If you want to test the module as the main module, you don'’t need to passédttood() ; in this case, it will
test the current module.

Then running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won't display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of outpuTest failed.’

Run it with the-v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at the end.

You can force verbose mode by passiuggbose=1 totestmod() , or prohibitit by passingerbose=0 . In
either of those casesys.argv is not examined byestmod()

In any casetestmod() returns a 2-tuple of intéf, t), wheref is the number of docstring examples that failed
andt is the total number of docstring examples attempted.

5.2.2 Which Docstrings Are Examined?

See the docstrings imléctest.py’ for all the details. They're unsurprising: the module docstring, and all function,
class and method docstrings are searched. Optionally, the tester can be directed to exclude docstrings attached to

5.2. doctest — Test docstrings represent reality 135

objects with private names. Objects imported into the module are not searched.

In addition, if M. __test __ exists and "is true”, it must be a dict, and each entry maps a (string) name to

a function object, class object, or string. Function and class object docstrings foundvfrontest __ are
searched even if the the tester has been directed to skip over private names in the rest of the module. In output, a
keyKin M.__test __ appears with name

<name of M>_ test_ K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested
classes. While private hames reached fribt® globals can be optionally skipped, all names reached from
M.__test __ are searched.

5.2.3 What's the Execution Context?

By default, each timéestmod() finds a docstring to test, it usescapyof Ms globals, so that running tests

on a module doesn’t change the module’s real globals, and so that one késairt leave behind crumbs that
accidentally allow another test to work. This means examples can freely use any names defined at topdlevel in
and names defined earlier in the docstring being run.

You can force use of your own dict as the execution context by pagbifig=your _dict to testmod()
instead. Presumably this would be a copybf__dict __ merged with the globals from other imported modules.

5.2.4 What About Exceptions?

No problem, as long as the only output generated by the example is the traceback itself. For example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list
>>>

Note that only the exception type and value are compared (specifically, only the last line in the traceback). The
various “File” lines in between can be left out (unless they add significantly to the documentation value of the
example).

5.2.5 Advanced Usage

Several module level functions are available for controlling how doctests are run.

debug (module, namge
Debug a single docstring containing doctests.

Provide themodule(or dotted name of the module) containing the docstring to be debugged andrtige
(within the module) of the object with the docstring to be debugged.

The doctest examples are extracted (see fundéstsource()), and written to a temporary file. The
Python debuggepdb, is then invoked on that file. New in version 2.3.

testmod ()
This function provides the most basic interface to the doctests. It creates a local instance Désfess,
runs appropriate methods of that class, and merges the results into theTgetml instancemaster .

To get finer control thatestmod() offers, create an instance déster with custom policies, or run
methods omaster directly. SeeTester. __doc __ for details.

136 Chapter 5. Miscellaneous Services

testsource (module, name

Extract the doctest examples from a docstring.

Provide themodule(or dotted name of the module) containing the tests to be extracted andrttegwithin
the module) of the object with the docstring containing the tests to be extracted.

The doctest examples are returned as a string containing Python code. The expected output blocks in the
examples are converted to Python comments. New in version 2.3.

DocTestSuite ([module])

Convert doctest tests for a module torattest . TestSuite

The returnedrestSuite is to be run by the unittest framework and runs each doctest in the module. If
any of the doctests falil, then the synthesized unit test fails, dbdcd estTestFailure exception is
raised showing the name of the file containing the test and a (sometimes approximate) line number.

The optionalmoduleargument provides the module to be tested. It can be a module object or a (possibly
dotted) module name. If not specified, the module calling this function is used.

Example using one of the many ways that timéitest ~ module can use @estSuite

import unittest
import doctest
import my_module_with_doctests

suite = doctest.DocTestSuite(my_module_with_doctests)
runner = unittest.TextTestRunner()
runner.run(suite)

New in version 2.3. Warning: This function does not currently searbh __test __ and its search
technique does not exactly mattdstmod() in every detail. Future versions will bring the two into
convergence.

5.2.6 How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine—just make sure the leading whitespace
is rigidly consistent (you can mix tabs and spaces if you're too lazy to do it rightddctest is not in the
business of guessing what you think a tab means).

>>> # comments are ignored

>>> x = 12

>>> X

12

>>> jf x == 13:
print "yes"

. else:
print "no"
print "NO"
print "NO!I!"

no

NO

NO!!M

>>>

Any expected output must immediately follow the fifrab> ' or’... "’ line containing the code, and the

expected output (if any) extends to the next> or all-whitespace line.

The fine print:

e Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected

output.

5.2. doctest — Test docstrings represent reality

137

e Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different

means).

¢ If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you

need to double the backslash in the docstring version. This is simply because you're in a string, and so the
backslash must be escaped for it to survive intact. Like:

>>> if "yes" == \\
"yt + o\
"es":
print 'yes’
yes

e The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math
>>> math.floor(1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in the initial
'>>> ' line that triggered it.

5.2.7 Warnings

1. doctest is serious about requiring exact matches in expected output. If even a single character doesn't

match, the test fails. This will probably surprise you a few times, as you learn exactly what Python does
and doesn’t guarantee about output. For example, when printing a dict, Python doesn’t guarantee that the
key-value pairs will be printed in any particular order, so a test like

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}
>>>

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
1
>>>

instead. Another is to do

>>> d = foo().items()
>>> d.sort()
>>> d

[(Harry’, ’broomstick’), ('Hermione’, 'hippogryph’)]

There are others, but you get the idea.
Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>>

138

Chapter 5. Miscellaneous Services

Floating-point numbers are also subject to small output variations across platforms, because Python defers
to the platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285

>>> print 1./7 # safer
0.142857142857

>>> print round(1./7, 6) # much safer
0.142857

Numbers of the formi/2.**J are safe across all platforms, and | often contrive doctest examples to
produce numbers of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

2. Be careful if you have code that must only execute once.
If you have module-level code that must only execute once, a more foolproof definitidagif) is

def _test():
import doctest, sys
doctest.testmod()

3. WYSIWYG isn't always the case, starting in Python 2.3. The string form of boolean results changed from
‘0" and'l’ to’False’ and'True’ in Python 2.3. This makes it clumsy to write a doctest showing
boolean results that passes under multiple versions of Python. In Python 2.3, by default, and as a special
case, if an expected output block consists solely0bf and the actual output block consists solely of
‘False’ , that’s accepted as an exact match, and similarlyXor versus'True’ . This behavior can
be turned off by passing the new (in 2.3) module consRE@NTACCEPTTRUE_FOR_1 as the value
of testmod() 's new (in 2.3) optionabptionflagsargument. Some years after the integer spellings of
booleans are history, this hack will probably be removed again.

5.2.8 Soapbox

The first word in “doctest” is “doc,” and that’s why the author wrdtectest : to keep documentation up to date.
It so happens thatoctest makes a pleasant unit testing environment, but that’s not its primary purpose.

Choose docstring examples with care. There’s an art to this that needs to be learned—it may not be natural at
first. Examples should add genuine value to the documentation. A good example can often be worth many words.
If possible, show just a few normal cases, show endcases, show interesting subtle cases, and show an example
of each kind of exception that can be raised. You're probably testing for endcases and subtle cases anyway in an
interactive shell:doctest wants to make it as easy as possible to capture those sessions, and will verify they
continue to work as designed forever after.

If done with care, the examples will be invaluable for your users, and will pay back the time it takes to collect
them many times over as the years go by and things change. I'm still amazed at how often onécatesy
examples stops working after a “harmless” change.

For exhaustive testing, or testing boring cases that add no value to the docs, defitesta __ dict instead.
That's what it's for.

5.3 unittest — Unit testing framework

5.3. unittest =~ — Unit testing framework 139

New in version 2.1.

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of JUnit, by Kent
Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent's Smalltalk testing framework. Each is the de
facto standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into collections,
and independence of the tests from the reporting framework umhiest module provides classes that make
it easy to support these qualities for a set of tests.

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixturerepresents the preparation needed to perform one or more tests, and any associate cleanup
actions. This may involve, for example, creating temporary or proxy databases, directories, or starting a
server process.

test case
A test casds the smallest unit of testing. It checks for a specific response to a particular set of inputs.
PyUnit provides a base clasggstCase , which may be used to create new test cases.

test suite
A test suiteis a collection of test cases, test suites, or both. It is used to aggregate tests that should be
executed together.

test runner
A test runnelis a component which orchestrates the execution of tests and provides the outcome to the user.
The runner may use a graphical interface, a textual interface, or return a special value to indicate the results
of executing the tests.

The test case and test fixture concepts are supported througkgt@ase andFunctionTestCase classes;

the former should be used when creating new tests, and the latter can be used when integrating existing test code
with a PyUnit-driven framework. When building test fixtures uslregtCase , thesetUp() andtearDown()

methods can be overridden to provide initialization and cleanup for the fixture. PAliticitionTestCase

existing functions can be passed to the constructor for these purposes. When the test is run, the fixture initialization
is run first; if it succeeds, the cleanup method is run after the test has been executed, regardless of the outcome of
the test. Each instance of thiestCase will only be used to run a single test method, so a new fixture is created

for each test.

Test suites are implemented by testSuite class. This class allows individual tests and test suites to be
aggregated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single metlmod() , which accepts destCase or TestSuite

object as a parameter, and returns a result object. TheTdmstResult is provided for use as the result object.
PyUnit provide theTextTestRunner as an example test runner which reports test results on the standard error
stream by default. Alternate runners can be implemented for other environments (such as graphical environments)
without any need to derive from a specific class.

See Also:

PyUnit Web Site
(http://pyunit.sourceforge.net/)
The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http://www.XProgramming.com/testfram.htm)
Kent Beck’s original paper on testing frameworks using the pattern shareditbgst

5.3.1 Minimal example

Theunittest module provides a rich set of tools for constructing and running tests. This section demonstrates
that a small subset of the tools suffice to meet the needs of most users.

140 Chapter 5. Miscellaneous Services

Here is a short script to test three functions fromittiedom module:

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

def setUp(self):
self.seq = range(10)

def testshuffle(self):
make sure the shuffled sequence does not lose any elements
random.shuffle(self.seq)
self.seq.sort()
self.assertEqual(self.seq, range(10))

def testchoice(self):
element = random.choice(self.seq)
self.assert_(element in self.seq)

def testsample(self):
self.assertRaises(ValueError, random.sample, self.seq, 20)
for element in random.sample(self.seq, 5):
self.assert_(element in self.seq)

’ ’

if name__ ==' main__"
unittest.main()

A testcase is created by subclassimittest. TestCase . The three individual tests are defined with methods
whose names start with the lettéest . This naming convention informs the test runner about which methods
represent tests.

The crux of each test is a call mssertEqual() to check for an expected resulissert _() to verify
a condition; orassertRaises() to verify that an expected exception gets raised. These methods are used
instead of theassert statement so the test runner can accumulate all test results and produce a report.

When asetUp() method is defined, the test runner will run that method prior to each test. Likewise, if
atearDown() method is defined, the test runner will invoke that method after each test. In the example,
setUp() was used to create a fresh sequence for each test.

The final block shows a simple way to run the testsittest.main() provides a command line interface to
the test script. When run from the command line, the above script produces an output that looks like this:

Ran 3 tests in 0.000s

OK

Instead ofunittest.main() , there are other ways to run the tests with a finer level of control, less terse
output, and no requirement to be run from the command line. For example, the last two lines may be replaced
with:

suite = unittest.TestSuite()
suite.addTest(unittest. makeSuite(TestSequenceFunctions))
unittest. TextTestRunner(verbosity=2).run(suite)

Running the revised script from the interpreter or another script produces the following output:

5.3. unittest ~ — Unit testing framework 141

testchoice (__main__.TestSequenceFunctions) ... ok
testsample (__main__.TestSequenceFunctions) ... ok
testshuffle (__main__.TestSequenceFunctions) ... ok

Ran 3 tests in 0.110s

OK

The above examples show the most commonly ussittest features which are sufficient to meet many
everyday testing needs. The remainder of the documentation explores the full feature set from first principles.

5.3.2 Organizing test code

The basic building blocks of unit testing atest cases— single scenarios that must be set up and checked for
correctness. In PyUnit, test cases are represented by instanceJeftliase class in thaunittest ~ module.
To make your own test cases you must write subclasséssifCase , or useFunctionTestCase

An instance of & estCase -derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of destCase instance should be entirely self contained, such that it can be run either in
isolation or in arbitrary combination with any number of other test cases.

The simplest test case subclass will simply overridertimest() method in order to perform specific testing
code:

import unittest

class DefaultWidgetSizeTestCase(unittest. TestCase):
def runTest(self):
widget = Widget("The widget")
self.failUnless(widget.size() == (50,50), ’incorrect default size’)

Note that in order to test something, we use the one ofaisert*() or fail*() methods provided by

the TestCase base class. If the test fails when the test case runs, an exception will be raised, and the testing
framework will identify the test case adailure. Other exceptions that do not arise from checks made through the
assert*() andfail*() methods are identified by the testing framework as dfnerrors.

The way to run a test case will be described later. For now, note that to construct an instance of such a test case,
we call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a
“Widget” in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method atép() , which the testing frame-
work will automatically call for us when we run the test:

142 Chapter 5. Miscellaneous Services

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.failUnless(self.widget.size() == (50,50),
'incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

If thesetUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and thranTest() method will not be executed.

Similarly, we can provide gearDown() method that tidies up after thenTest() = method has been run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

If setUp() succeeded, theearDown() method will be run regardless of whether or mohTest() suc-
ceeded.

Such a working environment for the testing code is callégtare

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes sucbhafaultWidgetSizeTestCase
This is time-consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

def testDefaultSize(self):
self.failUnless(self.widget.size() == (50,50),
'incorrect default size’)

def testResize(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

5.3. unittest = — Unit testing framework 143

Here we have not providedranTest() method, but have instead provided two different test methods. Class
instances will now each run one of ttest*() methods, withself.widget created and destroyed separately

for each instance. When creating an instance we must specify the test method it is to run. We do this by passing
the method name in the constructor:

defaultSizeTestCase = WidgetTestCase("testDefaultSize")
resizeTestCase = WidgetTestCase("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mechanism for this:
thetest suite , represented by the clagestSuite in theunittest module:

widgetTestSuite = unittest.TestSuite()
widgetTestSuite.addTest(WidgetTestCase("testDefaultSize"))
widgetTestSuite.addTest(WidgetTestCase("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object
that returns a pre-built test suite:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase("testDefaultSize"))
suite.addTest(WidgetTestCase("testResize"))
return suite

or even:

class WidgetTestSuite(unittest. TestSuite):
def __init__ (self):
unittest. TestSuite.__init__(self,map(WidgetTestCase,
("testDefaultSize",
"testResize")))

(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to creat@estCase subclass with many similarly named test functions, there is a
convenience function calletiakeSuite() provided in theunittest module that constructs a test suite that
comprises all of the test cases in a test case class:

suite = unittest.makeSuite(WidgetTestCase,’test’)

Note that when using thmakeSuite() function, the order in which the various test cases will be run by the
test suite is the order determined by sorting the test function names usiogie built-in function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, sincdestSuite instances can be added tGestSuite just asTestCase instances can be added to
aTestSuite

suitel = modulel.TheTestSuite()
suite2 = module2.TheTestSuite()
alltests = unittest. TestSuite((suitel, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to test (e.g.
‘widget.py’), but there are several advantages to placing the test code in a separate module \sidghtests.py’:

144 Chapter 5. Miscellaneous Services

e The test module can be run standalone from the command line.

e The test code can more easily be separated from shipped code.

e There is less temptation to change test code to fit the code it tests without a good reason.

e Test code should be modified much less frequently than the code it tests.

e Tested code can be refactored more easily.

e Tests for modules written in C must be in separate modules anyway, so why not be consistent?

o If the testing strategy changes, there is no need to change the source code.

5.3.3 Re-using old test code

Some users will find that they have existing test code that they would like to run from PyUnit, without converting
every old test function to destCase subclass.

For this reason, PyUnit providesFunctionTestCase class. This subclass dfestCase can be used to
wrap an existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
..

one can create an equivalent test case instance as follows:

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they
can also be provided:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: PyUnit supports the use éfssertionError as an indicator of test failure, but does not recommend it.
Future versions may treaissertionError differently.

5.3.4 Classes and functions

classTestCase ()
Instances of th@estCase class represent the smallest testable units in a set of tests. This class is intended
to be used as a base class, with specific tests being implemented by concrete subclasses. This class imple-
ments the interface needed by the test runner to allow it to drive the test, and methods that the test code can
use to check for and report various kinds of failures.

classFunctionTestCase (testFun{, setU;{, tearDowr{, descriptiorﬂ]])
This class implements the portion of thestCase interface which allows the test runner to drive the test,
but does not provide the methods which test code can use to check and report errors. This is used to create
test cases using legacy test code, allowing it to be integrated intdgtast -based test framework.

5.3. unittest ~ — Unit testing framework 145

classTestSuite ([testé)
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case, but all the contained tests and test suites
are executed. Additional methods are provided to add test cases and suites to the aggredastsis If
given, it must be a sequence of individual tests that will be added to the suite.

classTestLoader ()
This class is responsible for loading tests according to various criteria and returning them wrapped in a
TestSuite . It can load all tests within a given module destCase class. When loading from a
module, it considers allestCase -derived classes. For each such class, it creates an instance for each
method with a name beginning with the stringst

defaultTestLoader
Instance of thelestLoader class which can be shared. If no customization of TestLoader is
needed, this instance can always be used instead of creating new instances.

classTextTestRunner ([strean{, descriptiong, verbosit)]]])
A basic test runner implementation which prints results on standard output. It has a few configurable
parameters, but is essentially very simple. Graphical applications which run test suites should provide
alternate implementations.

main ([module[, defauItTes[t, argv[, testRunne[r, testRunne}]]]])
A command-line program that runs a set of tests; this is primarily for making test modules conveniently
executable. The simplest use for this function is:

if _name__ =="'_main__"
unittest.main()

5.3.5 TestCase Objects

EachTestCase instance represents a single test, but each concrete subclass may be used to define multiple tests
— the concrete class represents a single test fixture. The fixture is created and cleaned up for each test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test
implementation to check conditions and report failures, and some inquiry methods allowing information about the
test itself to be gathered.

Methods in the first group are:

setUp ()
Method called to prepare the test fixture. This is called immediately before calling the test method; any
exception raised by this method will be considered an error rather than a test failure. The default implemen-
tation does nothing.

tearDown ()
Method called immediately after the test method has been called and the result recorded. This is called
even if the test method raised an exception, so the implementation in subclasses may need to be particularly
careful about checking internal state. Any exception raised by this method will be considered an error rather
than a test failure. This method will only be called if thetUp() succeeds, regardless of the outcome of
the test method. The default implementation does nothing.

run ([result])
Run the test, collecting the result into the test result object passedas If resultis omitted orNone,
a temporary result object is created and used, but is not made available to the caller. This is equivalent to
simply calling theTestCase instance.

debug ()
Run the test without collecting the result. This allows exceptions raised by the test to be propogated to the
caller, and can be used to support running tests under a debugger.

The test code can use any of the following methods to check for and report failures.

assert _(expr[, msg])

146 Chapter 5. Miscellaneous Services

failUnless (expl{, msg])
Signal a test failure iexpris false; the explanation for the error will lmesgif given, otherwise it will be

None.

assertEqual (first, seconﬂ, msg|)

failUnlessEqual (first, secongl, msg])
Test thafirst andsecondare equal. If the values do not compare equal, the test will fail with the explanation
given bymsg or None. Note that usindailUnlessEqual() improves upon doing the comparison as
the first parameter ttailUnless() : the default value fomsgcan be computed to include representa-

tions of bothfirst andsecond

assertNotEqual (first, seconﬂ, msg])

faillfEqual (first, seconﬂ, msg|)
Test thafirst andsecondare not equal. If the values do compare equal, the test will fail with the explanation
given bymsg or None. Note that usindaillfEqual() improves upon doing the comparison as the first
parameter tdailUnless() is that the default value fansgcan be computed to include representations
of bothfirst andsecond

assertAlmostEqual (first, secon@, pIaces{, ms])

failUnlessAlmostEqual (first, secongl, placeg, msg]])
Test thaffirst andsecondare approximately equal by computing the difference, rounding to the given num-
ber ofplaces and comparing to zero. Note that comparing a given number of decimal places is not the same
as comparing a given number of significant digits. If the values do not compare equal, the test will fail with
the explanation given bymsg or None.

assertNotAlmostEqual (first, secon@, place{, msg]])

faillfAlImostEqual (first, secon@, placeg, msg]])
Test thatfirst andsecondare not approximately equal by computing the difference, rounding to the given
number ofplaces and comparing to zero. Note that comparing a given number of decimal places is not the
same as comparing a given number of significant digits. If the values do not compare equal, the test will falil
with the explanation given bysg or None.

assertRaises (exception, callable,)..

failUnlessRaises (exception, callable,)..
Test that an exception is raised wheadlable is called with any positional or keyword arguments that are
also passed tassertRaises() . The test passes éxceptionis raised, is an error if another exception
is raised, or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the
exception classes may be passeexaption

faillf (expf, msd])

The inverse of théailUnless() method is thdaillf() method. This signals a test failuresikpris
true, withmsgor None for the error message.
fail ([msg])

Signals a test failure unconditionally, withsgor None for the error message.

failureException
This class attribute gives the exception raised bytds¢() method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to
“play fair” with the framework. The initial value of this attribute AssertionError

Testing frameworks can use the following methods to collect information on the test:

countTestCases ()
Return the number of tests represented by the this test objecteBt€ase instances, this will always be
1, but this method is also implemented by fhestSuite class, which can return larger values.

defaultTestResult 0
Return the default type of test result object to be used to run this test.

id ()
Return a string identifying the specific test case. This is usually the full name of the test method, including
the module and class names.

shortDescription 0

5.3. unittest = — Unit testing framework 147

Returns a one-line description of the testNmme if no description has been provided. The default imple-
mentation of this method returns the first line of the test method’s docstring, if availaiNeper.

5.3.6 TestSuite Objects

TestSuite objects behave much likeestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups that should be run together. Some additional methods are available to
add tests t@estSuite instances:

addTest (tes)
Add aTestCase orTestSuite to the set of tests that make up the suite.

addTests (test9
Add all the tests from a sequenceT@stCase andTestSuite instances to this test suite.

Therun() method is also slightly different:

run (resulf
Run the tests associated with this suite, collecting the result into the test result object passatl &ote
that unlikeTestCase.run() , TestSuite.run() requires the result object to be passed in.

In the typical usage of @estSuite object, therun() method is invoked by destRunner rather than by
the end-user test harness.

5.3.7 TestResult Objects

A TestResult object stores the results of a set of tests. ThetCase andTestSuite classes ensure that
results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top eiittest ~ may want access to tiestResult object generated by running
a set of tests for reporting purposest@stResult instance is returned by thigestRunner.run() method
for this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred among
those test runs. The collections contain tuplegtektcase tracebacli , wheretracebackis a string containing a
formatted version of the traceback for the exception.

TestResult instances have the following attributes that will be of interest when inspecting the results of running
a set of tests:

errors
A list containing pairs ofTestCase instances and the formatted tracebacks for tests which raised an
exception but did not signal a test failure. Changed in version 2.2: Contains formatted tracebacks instead
of sys.exc _info() results.

failures
A list containing pairs ofTestCase instances and the formatted tracebacks for tests which signalled
a failure in the code under test. Changed in version 2.2: Contains formatted tracebacks instead of
sys.exc _info() results.

testsRun
The number of tests which have been started.

wasSuccessful ()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of th&estResult class are used to maintain the internal data structures, and mmay be
extended in subclasses to support additional reporting requirements. This is particularly useful in building tools
which support interactive reporting while tests are being run.

startTest (tes)
Called when the test casestis about to be run.

stopTest (tes)

148 Chapter 5. Miscellaneous Services

Called when the test casesthas been executed, regardless of the outcome.

addError (test, er
Called when the test casestraises an exception without signalling a test failueg.is a tuple of the form
returned bysys.exc _info() : (type value tracebachl.

addFailure (test, er)
Called when the test casestsignals a failureerr is a tuple of the form returned tgys.exc _info()
(type valug tracebach .

addSuccess (tes)
This method is called for a test that does not figktis the test case object.

One additional method is available fbestResult objects:

stop ()
This method can be called to signal that the set of tests being run should be aborted. Once this has been

called, theTestRunner object return to its caller without running any additional tests. This is used by the
TextTestRunner class to stop the test framework when the user signals an interrupt from the keyboard.
Interactive tools which provide runners can use this in a similar manner.

5.3.8 TestLoader Objects

The TestLoader class is used to create test suites from classes and modules. Normally, there is no need
to create an instance of this class; theittest module provides an instance that can be shared as the
defaultTestLoader module attribute. Using a subclass or instance would allow customization of some
configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase (testCaseClags
Return a suite of all tests cases contained inTiestCase -derived classestCaseClass

loadTestsFromModule (modulg
Return a suite of all tests cases contained in the given module. This method seaochasfor classes
derived fromTestCase and creates an instance of the class for each test method defined for the class.

Warning: While using a hierarchy ofestcase -derived classes can be convenient in sharing fixtures and
helper functions, defining test methods on base classes that are not intended to be instantiated directly does
not play well with this method. Doing so, however, can be useful when the fixtures are different and defined

in subclasses.

loadTestsFromName (name[, moduld)
Return a suite of all tests cases given a string specifier.

The specifiernameis a “dotted name” that may resolve either to a module, a test case class, a test
method within a test case class, or a callable object which returfsstCase or TestSuite in-
stance. For example, if you have a mod@ampleTests containing aTestCase -derived class
SampleTestCase with three test methodsgst _one() ,test _two() , andtest _three()), the
specifier SampleTests.SampleTestCase’ would cause this method to return a suite which will run

all three test methods. Using the specifitampleTests.SampleTestCase.test _two’ would

cause it to return a test suite which will run only tiest _two() test method. The specifier can refer to
modules and packages which have not been imported; they will be imported as a side-effect.

The method optionally resolvesmmerelative to a given module.

loadTestsFromNames (name%, moduld)
Similar toloadTestsFromName() , but takes a sequence of names rather than a single name. The return
value is a test suite which supports all the tests defined for each name.

getTestCaseNames (testCaseClags
Return a sorted sequence of method names found wikiCaseClass

The following attributes of &estLoader can be configured either by subclassing or assignment on an instance:
testMethodPrefix

5.3. unittest ~ — Unit testing framework 149

String giving the prefix of method names which will be interpreted as test methods. The default value is
‘test’

sortTestMethodsUsing
Function to be used to compare method names when sorting thgatiliastCaseNames() . The default
value is the built-ircmp() function; it can be set tblone to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed.
The default value is th€estSuite class.

5.3.9 Getting Extended Error Information

Some applications can make use of more error information (for example, an integrated development environment,
or IDE). Such an application can retrieve supplemental information about errors and failures by using an alternate
TestResult implementation, and extending tdefaultTestResult() method of theTestCase class

to provide it.

Here is a brief example of BestResult subclass which stores the actual exception and traceback objects. (Be
aware that storing traceback objects can cause a great deal of memory not to be reclaimed when it otherwise would
be, which can have effects that affect the behavior of the tests.)

import unittest

class MyTestCase(unittest. TestCase):
def defaultTestResult(self):
return MyTestResult()

class MyTestResult(unittest. TestResult):
def __init__(self):
self.errors_tb =]
self.failures_tb = []

def addError(self, test, err):
self.errors_tb.append((test, err))
unittest. TestResult.addError(self, test, err)

def addFailure(self, test, err):
self.failures_tb.append((test, err))
unittest. TestResult.addFailure(self, test, err)

Tests written usinglyTestCase as the base class, insteadl@stCase , will allow tools to extract additional
information from the results object.

5.4 test — Regression tests package for Python

The test package contains all regression tests for Python as well as the madeéstes support and
regrtest.py .test _support is used to enhance your tests whitgrtest.py drives the testing suite.

Each module in théest package whose name starts wilst _' is a testing suite for a specific module or
feature. All new tests should be written using théttest ~ module; usinginittest is not required but makes
the tests more flexible and maintenance of the tests easier. Some older tests are writtedottaste and a
“traditional” testing style; these styles of tests will not be covered.

See Also:

Moduleunittest (section 5.3):
Writing PyUnit regression tests.

150 Chapter 5. Miscellaneous Services

Moduledoctest (section 5.2):
Tests embedded in documentation strings.

5.4.1 [test.testsupport]test.test_support — — Ultility functions for tests
Thetest.test _support module contains functions for assisting with writing regression tests.
Thetest.test _support module defines the following exceptions:

exceptionTestFailed
Exception to be raised when a test fails.

exceptionTestSkipped
Subclass offestFailed . Raised when a test is skipped. This occurs when a needed resource (such as a
network connection) is not available at the time of testing.

exceptionResourceDenied
Subclass ofTestSkipped . Raised when a resource (such as a network connection) is not available.
Raised by theequires function.

Thetest _support module defines the following constants:

verbose
True when verbose output is enabled. Should be checked when more detailed information is desired about
a running testverboses set byregrtest.py

have _unicode
True when Unicode support is available.

is _jython
True if the running interpreter is Jython.
TESTEN

Set to the path that a temporary file may be created at. Any temporary that is created should be closed and
unlinked (removed).

Thetest _support module defines the following functions:

forget (module.namg
Removes the module nametbdule_.namefrom sys.modules and deletes any byte-compiled files of the
module.

is _resource _enabled (resourcé
ReturnsTrue if resourceis enabled and available. The list of available resources is only set when
regrtest.py is executing the tests.

requires (resourc{, msg])
RaisesResourceDenied if resourceis not available.msgis the argument t&kesourceDenied if it
is raised. Always returns true if called by a function whasename__is" __main __" . Used when tests
are executed byegrtest.py

findfile (filename
Return the path to the file namé&tename If no match is foundilenameis returned. This does not equal a
failure since it could be the path to the file.

run _unittest (*classe3
Executeunittest. TestCase subclasses passed to the function. The function scans the classes for
methods starting with the naniest _" and executes the tests individually. This is the preferred way to
execute tests.

run _suite (suit{, testclasszNon]a)

Execute thaunittest. TestSuite instancesuite The optional argumertestclassaccepts one of the
test classes in the suite so as to print out more detailed information on where the testing suite originated
from.

5.4. test — Regression tests package for Python 151

5.4.2 Writing Unit Tests for the test package

It is preferred that tests for thest package use thenittest module and follow a few guidelines. One is

to have the name of all the test methods start viiést _" as well as the module’s name. This is needed so

that the methods are recognized by the test driver as test methods. Also, no documentation string for the method
should be included. A comment (such#Eests function returns only True or False) should

be used to provide documentation for test methods. This is done because documentation strings get printed out if
they exist and thus what test is being run is not stated.

A basic boilerplate is often used:

import unittest
from test import test_support

class MyTestCasel(unittest.TestCase):
Only use setUp() and tearDown() if necessary

def setUp(self):
. code to execute in preparation for tests ...

def tearDown(self):
. code to execute to clean up after tests ...

def test_feature_one(self):
Test feature one.
. testing code ...

def test feature_two(self):
Test feature two.
. testing code ...

. more test methods ...

class MyTestCase2(unittest.TestCase):
. same structure as MyTestCasel ...

. more test classes ...

def test_main():
test_support.run_unittest(MyTestCasel,
MyTestCase2,
. list other tests ...

’ ’

if _name__ =="'_ main__"
test_main()

This boilerplate code allows the testing suite to be rumdgyrtest.py as well as on its own as a script.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:

e The testing suite should exercise all classes, functions, and constants. This includes not just the external
API that is to be presented to the outside world but also "private” code.

e Whitebox testing (examining the code being tested when the tests are being written) is preferred. Blackbox
testing (testing only the published user interface) is not complete enough to make sure all boundary and
edge cases are tested.

e Make sure all possible values are tested including invalid ones. This makes sure that not only all valid values
are acceptable but also that improper values are handled correctly.

152 Chapter 5. Miscellaneous Services

e Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make sure as
many different paths through the code are taken.

e Add an explicit test for any bugs discovered for the tested code. This will make sure that the error does not
crop up again if the code is changed in the future.

e Make sure to clean up after your tests (such as close and remove all temporary files).

¢ Import as few modules as possible and do it as soon as possible. This minimizes external dependencies of
tests and also minimizes possible anomalous behavior from side-effects of importing a module.

e Try to maximize code reuse. On occasion tests will vary by something as small as what type of input they
take. Minimize code duplication by subclassing a basic test class with a class that specifies the input:

class TestFuncAcceptsSequences(unittest.TestCase):
func = mySuperWhammyFunction

def test_func(self):
self.func(self.arg)

class AcceptLists(TestFuncAcceptsSequences):
arg = [1,2,3]

class AcceptStrings(TestFuncAcceptsSequences):
arg = 'abc’

class AcceptTuples(TestFuncAcceptsSequences):
arg = (1,2,3)

See Also:

Test Driven Development
A book by Kent Beck on writing tests before code

5.4.3 Running tests Using regrtest.py

regrtest.py is the script used to drive Python's regression test suite. Running the script by itself automatically
starts running all regression tests in thet package. It does this by finding all modules in the package whose
name starts withest _, importing them, and executing the functitest _main if present. The names of
tests to execute may also be passed to the script. Specifying a single regressioythest fegrtest.py

test _spam.py) will minimize output and only print whether the test passed or failed and thus minimize output.

Runningregrtest.py directly allows what resources are available for tests to use to be set. You do this by
using the-u command-line option. Rupython regrtest.py -uall to turn on all resources; specifying

all as an option foru enables all possible resources. If all but one resource is desired (a more common
case), a comma-separated list of resources that are not desired may be listalil aft€the commangython
regrtest.py -uall,-audio,-largefile will run regrtest.py with all resources except the audio

and largefile resources. For a list of all resources and more command-line optiopgthon regrtest.py

-h.

Some other ways to execute the regression tests depend on what platform the tests are being executed on. On
UNIX, you can runmake test at the top-level directory where Python was built. On Windows, executing
rt.bat from your PCBuild directory will run all regression tests.

5.5 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

5.5. math — Mathematical functions 153

These functions cannot be used with complex numbers; use the functions of the same name fnomathhe

module if you require support for complex numbers. The distinction between functions which support complex
numbers and those which don’t is made since most users do not want to learn quite as much mathematics as
required to understand complex numbers. Receiving an exception instead of a complex result allows earlier
detection of the unexpected complex number used as a parameter, so that the programmer can determine how and
why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values
are floats:

acos (X)

Return the arc cosine of
asin (x)

Return the arc sine of

atan (x)
Return the arc tangent &f

atan2 (y, %
Returnatan(y / X).

ceil (X)

Return the ceiling ok as a float.
cos (X

Return the cosine of.
cosh (x)

Return the hyperbolic cosine &f
degrees (X)

Converts angle from radians to degrees.
exp (X)

Returne** x.

fabs (x)
Return the absolute value rf

floor (Xx)
Return the floor ok as a float.

fmod (x, y)
Returnfmod(X, V), as defined by the platform C library. Note that the Python expressi@ny may not
return the same result.

frexp (X
Return the mantissa and exponenkafs the paif m, €). mis a float anck is an integer such that ==
m * 2** e If xis zero, returng0.0, 0) , otherwised.5 <= abs(m) < 1.

hypot (x,Y)
Return the Euclidean distancgrt(x*x + y*y).
Idexp (X, i)
Returnx * (2** i) .
log (x[, basd)
Returns the logarithm of to the givenbase If the baseis not specified, returns the natural logarithnxof
Changed in version 2.®aseargument added.

logl0 (x)
Return the base-10 logarithm xf

modf (X)
Return the fractional and integer partsxofBoth results carry the sign af The integer part is returned as
a float.

pow(X,)

154 Chapter 5. Miscellaneous Services

Returnx** y.

radians (X)

Converts angle from degrees to radians.
sin (X)

Return the sine of.
sinh (x)

Return the hyperbolic sine af
sqrt (X)

Return the square root a&f
tan (X)

Return the tangent of
tanh (x)

Return the hyperbolic tangent »f

Note thatfrexp() andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi
The mathematical constapit

The mathematical constaat

Note: The math module consists mostly of thin wrappers around the platform C math library functions. Be-
havior in exceptional cases is loosely specified by the C standards, and Python inherits much of its math-
function error-reporting behavior from the platform C implementation. As a result, the specific exceptions
raised in error cases (and even whether some arguments are considered to be exceptional at all) are not
defined in any useful cross-platform or cross-release way. For example, wimettledog(0) returns

-Inf or raisesValueError or OverflowError isn't defined, and in cases whemgath.log(0) raises
OverflowError , math.log(OL) may raisevalueError instead.

See Also:

Modulecmath (section 5.6):
Complex number versions of many of these functions.

5.6 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (X)
Return the arc cosine of There are two branch cuts: One extends right from 1 along the real axis to
continuous from below. The other extends left from -1 along the real axist@entinuous from above.

acosh (x)
Return the hyperbolic arc cosine xaf There is one branch cut, extending left from 1 along the real axis to
-00, continuous from above.

asin (x)
Return the arc sine of This has the same branch cutsass()

asinh (x)
Return the hyperbolic arc sine &f There are two branch cuts, extending left frarfj to +-ooj , both
continuous from above. These branch cuts should be considered a bug to be corrected in a future release.
The correct branch cuts should extend along the imaginary axis, onelfroap to coj and continuous

5.6. cmath — Mathematical functions for complex numbers 155

from the right, and one fromlj down to o] and continuous from the left.

atan (x)
Return the arc tangent af There are two branch cuts: One extends frjmalong the imaginary axis to
ooj , continuous from the left. The other extends frohp -along the imaginary axis taxj , continuous
from the left. (This should probably be changed so the upper cut becomes continuous from the other side.)

atanh (X)
Return the hyperbolic arc tangentxfThere are two branch cuts: One extends from 1 along the real axis
to oo, continuous from above. The other extends from -1 along the real axis toentinuous from above.
(This should probably be changed so the right cut becomes continuous from the other side.)

cos (X)
Return the cosine of.

cosh (x)
Return the hyperbolic cosine gf

exp (X)
Return the exponential valg™* x.

log (X)
Return the natural logarithm of There is one branch cut, from 0 along the negative real axis<o -
continuous from above.

log1l0 (X)
Return the base-10 logarithm xf This has the same branch cutiag()

sin (X)
Return the sine af.
sinh (x)
Return the hyperbolic sine af
sqrt (X)
Return the square root &f This has the same branch cutiag()
tan (X)
Return the tangent of
tanh (X)

Return the hyperbolic tangent gf

The module also defines two mathematical constants:

pi
The mathematical constapi, as a real.

The mathematical constagtas a real.

Note that the selection of functions is similar, but not identical, to that in modalén . The reason for having

two modules is that some users aren'’t interested in complex numbers, and perhaps don’t even know what they
are. They would rather havaeath.sqrt(-1) raise an exception than return a complex number. Also note that

the functions defined ismath always return a complex number, even if the answer can be expressed as a real
number (in which case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlighten-
ment. For information of the proper choice of branch cuts for numerical purposes, a good reference should be the
following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothings’s sign bit. In Iserles, A.,
and Powell, M. (eds.)The state of the art in numerical analys@larendon Press (1987) pp165-211.

156 Chapter 5. Miscellaneous Services

5.7 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions.

For integers, uniform selection from a range. For sequences, uniform selection of a random element, a function to
generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential,
gamma, and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic functiamdom() , which generates a random float uniformly

in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit
precision floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe.
The Mersenne Twister is one of the most extensively tested random number generators in existence. However,
being completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic
purposes.

The functions supplied by this module are actually bound methods of a hidden instancesoidbe.Random
class. You can instantiate your own instancefRahdomto get generators that don’t share state. This is espe-
cially useful for multi-threaded programs, creating a different instanétaofdomfor each thread, and using the
jumpahead() method to ensure that the generated sequences seen by each thread don't overlap.

ClassRandomcan also be subclassed if you want to use a different basic generator of your own devising: in that
case, override theandom() , seed() , getstate() , setstate() andjumpahead() methods.

As an example of subclassing, trendom module provides th&/ichmannHill class which implements an
alternative generator in pure Python. The class provides a backward compatible way to reproduce results from
earlier versions of Python which used the Wichmann-Hill algorithm as the core generator. Changed in version
2.3: Substituted MersenneTwister for Wichmann-Hill.

Bookkeeping functions:

seed ([x])
Initialize the basic random number generator. Optional argumeain be any hashable object. Mfis
omitted orNone, current system time is used; current system time is also used to initialize the generator
when the module is first imported. Xfis notNone or an int or longhash(x) is used instead. K is an
int or long,x is used directly.

getstate ()
Return an object capturing the current internal state of the generator. This object can be passed to
setstate() to restore the state. New in version 2.1.

setstate (statg
stateshould have been obtained from a previous calyetstate() , andsetstate() restores the
internal state of the generator to what it was at the thetstate() was called. New in version 2.1.

jumpahead (n)
Change the internal state to one different from and likely far away from the currentrsisgenon-negative
integer which is used to scramble the current state vector. This is most useful in multi-threaded programs,
in conjuction with multiple instances of tiRandomclass:setstate() orseed() can be used to force
all instances into the same internal state, and jhepahead() can be used to force the instances’ states
far apart. New in version 2.1. Changed in version 2.3: Instead of jumping to a specificnssétps
aheadjumpahead(n) jumps to another state likely to be separated by many steps..

Functions for integers:

randrange ([start,] sto;{, step])
Return a randomly selected element frorange(start, stop step. This is equivalent to
choice(range(start, stop step) , but doesn’t actually build a range object. New in version 1.5.2.

randint (a, b)
Return a random integét such thab <= N <= h.

Functions for sequences:

choice (seq

5.7. random — Generate pseudo-random numbers 157

Return a random element from the non-empty sequeeqe

shuffle (x[, random])
Shuffle the sequencan place. The optional argumerandomis a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the functioandom() .

Note that for even rather smadéin(x) , the total number of permutations ®fis larger than the period
of most random number generators; this implies that most permutations of a long sequence can never be
generated.

sample (population, K
Return &k length list of unique elements chosen from the population sequence. Used for random sampling
without replacement. New in version 2.3.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows
raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

To choose a sample from a range of integersxuarge as an argument. This is especially fast and space
efficient for sampling from a large populatiosample(xrange(10000000), 60)

The following functions generate specific real-valued distributions. Function parameters are named after the
corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these
equations can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform (a, b
Return a random real numblrsuch thath <= N < b.

betavariate (alpha, beta
Beta distribution. Conditions on the parametersapha > -1 andbeta > -1 . Returned values range
between 0 and 1.

cunifvariate (mean, arg
Circular uniform distribution.meanis the mean angle, arafc is the range of the distribution, centered
around the mean angle. Both values must be expressed in radians, and can range betwpieriR@amded
values range betweenean - arc/2 andmean + arc/2 and are normalized to between 0 gid

Deprecated since release 2.3. Instead, use(mean+ arc * (random.random() - 0.5))
%math.pi .

expovariate (lambg
Exponential distribution.lambd is 1.0 divided by the desired mean. (The parameter would be called
“lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive infinity.

gammavariate (alpha, beta
Gamma distribution.Notthe gamma function!) Conditions on the parametersafpba > 0 andbeta >
0.

gauss (mu, sigma
Gaussian distributionmuis the mean, andigmais the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate (mu, sigma
Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution
with meanmuand standard deviatisigma mucan have any value, arsijmamust be greater than zero.

normalvariate (mu, sigma
Normal distribution.muis the mean, andigmais the standard deviation.

vonmisesvariate (mu, kappa
muis the mean angle, expressed in radians between 0 gridatdkappais the concentration parameter,
which must be greater than or equal to zerdkappais equal to zero, this distribution reduces to a uniform
random angle over the range 0 top2*

158 Chapter 5. Miscellaneous Services

paretovariate (alpha
Pareto distributionalphais the shape parameter.

weibullvariate (alpha, beta
Weibull distribution.alphais the scale parameter abdtais the shape parameter.

Alternative Generator

classwichmannHill ([seed])
Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as
Random plus thewhseed method described below. Because this class is implemented in pure Python, it
is not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644
which is small enough to require care that two independent random sequences do not overlap.

whseed ([x])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1.s8ed for
details. whseed does not guarantee that distinct integer arguments yield distinct internal states, and can
yield no more than about 2**24 distinct internal states in all.

See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudoran-
dom number generatorACM Transactions on Modeling and Computer Simulatfoh 8, No. 1, January pp.3-30
1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190.

5.8 whrandom — Pseudo-random number generator

Deprecated since release 2.1serandom instead.

Note: This module was an implementation detail of taedom module in releases of Python prior to 2.1. Itis
no longer used. Please do not use this module directlyrarsdom instead.

This module implements a Wichmann-Hill pseudo-random number generator class that is alsevhaameldm .
Instances of thevhrandom class conform to the Random Number Generator interface described in sg2tion
They also offer the following method, specific to the Wichmann-Hill algorithm:

seed ([x, Y, z])
Initializes the random number generator from the integegysandz. When the module is first imported, the
random number is initialized using values derived from the current time.ylfandz are either omitted or
0, the seed will be computed from the current system time. If one or two of the paramet@rbataot all
three, the zero values are replaced by ones. This causes some apparently different seeds to be equal, with
the corresponding result on the pseudo-random series produced by the generator.

choice ('seq
Chooses a random element from the non-empty sequsataand returns it.

randint (a, b
Returns a random integ8f such thata<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed (X, Y, 2
Initializes the random number generator from the integgysandz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b)
Returns a random real numkérsuch that<=N<b.

When imported, thevhrandom module also creates an instance ofwtegandom class, and makes the methods
of that instance available at the module level. Therefore one can write Bitherwhrandom.random() or:

5.8. whrandom — Pseudo-random number generator 159

generator = whrandom.whrandom()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random numbers.
See Also:

Modulerandom (section 5.7):
Generators for various random distributions and documentation for the Random Number Generator inter-
face.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190.

5.9 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the more
common approach. The module is calleidect because it uses a basic bisection algorithm to do its work.

The source code may be most useful as a working example of the algorithm (the boundary conditions are already
right!).

The following functions are provided:

bisect _left (list, iten, lo[, hi]])
Locate the proper insertion point faemin list to maintain sorted order. The parameterandhi may be
used to specify a subset of the list which should be considered; by default the entire list is utsadisIf
already present ilist, the insertion point will be before (to the left of) any existing entries. The return value
is suitable for use as the first parametelistinsert() . This assumes théist is already sorted. New
in version 2.1.

bisect _right (list, iten], o[, hi]])
Similar tobisect _left() , butreturns an insertion point which comes after (to the right of) any existing
entries ofitemin list. New in version 2.1.

bisect (...)
Alias for bisect _right()

insort _left (list, iten], Io[, hi]])
Insertitem in list in sorted order. This is equivalent tist.insert(bisect.bisect _left(list,
item, lo, hi), item). This assumes théistis already sorted. New in version 2.1.

insort _right (list, iten, Io[, hi]])
Similar toinsort _left() , but insertingtemin list after any existing entries afem New in version
2.1.

insort (..)
Alias forinsort _right()

5.9.1 Examples

The bisect() function is generally useful for categorizing numeric data. This examplehisest() to
look up a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A,
75..84 is a ‘B’, etc.

160 Chapter 5. Miscellaneous Services

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades[bisect(breakpoints, total)]

>>> grade(66)

cr

>>> map(grade, [33, 99, 77, 44, 12, 88])
[IEI’ 1A1, 1Bl’ IDI’ vFil 1Al]

The bisect module can be used with the Queue module to implement a priority queue (example courtesy of Fredrik
Lundh):

import Queue, bisect

class PriorityQueue(Queue.Queue):
def _put(self, item):
bisect.insort(self.queue, item)

usage

queue = PriorityQueue(0)
queue.put((2, "second"))
queue.put((1, "first"))
queue.put((3, "third"))
priority, value = queue.get()

5.10 heapg — Heap queue algorithm

New in version 2.3.
This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are arrays for whidteag k] <= heag2* k+1] andheaq k] <= heag2* k+2] for all k, counting el-
ements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting
property of a heap is théteafj0] is always its smallest element.

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more
suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest
(called a "min heap” in textbooks; a "max heap” is more common in texts because of its suitability for in-place
sorting).

These two make it possible to view the heap as a regular Python list without surwesgf] is the smallest
item, andheapsort() maintains the heap invariant!

To create a heap, use a list initialized [{o, or you can transform a populated list into a heap via function
heapify()
The following functions are provided:

heappush (heap, item
Push the valugemonto theheap maintaining the heap invariant.

heappop (heap
Pop and return the smallest item from theap maintaining the heap invariant. If the heap is empty,
IndexError s raised.

heapify ()

5.10. heapq — Heap queue algorithm 161

Transform listx into a heap, in-place, in linear time.

heapreplace (heap, item
Pop and return the smallest item from theap and also push the neitem The heap size doesn’t change.
If the heap is emptyjndexError is raised. This is more efficient thameappop() followed by
heappush() , and can be more appropriate when using a fixed-size heap. Note that the value returned
may be larger thaitem That constrains reasonable uses of this routine.

Example of use:

>>> from heapq import heappush, heappop
>>> heap = []
>>> data = [1, 3, 5, 7, 9, 2, 4 6, 8, 0]
>>> for item in data:

heappush(heap, item)

>>> sorted = []
>>> while heap:
sorted.append(heappop(heap))

>>> print sorted

[0, 1, 2, 3, 4,5, 6,7, 8, 9]
>>> data.sort()

>>> print data == sorted
True

>>>

5.10.1 Theory

(This explanation is due to Franois Pinard. The Python code for this module was contributed by Kevin O’Connor.)

Heaps are arrays for whid{ k] <= a[2* k+1] anda[k] <= a[2* k+2] for all k, counting elements from
0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is tha[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers
below arek, nota[K] :

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30

In the tree above, each célis topping2* k+1 and2* k+2. In an usual binary tournament we see in sports, each

cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell "wins” over the
two topped cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way
to remove it and find the "next” winner is to move some loser (let's say cell 30 in the diagram above) into the O
position, and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This
is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n)
sort.

162 Chapter 5. Miscellaneous Services

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that
the inserted items are not "better” than the last 0’'th element you extracted. This is especially useful in simulation
contexts, where the tree holds all incoming events, and the "win” condition means the smallest scheduled time.
When an event schedule other events for execution, they are scheduled into the future, so they can easily go into
the heap. So, a heap is a good structure for implementing schedulers (this is what | used for my MIDI sequencer

).
Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they

are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing "runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memaory), followed by a
merging passes for these runs, which merging is often very cleverly organisisdvery important that the initial

sort produces the longest runs possible. Tournaments are a good way to that. If, using all the memory available to
hold a tournament, you replace and percolate items that happen to fit the current run, you'll produce runs which
are twice the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the O'th item on disk and get an input which may not fit in the current tournament (because
the value "wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly
the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new
run. Clever and quite effective!

In a word, heaps are useful memory structures to know. | use them in a few applications, and | think it is good to
keep a ‘heap’ module around. :-)

5.11 array — Efficient arrays of numeric values

This module defines an object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by ugjpg@dewhich is a single
character. The following type codes are defined:

Type code | C Type Python Type Minimum size in bytes
'c’ char character 1
b’ signed char int 1
‘B’ unsigned char | int 1
o’ Py_UNICODE | Unicode character 2
'h signed short int 2
'H’ unsigned short| int 2
i) signed int int 2
T unsigned int long 2
T’ signed long int 4
L unsigned long | long 4
'f float float 4
o’ double float 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C imple-
mentation). The actual size can be accessed througitetingize attribute. The values stored fdr' and

I items will be represented as Python long integers when retrieved, because Python’s plain integer type cannot
represent the full range of C’s unsigned (long) integers.

The module defines the following type:

1The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking
capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to
ensure (far in advance) that each tape movement will be the most effective possible (that is, will best participate at "progressing” the merge).
Some tapes were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite
spectacular to watch! From all times, sorting has always been a Great Art! :-)

5.11. array — Efficient arrays of numeric values 163

array (typecodé, initializer])
Return a new array whose items are restrictedypecode and initialized from the optionahitializer
value, which must be a list or a string. The list or string is passed to the new afirayitist() ,
fromstring() , or fromunicode() method (see below) to add initial items to the array.

ArrayType
Obsolete alias foarray .

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
casesTypeError israised. Array objects also implement the buffer interface, and may be used wherever buffer
objects are supported.

The following data items and methods are also supported:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (X)
Append a new item with valueto the end of the array.

buffer _info ()
Return a tuplg address length giving the current memory address and the length in elements of the
buffer used to hold array’s contents. The size of the memory buffer in bytes can be compued as
ray.buffer _info()[1] * array.itemsize . This is occasionally useful when working with low-
level (and inherently unsafe) I/O interfaces that require memory addresses, such asasftpin op-
erations. The returned numbers are valid as long as the array exists and no length-changing operations are
applied to it.

Note: When using array objects from code written in C oriJthe only way to effectively make use of

this information), it makes more sense to use the buffer interface supported by array objects. This method
is maintained for backward compatibility and should be avoided in new code. The buffer interface is docu-
mented in the®?ython/C API Reference Manual

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of valueRRuntimeError is raised. It is useful when reading data from a file written on a
machine with a different byte order.

count (X)
Return the number of occurencesxah the array.

extend (a)
Append array items frora to the end of the array. The two arrays must hexactlythe same type code; if
not, TypeError will be raised.

fromfile (f, n)
Readn items (as machine values) from the file objeeind append them to the end of the array. If less than
nitems are availabl&OFError is raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else witiead() method won't do.

fromlist ~ (list)
Append items from the list. This is equivalent for x in list: a.append(x) ' exceptthat if there
is a type error, the array is unchanged.

fromstring (9
Appends items from the string, interpreting the string as an array of machine values (as if it had been read
from a file using thdromfile() method).

fromunicode (9)
Extends this array with data from the given unicode string. The array must be a type 'u’ array; otherwise
a ValueError is raised. Usarray.fromstring(ustr.decode(enc)) " to append Unicode data to
an array of some other type.

164 Chapter 5. Miscellaneous Services

index (X)
Return the smallestsuch thai is the index of the first occurence »fn the array.

insert (i, X)
Insert a new item with valurin the array before position Negative values are treated as being relative to
the end of the array.

pop([i])
Removes the item with the indéXrom the array and returns it. The optional argument defaultd taso
that by default the last item is removed and returned.

read (f, n)
Deprecated since release 1.5.Use thefromfile() method.

Readn items (as machine values) from the file objeeind append them to the end of the array. If less than
nitems are availableEOFError is raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else wittead() method won't do.

remove (X)
Remove the first occurence wfrom the array.

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file object

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of
bytes that would be written to a file by thefile() method.)

tounicode ()
Convert the array to a unicode string. The array must be a type 'u’ array; otherwise a ValueError is raised.
Use array.tostring().decode(enc) to obtain a unicode string from an array of some other type.

write (f)
Deprecated since release 1.5.Use thetofile() method.

Write all items (as machine values) to the file object

When an array object is printed or converted to a string, it is representedsg$ typecode initializer) . The

initializer is omitted if the array is empty, otherwise it is a string if typecodes 'c’ , otherwise it is a list

of numbers. The string is guaranteed to be able to be converted back to an array with the same type and value
using reverse quotes (), so long as tharray() function has been imported usifigm array import

array . Examples:

array(’l)

array(’c’, 'hello world’)

array('u’, uhello \textbackslash u2641’)
array(l', [1, 2, 3, 4, 5)])

array('d’, [1.0, 2.0, 3.14])

See Also:

Modulestruct (section 4.3):
Packing and unpacking of heterogeneous binary data.

Modulexdrlib (section 12.17):
Packing and unpacking of External Data Representation (XDR) data as used in some remote procedure call
systems.

The Numerical Python Manual
(http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm)
The Numeric Python extension (NumPy) defines another array typehtgegnumpy.sourceforge.net/

5.11. array — Efficient arrays of numeric values 165

for further information about Numerical Python. (A PDF version of the NumPy manual is available at
http://numpy.sourceforge.net/numdoc/numdoc.pdf).

5.12 sets — Unordered collections of unique elements

New in version 2.3.

Thesets module provides classes for constructing and manipulating unordered collections of unique elements.
Common uses include membership testing, removing duplicates from a sequence, and computing standard math
operations on sets such as intersection, union, difference, and symmetric difference.

Like other collections, sets supportin set len(se), andfor x in set Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.

Most set applications use tiset class which provides every set method exceptfonash __() . For advanced
applications requiring a hash method, thenutableSet class addsa_hash __() method but omits methods
which alter the contents of the set. B&ht andimmutableSet derive fromBaseSet , an abstract class useful
for determining whether something is a setnstance(obj, BaseSet)

The set classes are implemented using dictionaries. As a result, sets cannot contain mutable elements such as lists
or dictionaries. However, they can contain immutable collections such as tuples or instaimcesitdbleSet

For convenience in implementing sets of sets, inner sets are automatically converted to immutable form, for
example Set([Set(['dog)]) is transformed t@et([ImmutableSet(['dog’)])

classSet ([iterable])
Constructs a new emptget object. If the optionalterable parameter is supplied, updates the set with
elements obtained from iteration. All of the elementéémable should be immutable or be transformable
to an immutable using the protocol described in section 5.12.3.

classimmutableSet ([iterable])
Constructs a new emptynmutableSet object. If the optionalterable parameter is supplied, updates
the set with elements obtained from iteration. All of the elemenigeiable should be immutable or be
transformable to an immutable using the protocol described in section 5.12.3.

BecausémmutableSet objects provide a_hash __() method, they can be used as set elements or as
dictionary keysImmutableSet objects do not have methods for adding or removing elements, so all of
the elements must be known when the constructor is called.

5.12.1 Set Objects

Instances ofet andimmutableSet both provide the following operations:

Operation Result
len() cardinality of ses
X in s testx for membership irs
X not in s testx for non-membership is
s.issubset(t) test whether every elementsis int; s <= tis equivalent
s.issuperset(t) test whether every elementtims ins; s >= tis equivalent
s|t new set with elements from bograndt
s.union(t) new set with elements from bograndt
s&t new set with elements commongandt
s.intersection(t) new set with elements commondandt
s-t new set with elements isbut not int
s.difference(t) new set with elements isbut not int
s” t new set with elements in eithsior t but not both
s.symmetric _difference(t) | new set with elements in eithsior t but not both
s.copy() new set with a shallow copy &f

166 Chapter 5. Miscellaneous Services

In addition, bothSet andImmutableSet support set to set comparisons. Two sets are equal if and only if
every element of each set is contained in the other (each is a subset of the other). A set is less than another set
if and only if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than
another set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each oth@nsof the following are truea<b, a==b, ora>h.
Accordingly, sets do not implement the cmp__ method.

Since sets only define partial ordering (subset relationships), the output lidtthert() method is unde-

fined for lists of sets.

The following table lists operations availablelimmutableSet but not found inSet :

Operation | Result |
hash(s) \ returns a hash value fsr\

The following table lists operations availableSet but not found innmmutableSet

Operation Result
s|= t return ses with elements added from
s.union _update(t) return seswith elements added from
S &=t return ses keeping only elements also foundtin
s.intersection _update(t) return set keeping only elements also foundtin
s =t return set after removing elements found in
s.difference _update(t) return ses after removing elements found in
s'=t return seswith elements frons or t but not both
ssymmetric _difference _update(t) | return seswith elements frons or t but not both
s.add(x) add elemenk to sets
sremove(X) removex from sets
sdiscard(x) removes from setsif present
s.pop() remove and return an arbitrary element frem
s.update(t) add elements frorto sets
s.clear() remove all elements from sst

5.12. sets — Unordered collections of unique elements 167

5.12.2 Example

>>> from sets import Set

>>> engineers = Set(['John’, 'Jane’, 'Jack’, 'Janice’])
>>> programmers = Set(['Jack’, 'Sam’, 'Susan’, 'Janice’])
>>> management = Set(['Jane’, 'Jack’, 'Susan’, 'Zack’])

>>> employees = engineers | programmers | management # union

>>> engineering_management = engineers & programmers # intersection
>>> fulltime_management = management - engineers - programmers # difference
>>> engineers.add('Marvin’) # add element

>>> print engineers
Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’])

>>> employees.issuperset(engineers) # superset test

False

>>> employees.update(engineers) # update from another set

>>> employees.issuperset(engineers)

True

>>> for group in [engineers, programmers, management, employees]:
group.discard(’'Susan’) # unconditionally remove element
print group

Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’])

Set(['Janice’, 'Jack’, 'Sam’])

Set(['Jane’, 'Zack’, 'Jack’])

Set(['Jack’, 'Sam’, 'Jane’, 'Marvin’, 'Janice’, 'John’, 'Zack’])

5.12.3 Protocol for automatic conversion to immutable

Sets can only contain immutable elements. For convenience, m@&ablebjects are automatically copied to an
ImmutableSet before being added as a set element.

The mechanism is to always add a hashable element, or if it is not hashable, the element is checked to see if it has
an__as_immutable __() method which returns an immutable equivalent.

SinceSet objects have a_as_immutable __() method returning an instance bhmutableSet |, it is
possible to construct sets of sets.

A similar mechanism is needed by thecontains __() andremove() methods which need to hash an
element to check for membership in a set. Those methods check an element for hashability and, if not, check for a
__as_temporarily _immutable __() method which returns the element wrapped by a class that provides
temporary methods far_hash __() , __eq__() ,and__ne__() .

The alternate mechanism spares the need to build a separate copy of the original mutable object.

Set objects implement the _as _temporarily _immutable __() method which returns th8et object
wrapped by a new classTemporarilylmmutableSet

The two mechanisms for adding hashability are normally invisible to the user; however, a conflict can arise in
a multi-threaded environment where one thread is updating a set while another has temporarily wrapped it in
_TemporarilyimmutableSet . In other words, sets of mutable sets are not thread-safe.

5.13 itertools — Functions creating iterators for efficient looping

New in version 2.3.

This module implements a humber of iterator building blocks inspired by constructs from the Haskell and SML
programming languages. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.

168 Chapter 5. Miscellaneous Services

Standardization helps avoid the readability and reliability problems which arise when many different individuals
create their own slightly varying implementations, each with their own quirks and naming conventions.

The tools are designed to combine readily with one another. This makes it easy to construct more specialized tools
succinctly and efficiently in pure Python.

For instance, SML provides a tabulation totalbulate(f) which produces a sequeni@), f(1),
This toolbox providesmap() andcount() which can be combined to forimap(f, count()) and pro-
duce an equivalent result.

Likewise, the functional tools are designed to work well with the high-speed functions provideddpetfagor
module.

The module author welcomes suggestions for other basic building blocks to be added to future versions of the
module.

Whether cast in pure python form or C code, tools that use iterators are more memory efficient (and faster) than
their list based counterparts. Adopting the principles of just-in-time manufacturing, they create data when and
where needed instead of consuming memory with the computer equivalent of “inventory”.

The performance advantage of iterators becomes more acute as the number of elements increases — at some point,
lists grow large enough to to severely impact memory cache performance and start running slowly.

See Also:
The Standard ML Basis Library,he Standard ML Basis Library

Haskell, A Purely Functional Languadeefinition of Haskell and the Standard Libraries

5.13.1 ltertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

chain (*iterableg
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the
next iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single
sequence. Equivalent to:

def chain(*iterables):
for it in iterables:
for element in it:
yield element

count ([n])
Make an iterator that returns consecutive integers startingnwitboes not currently support python long
integers. Often used as an argumeritiap() to generate consecutive data points. Also, usézifig)
to add sequence numbers. Equivalent to:

def count(n=0):
while True:
yield n
n+=1

Note, count() does not check for overflow and will return negative numbers after exceeding
sys.maxint . This behavior may change in the future.

cycle (iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is
exhausted, return elements from the saved copy. Repeats indefinitely. Equivalent to:

5.13. itertools — Functions creating iterators for efficient looping 169

def cycle(iterable):

saved = []

for element in iterable:
yield element
saved.append(element)

if len(saved) ==
return

while True:
for element in saved:

yield element

Note, this is the only member of the toolkit that may require significant auxiliary storage (depending on the
length of the iterable).

dropwhile (predicate, iterablg
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns
every element. Note, the iterator does not prodarmgoutput until the predicate is true, so it may have a
lengthy start-up time. Equivalent to:

def dropwhile(predicate, iterable):

iterable = iter(iterable)

while True:
X = iterable.next()
if predicate(x): continue # drop when predicate is true
yield x
break

while True:
yield iterable.next()

ifilter (predicate, iterabli
Make an iterator that filters elements from iterable returning only those for which the preditate is If
predicateis None, return the items that are true. Equivalent to:

def ffilter(predicate, iterable):
if predicate is None:
def predicate(x):
return x
for x in iterable:
if predicate(x):
yield x

ifilterfalse (predicate, iterable
Make an iterator that filters elements from iterable returning only those for which the predi€atsés .
If predicateis None, return the items that are false. Equivalent to:

def ifilterfalse(predicate, iterable):
if predicate is None:
def predicate(x):
return X
for x in iterable:
if not predicate(x):
yield x

imap (function, *iterable$
Make an iterator that computes the function using arguments from each of the iteralflesctibnis set
to None, thenimap() returns the arguments as a tuple. Likap() but stops when the shortest iterable
is exhausted instead of filling iNone for shorter iterables. The reason for the difference is that infinite
iterator arguments are typically an error foap() (because the output is fully evaluated) but represent a

170 Chapter 5. Miscellaneous Services

common and useful way of supplying argumentgttap() . Equivalent to:

def imap(function, *iterables):
iterables = map(iter, iterables)
while True:
args = [i.next() for i in iterables]
if function is None:
yield tuple(args)
else:
yield function(*args)

islice (iterable,[start,] stop[, step])
Make an iterator that returns selected elements from the iterabdartfis non-zero, then elements from
the iterable are skipped until start is reached. Afterward, elements are returned consecutivelstepiess
set higher than one which results in items being skippestoifis None, then iteration continues until the
iterator is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular sitoed)
does not support negative values $tairt, stop or step Can be used to extract related fields from data where
the internal structure has been flattened (for example, a multi-line report may list a name field on every third
line). Equivalent to:

def islice(iterable, *args):
s = slice(*args)
next = s.start or O
stop = s.stop
step = s.step or 1
for cnt, element in enumerate(iterable):
if cnt < next:
continue
if stop is not None and cnt >= stop:
break
yield element
next += step

izip (*iterableg
Make an iterator that aggregates elements from each of the iterablexzihfke except that it returns an
iterator instead of a list. Used for lock-step iteration over several iterables at a time. Equivalent to:

def izip(*iterables):
iterables = map(iter, iterables)
while True:
result = [i.next() for i in iterables]
yield tuple(result)

repeat (objec{, times])
Make an iterator that returmebjectover and over again. Runs indefinitely unless tineesargument is
specified. Used as argumentitoap() for invariant parameters to the called function. Also used with
izip() to create an invariant part of a tuple record. Equivalent to:

def repeat(object, times=None):
if times is None:
while True:
yield object
else:
for i in xrange(times):
yield object

5.13. itertools — Functions creating iterators for efficient looping 171

starmap (function, iterabl¢
Make an iterator that computes the function using arguments tuples obtained from the iterable. Used instead
of imap() when argument parameters are already grouped in tuples from a single iterable (the data has
been “pre-zipped”). The difference betweiemap() andstarmap() parallels the distinction between
function(a,b) andfunction(*c) . Equivalent to:

def starmap(function, iterable):
iterable = iter(iterable)
while True:
yield function(*iterable.next())

takewhile (predicate, iterablg
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

def takewhile(predicate, iterable):
iterable = iter(iterable)
while True:
X = iterable.next()
if predicate(x):
yield x
else:
break

5.13.2 Examples

The following examples show common uses for each tool and demonstrate ways they can be combined.

>>> amounts = [120.15, 764.05, 823.14]
>>> for checknum, amount in izip(count(1200), amounts):
print 'Check %d is for $%.2f % (checknum, amount)

Check 1200 is for $120.15
Check 1201 is for $764.05
Check 1202 is for $823.14

>>> import operator
>>> for cube in imap(operator.pow, xrange(1,4), repeat(3)):
print cube

=

” ”

>>> reportlines = ['EuroPython’, 'Roster’, ", ’alex’, ”, ’laura’,
", 'martin’, ”, 'walter’, ”, 'samuele’]
>>> for name in islice(reportlines, 3, None, 2):
print name.title()

Alex
Laura
Martin
Walter
Samuele

This section has further examples of how itertools can be combined. Noteethaherate() and

172 Chapter 5. Miscellaneous Services

iteritems() already have highly efficientimplementations in Python. They are only included here to illustrate
how higher level tools can be created from building blocks.

>>> def enumerate(iterable):
return izip(count(), iterable)

>>> def tabulate(function):
"Return function(0), function(1), ..."
return imap(function, count())

>>> def iteritems(mapping):
return izip(mapping.iterkeys(), mapping.itervalues())

>>> def nth(iterable, n):
"Returns the nth item"
return list(islice(iterable, n, n+1))

>>> def all(pred, seq):
"Returns True if pred(x) is True for every element in the iterable"
return False not in imap(pred, seq)

>>> def some(pred, seq):
"Returns True if pred(x) is True at least one element in the iterable"
return True in imap(pred, seq)

>>> def no(pred, seq):
"Returns True if pred(x) is False for every element in the iterable”
return True not in imap(pred, seq)

>>> def padnone(seq):
"Returns the sequence elements and then returns None indefinitely"
return chain(seq, repeat(None))

>>> def ncycles(seq, n):
"Returns the sequence elements n times"
return chain(*repeat(seq, n))

>>> def dotproduct(vecl, vec2):
return sum(imap(operator.mul, vecl, vec2))

>>> def window(seq, n=2):
"Returns a sliding window (of width n) over data from the iterable"
" s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... "
it = iter(seq)
result = tuple(islice(it, n))
if len(result) == n:
yield result
for elem in it
result = result[1:] + (elem,)
yield result

>>> def take(n, seq):
return list(islice(seq, n))

5.14 ConfigParser = — Configuration file parser

5.14. ConfigParser = — Configuration file parser 173

This module defines the cla€onfigParser . TheConfigParser class implements a basic configuration
file parser language which provides a structure similar to what you would find on Microsoft Windows INI files.
You can use this to write Python programs which can be customized by end users easily.

Warning: This library doesiotinterpret or write the value-type prefixes used in the Windows Registry extended
version of INI syntax.

The configuration file consists of sections, led bysecttion] '’ header and followed byrfame: value ’

entries, with continuations in the style of RFC 822aime=value 'is also accepted. Note that leading whitespace

is removed from values. The optional values can contain format strings which refer to other values in the same
section, or values in a speclREFAULTsection. Additional defaults can be provided on initialization and retrieval.
Lines beginning with#’ or *; " are ignored and may be used to provide comments.

For example:

[My Section]
foodir: %(dir)s/whatever
dir=frob

would resolve the%(dir)s ' to the value of tir ' (‘frob ’in this case). All reference expansions are done on
demand.

Default values can be specified by passing them int@€iafigParser constructor as a dictionary. Additional
defaults may be passed into thet() method which will override all others.

classRawConfigParser ([defaultﬂ)
The basic configuration object. Whelefaultsis given, it is initialized into the dictionary of intrinsic
defaults. This class does not support the magical interpolation behavior. New in version 2.3.

classConfigParser ([defaults])
Derived class oRawConfigParser that implements the magical interpolation feature and adds optional
arguments thget() anditems() methods. The values itefaultsmust be appropriate for thés()s ’
string interpolation. Note that_name__ is an intrinsic default; its value is the section name, and will
override any value provided iefaults

classSafeConfigParser ([defaultﬂ)
Derived class o€onfigParser thatimplements a more-sane variant of the magical interpolation feature.
This implementation is more predictable as well. New applications should prefer this version if they don't
need to be compatible with older versions of Python. New in version 2.3.

exceptionNoSectionError
Exception raised when a specified section is not found.

exceptionDuplicateSectionError
Exception raised when multiple sections with the same name are foundaabu ifsection() is called
with the name of a section that is already present.

exceptionNoOptionError
Exception raised when a specified option is not found in the specified section.

exceptioninterpolationError
Base class for exceptions raised when problems occur performing string interpolation.

exceptioninterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAXINTERPOLATION_DEPTH Subclass oterpolationError

exceptionInterpolationMissingOptionError
Exception raised when an option referenced from a value does not exist. Subclass of
InterpolationError . New in version 2.3.

exceptioninterpolationSyntaxError
Exception raised when the source text into which substitutions are made does not conform to the required
syntax. Subclass dnterpolationError . New in version 2.3.

174 Chapter 5. Miscellaneous Services

exceptionMissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exceptionParsingError
Exception raised when errors occur attempting to parse a file.

MAX_INTERPOLATION_DEPTH
The maximum depth for recursive interpolation fmt() when theraw parameter is false. This is relevant
only for theConfigParser class.

See Also:

Moduleshlex (section 5.19):
Support for a creating Nix shell-like mini-languages which can be used as an alternate format for appli-
cation configuration files.

5.14.1 RawConfigParser Objects

RawConfigParser instances have the following methods:

defaults ()
Return a dictionary containing the instance-wide defaults.

sections ()
Return a list of the sections availabREFAULTIs not included in the list.

add _section (section)
Add a section namedsection to the instance. If a section by the given name already exists,
DuplicateSectionError is raised.

has _section (sectior)
Indicates whether the named section is present in the configuratiorDHRAULTsection is not acknowl-
edged.

options (section)
Returns a list of options available in the specifsettion

has _option (section, optioh
If the given section exists, and contains the given option. return 1; otherwise return 0. New in version 1.6.

read (filename}
Read and parse a list of filenamesfilénamess a string or Unicode string, it is treated as a single filename.
If a file named infilenamescannot be opened, that file will be ignored. This is designed so that you can
specify a list of potential configuration file locations (for example, the current directory, the user's home
directory, and some system-wide directory), and all existing configuration files in the list will be read. If
none of the named files exist, tmnfigParser instance will contain an empty dataset. An application
which requires initial values to be loaded from a file should load the required file or filesrasidfp()
before callingread() for any optional files:

import ConfigParser, os

config = ConfigParser.ConfigParser()
config.readfp(open('defaults.cfg’))
config.read(['site.cfg’, os.path.expanduser(”/.myapp.cfg’)])

readfp (fp[, filenamd)
Read and parse configuration data from the file or file-like objefj {lonly thereadline() method is
used). Iffilenameis omitted andp has aname attribute, that is used fdilename the default is ??7?>".

get (section, optioh
Get anoptionvalue for the namedection

getint (section, optioh
A convenience method which coerces tpgionin the specifiedectionto an integer.

5.14. ConfigParser = — Configuration file parser 175

getfloat (' section, optioh
A convenience method which coerces dpgionin the specifiedectionto a floating point number.

getboolean (section, optioh
A convenience method which coerces tionin the specifiedsectionto a Boolean value. Note that the
accepted values for the option deyes, true , andon, which cause this method to return true, @hd
no, false , andoff , which cause itto return false. These values are checked in a case-insensitive manner.
Any other value will cause it to raiséalueError

items (sectior)
Return a list off name valug pairs for each option in the givesection

set (section, option, valye
If the given section exists, set the given option to the specified value; otherwiséiESsetionError
New in version 1.6.

write (fileobjec)
Write a representation of the configuration to the specified file object. This representation can be parsed by
a futureread() call. New in version 1.6.

remove _option (section, optioh
Remove the specifiedption from the specifiedsection If the section does not exist, raise
NoSectionError . If the option existed to be removed, return 1; otherwise return 0. New in version 1.6.

remove _section (sectior)
Remove the specifieskectionfrom the configuration. If the section in fact existed, retlirne . Otherwise
returnFalse .

optionxform (option)
Transforms the option namaption as found in an input file or as passed in by client code to the form
that should be used in the internal structures. The default implementation returns a lower-case version of
option subclasses may override this or client code can set an attribute of this name on instances to affect
this behavior. Setting this tetr() , for example, would make option names case sensitive.

5.14.2 ConfigParser Objects

TheConfigParser class extends some methods of RewConfigParser interface, adding some optional
arguments.

get (section, optiofl, raw[, vars]])
Get anoptionvalue for the nameslection All the ‘% interpolations are expanded in the return values, based
on the defaults passed into the constructor, as well as the optiosprovided, unless theaw argument is
true.

items (sectior{, raw[, vars]])
Create a generator which will return a tugteame, value) for each option in the giveesection Op-
tional arguments have the same meaning as fogét§ method. New in version 2.3.

5.15 fileinput — lterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.

The typical use is:

import fileinput
for line in fileinput.input():
process(line)

This iterates over the lines of all files listedsgs.argv[1:] , defaulting tosys.stdin if the list is empty.
If a filename is-" , itis also replaced bgys.stdin . To specify an alternative list of filenames, pass it as the

176 Chapter 5. Miscellaneous Services

first argument tanput() . A single file name is also allowed.
All files are opened in text mode. If an I/O error occurs during opening or reading EXteror s raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for inter-
active use, or if it has been explicitly reset (e.g. usigg.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable
at all is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

input ([fileq, inplacd, backup]]])
Create an instance of thiélelnput class. The instance will be used as global state for the functions
of this module, and is also returned to use during iteration. The parameters to this function will be passed
along to the constructor of thélelnput class.

The following functions use the global state createdrput() ; if there is no active stat&untimeError is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, Keinms

lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read,
returns0. After the last line of the last file has been read, returns the line number of that line.

filelineno 0
Return the line number in the current file. Before the first line has been read, rétufsiter the last line
of the last file has been read, returns the line number of that line within the file.

isfirstline 0
Returns true the line just read is the first line of its file, otherwise returns false.

isstdin ()
Returns true if the last line was read frays.stdin , otherwise returns false.

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not
read from the file will not count towards the cumulative line count. The filename is not changed until after
the first line of the next file has been read. Before the first line has been read, this function has no effect;
it cannot be used to skip the first file. After the last line of the last file has been read, this function has no
effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:
classFilelnput ([files[, inplace[, backud]])

Class Filelnput is the implementation; its methoddename() , lineno() , fileline() ,
isfirstline() , isstdin() , hextfile() andclose() correspond to the functions of the same
name in the module. In addition it has@adline() method which returns the next input line, and a
__getitem __() method which implements the sequence behavior. The sequence must be accessed in

strictly sequential order; random access egwatlline() cannot be mixed.

Optional in-place filtering: if the keyword argumeninplace=1 is passed tanput() or to theFilelnput
constructor, the file is moved to a backup file and standard output is directed to the input file (if a file of the
same name as the backup file already exists, it will be replaced silently). This makes it possible to write a filter
that rewrites its input file in place. If the keyword argumbatkup=’.<some extension>’ is also given,

it specifies the extension for the backup file, and the backup file remains around; by default, the extension is
"bak’ anditis deleted when the output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.15. fileinput — lterate over lines from multiple input streams 177

5.16 xreadlines — Efficient iteration over a file

New in version 2.1.
Deprecated since release 2.8Isefor line in file instead.

This module defines a new object type which can efficiently iterate over the lines of a file. An xreadlines object is
a sequence type which implements simple in-order indexing beginnibgeatrequired byor statement or the
filter() function.

Thus, the code

import xreadlines, sys

for line in xreadlines.xreadlines(sys.stdin):
pass

has approximately the same speed and memory consumption as

while 1:
lines = sys.stdin.readlines(8*1024)
if not lines: break
for line in lines:
pass

except the clarity of théor statement is retained in the former case.

xreadlines (fileob))
Return a new xreadlines object which will iterate over the content§iledbj. fileobj must have a
readlines() method that supports ttezehintparameterNote: Because theeadlines() method
buffers data, this effectively ignores the effects of setting the file object as unbuffered.

An xreadlines objecs$ supports the following sequence operation:

Operation | Result
§i | ithfineofs

If successive values dfare not sequential starting frody this code will raiseRuntimeError

After the last line of the file is read, this code will raiseladexError

5.17 calendar — General calendar-related functions

This module allows you to output calendars like theil cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the
last (the European convention). Usetfirstweekday() to set the first day of the week to Sunday (6) or to

any other weekday. Parameters that specify dates are given as integers.

Most of these functions rely on theatetime module which uses an idealized calendar, the current Gregorian
calendar indefinitely extended in both directions. This matches the definition of the "proleptic Gregorian” calendar
in Dershowitz and Reingold’s book "Calendrical Calculations”, where it's the base calendar for all computations.

setfirstweekday (weekday
Sets the weekdayO(is Monday, 6 is Sunday) to start each week. The vall®NDAYTUESDAY
WEDNESDAYHURSDAYFRIDAY, SATURDAYand SUNDAYare provided for convenience. For ex-
ample, to set the first weekday to Sunday:

178 Chapter 5. Miscellaneous Services

import calendar
calendar.setfirstweekday(calendar. SUNDAY)

New in version 2.0.

firstweekday ()
Returns the current setting for the weekday to start each week. New in version 2.0.

isleap (yean
Returnsl if yearis a leap year, otherwisg

leapdays (y1,y2
Returns the number of leap years in the range.[.y2), whereyl andy2 are years. Changed in version
2.0: This function didn’t work for ranges spanning a century change in Python 1.5.2.

weekday (year, month, day
Returns the day of the wee (s Monday) foryear(1970—...),month(1-12), day (1-31).

monthrange (year, month
Returns weekday of first day of the month and number of days in month, for the spgedfiemhdmonth

monthcalendar (year, month
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless setfbrgtweekday()

prmonth (theyear, themon{h w[, I]])
Prints a month’s calendar as returnedrbgnth() .

month (theyear, themon{h w[, I]])
Returns a month’s calendar in a multi-line stringwifs provided, it specifies the width of the date columns,
which are centered. Ifis given, it specifies the number of lines that each week will use. Depends on the
first weekday as set tsetfirstweekday() . New in version 2.0.

prcal (yeal{, w[, I[c]]])

Prints the calendar for an entire year as returneddbgndar()

calendar (yeaf,w[,1[c]]])

Returns a 3-column calendar for an entire year as a multi-line string. Optional paramdtersdc are for

date column width, lines per week, and number of spaces between month columns, respectively. Depends
on the first weekday as set etfirstweekday() . The earliest year for which a calendar can be
generated is platform-dependent. New in version 2.0.

timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned ggnthee() function in the
time module, and returns the correspondingikl timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In factime.gmtime() andtimegm() are each others’ inverse. New in version
2.0.

See Also:

Moduletime (section 6.10):
Low-level time related functions.

5.18 cmd— Support for line-oriented command interpreters

The Cmdclass provides a simple framework for writing line-oriented command interpreters. These are often
useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated
interface.

classCmq [completeke]/,[stdin] ,[stdout])
A Cmdinstance or subclass instance is a line-oriented interpreter framework. There is no good reason to
instantiateCmditself; rather, it's useful as a superclass of an interpreter class you define yourself in order to
inherit Cmds methods and encapsulate action methods.

5.18. cmd— Support for line-oriented command interpreters 179

The optional argumentompletekeys thereadline name of a completion key; it defaults T@b. If
completekejs notNone andreadline is available, command completion is done automatically.

The optional argumentstdin andstdoutspecify the input and output file objects that the Cmd instance or
subclass instance will use for input and output. If not specified, they will defasjtdstdirandsys.stdout

Changed in version 2.3: Thetdinandstdoutparameters were added..

5.18.1 Cmd Objects

A Cmdinstance has the following methods:

cmdloop ([intro])
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides the
intro class member).

If the readline module is loaded, input will automatically inhebashlike history-list editing (e.g.
Control-P scrolls back to the last commart@pntrol-N forward to the next oneontrol-F moves
the cursor to the right non-destructivefpntrol-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the stiEQF’ .

An interpreter instance will recognize a command nafae * if and only if it has a methodlo _foo()
As a special case, a line beginning with the chara@éris dispatched to the methadb _help() . As
another special case, a line beginning with the charakttds ‘dispatched to the methatb _shell() (if
such a method is defined).

If completion is enabled, completing commands will be done automatically, and completing of commands
args is done by callingomplete _foo() with argumentgext, line, begidx andendidx textis the string

prefix we are attempting to match: all returned matches must begin witimétis the current input line

with leading whitespace removdukgidxandendidxare the beginning and ending indexes of the prefix text,
which could be used to provide different completion depending upon which position the argument is in.

All subclasses of£mdinherit a predefinedio _help() . This method, called with an argumebar’
invokes the corresponding methbdlp _bar() . With no argumentdo _help() lists all available help
topics (that is, all commands with correspondimgp _*() methods), and also lists any undocumented
commands.

onecmd(str)
Interpret the argument as though it had been typed in response to the prompt. This may be overridden, but
should not normally need to be; see firecmd() andpostcmd() methods for useful execution hooks.
The return value is a flag indicating whether interpretation of commands by the interpreter should stop.

emptyline ()
Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

default (line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden,
it prints an error message and returns.

completedefault (text, line, begidx, endigx
Method called to complete an input line when no command-spexdfitplete _*() method is available.
By default, it returns an empty list.

precmd (line)
Hook method executed just before the commandliimeis interpreted, but after the input prompt is gener-
ated and issued. This method is a stulCind it exists to be overridden by subclasses. The return value is
used as the command which will be executed byadhecmd() method; thgorecmd() implementation
may re-write the command or simply retume unchanged.

postcmd (stop, ling
Hook method executed just after a command dispatch is finished. This method is a Sy iih exists

180 Chapter 5. Miscellaneous Services

to be overridden by subclasseline is the command line which was executed, atopis a flag which
indicates whether execution will be terminated after the cgllastcmd() ; this will be the return value of
theonecmd() method. The return value of this method will be used as the new value for the internal flag
which corresponds tstog returning false will cause interpretation to continue.

preloop ()
Hook method executed once whemdloop() is called. This method is a stub @md it exists to be

overridden by subclasses.

postloop ()
Hook method executed once whemdloop() is about to return. This method is a stubGmd it exists
to be overridden by subclasses.

Instances o€mdsubclasses have some public instance variables:

prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by givingitiiioop() method an argument.

doc _header
The header to issue if the help output has a section for documented commands.

misc _header
The header to issue if the help output has a section for miscellaneous help topics (that is, there are
help _*() methods without correspondimp _*() methods).

undoc _header
The header to issue if the help output has a section for undocumented commands (that is, trer&(pare
methods without correspondimglp _*() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn.
It defaults to ='.

use _rawinput
A flag, defaulting to true. If truesmdloop() usesraw _input() to display a prompt and read the next
command; if falsesys.stdout.write() andsys.stdin.readline() are used. (This means that
by importingreadline , on systems that support it, the interpreter will automatically support Emacs-like
line editing and command-history keystrokes.)

5.19 shlex — Simple lexical analysis

New in version 1.5.2.

Theshlex class makes it easy to write lexical analyzers for simple syntaxes resembling that oftheshell.
This will often be useful for writing minilanguages, (e.g. in run control files for Python applications) or for parsing
quoted strings.

See Also:

Module ConfigParser (section 5.14):
Parser for configuration files similar to the Windowisi* files.

5.19.1 Module Contents

Theshlex module defines the following functions:

5.19. shlex — Simple lexical analysis 181

split (s[, commentsEalse])
Split the strings using shell-like syntax. IEtommentss False , the parsing of comments in the given
string will be disabled (setting treommenters member of theshlex instance to the empty string). This
function operates in POSIX mode. New in version 2.3.

Theshlex module defines the following classes:

classshlex ([instream:sys.stdin [infile=None[, posix=alse]]])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if
present, specifies where to read characters from. It must be a file-/stream-like objertagih and
readline() methods, or a string (strings are accepted since Python 2.3). If no argument is given, input
will be taken fromsys.stdin . The second optional argument is a filename string, which sets the initial
value of theinfile member. If theinstreamargument is omitted or equal &ys.stdin , this second
argument defaults to “stdin”. Thaosixargument was introduced in Python 2.3, and defines the operational
mode. Whermposixis not true (default), thehlex instance will operate in compatibility mode. When
operating in POSIX modeshlex will try to be as close as possible to the POSIX shell parsing rules.
See 5.19.2.

5.19.2 shlex Objects

A shlex instance has the following methods:

get _token ()
Return a token. If tokens have been stacked upirgh _token() , pop a token off the stack. Otherwise,
read one from the input stream. If reading encounters an immediate end-séfilepf is returned (the
empty string {) in non-POSIX mode, andone in POSIX mode).

push _token (str)
Push the argument onto the token stack.

read _token ()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not ordinarily a
useful entry point, and is documented here only for the sake of completeness.)

sourcehook (filenamé
Whenshlex detects a source request (ssirce below) this method is given the following token as
argument, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or
there was no previous source request in effect, or the previous source was a streasggstdgin =~),

the result is left alone. Otherwise, if the result is a relative pathname, the directory part of the name of the
file immediately before it on the source inclusion stack is prepended (this behavior is like the way the C
preprocessor handléggnclude “file.h").

The result of the manipulations is treated as a filename, and returned as the first component of the tuple, with
open() called on it to yield the second component. (Note: this is the reverse of the order of arguments in
instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file extensions,
and other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance will call the
close() method of the sourced input stream when it retuwros.

For more explicit control of source stacking, use plush _source() andpop_source() methods.

push _source (strearr[, filenamd)
Push an input source stream onto the input stack. If the filename argument is specified it will later be
available for use in error messages. This is the same method used internallysbytbehook method.
New in version 2.1.

pop _source ()
Pop the last-pushed input source from the input stack. This is the same method used internally when the
lexer reachegoron a stacked input stream. New in version 2.1.

error _leader ([file[, Iine]])
This method generates an error message leader in the formatixa®@compiler error label; the format

182 Chapter 5. Miscellaneous Services

is "%s", line %d: , Where the %s is replaced with the name of the current source file and the
‘%d with the current input line number (the optional arguments can be used to override these).

This convenience is provided to encouragfdex users to generate error messages in the standard,
parseable format understood by Emacs and othex Wools.

Instances oshlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the comment begin-
ner to end of line are ignored. Includes jugt by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includescaill
alphanumerics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

escape
Characters that will be considered as escape. This will be only used in POSIX mode, and includes just *
by default. New in version 2.3.

guotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, inskciesingle and
double quotes.

escapedquotes
Characters imuotes that will interpret escape characters definedsnape . This is only used in POSIX
mode, and includes just * by default. New in version 2.3.

whitespace _split
If True , tokens will only be split in whitespaces. This is useful, for example, for parsing command lines
with shlex , getting tokens in a similar way to shell arguments. New in version 2.3.

infile
The name of the current input file, as initially set at class instantiation time or stacked by later source
requests. It may be useful to examine this when constructing error messages.

instream
The input stream from which thighlex instance is reading characters.

source
This member idNone by default. If you assign a string to it, that string will be recognized as a lexical-level
inclusion request similar to thesdurce ' keyword in various shells. That is, the immediately following
token will opened as a filename and input taken from that streamamiil at which point theclose()
method of that stream will be called and the input source will again become the original input stream. Source
requests may be stacked any number of levels deep.

debug
If this member is numeric andl or more, ashlex instance will print verbose progress output on its
behavior. If you need to use this, you can read the module source code to learn the details.

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

eof
Token used to determine end of file. This will be set to the empty stfing, (n non-POSIX mode, and to
None in POSIX mode. New in version 2.3.

5.19. shlex — Simple lexical analysis 183

5.19.3 Parsing Rules

When operating in non-POSIX modshlex will try to obey to the following rules.
e Quote characters are not recognized within woide"(Not"Separate is parsed as the single word
Do"Not"Separate);
e Escape characters are not recognized;
e Enclosing characters in quotes preserve the literal value of all characters within the quotes;
e Closing quotes separate wordB¢"Separate is parsed asDo" andSeparate);

e If whitespace _split is False , any character not declared to be a word character, whitespace, or a
quote will be returned as a single-character token. Iftrige , shlex will only split words in whitespaces;

e EOF is signaled with an empty string ();

e It's not possible to parse empty strings, even if quoted.
When operating in POSIX modshlex will try to obey to the following parsing rules.
e Quotes are stripped out, and do not separate wdkis'Not"Separate” is parsed as the single word
DoNotSeparate);

e Non-quoted escape characters (e\g. preserve the literal value of the next character that follows;

e Enclosing characters in quotes which are not padgsafapedquotes (e.g. * ') preserve the literal value
of all characters within the quotes;

e Enclosing characters in quotes which are parestapedquotes (e.g. “’) preserves the literal value
of all characters within the quotes, with the exception of the characters mentioaschipe . The escape
characters retain its special meaning only when followed by the quote in use, or the escape character itself.
Otherwise the escape character will be considered a normal character.

e EOF is signaled with &lone value;

Quoted empty strings’() are allowed;

184 Chapter 5. Miscellaneous Services

CHAPTER
SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (al-
most) all operating systems, such as files and a clock. The interfaces are generally modeled afiex thved)
interfaces, but they are available on most other systems as well. Here’s an overview:

0s

o0s.path
dircache

stat
statcache
statvfs
filecmp
popen2
datetime
time

sched
mutex
getpass
curses
curses.textpad
curses.wrapper
curses.ascii
curses.panel
getopt
optparse
tempfile
errno

glob
fnmatch
shutil

locale
gettext

logging

Miscellaneous operating system interfaces.
Common pathname manipulations.

Return directory listing, with cache mechanism.
Utilities for interpreting the results afs.stat()
Stat files, and remember results.

Constants for interpreting the resultas.statvfs()
Compare files efficiently.

Subprocesses with accessible standard I/O streams.

Basic date and time types.

Time access and conversions.

General purpose event scheduler.

Lock and queue for mutual exclusion.

Portable reading of passwords and retrieval of the userid.

An interface to the curses library, providing portable terminal handling.

Emacs-like input editing in a curses window.

Terminal configuration wrapper for curses programs.

Constants and set-membership functionsafecii characters.

A panel stack extension that adds depth to curses windows.

Portable parser for command line options; support both short and long option names.
Powerful, flexible, extensible, easy-to-use command-line parsing library.

Generate temporary files and directories.

Standard errno system symbols.

UNIX shell style pathname pattern expansion.

UNix shell style filename pattern matching.

High-level file operations, including copying.

Internationalization services.

Multilingual internationalization services.

Logging module for Python based on PEP 282.

, 0s.Istat() andos.fstat()

6.1 0s — Miscellaneous operating system interfaces

This module provides a more portable way of using operating system dependent functionality than importing a
operating system dependent built-in module likesix ornt .

This module searches for an operating system dependent built-in moduladiker posix and exports the
same functions and data as found there. The design of all Python’s built-in operating system dependent modules
is such that as long as the same functionality is available, it uses the same interface; for example, the function

os.stat(

path) returns stat information abopathin the same format (which happens to have originated with
the POSIX interface).

185

Extensions peculiar to a particular operating system are also available througgh thedule, but using them is
of course a threat to portability!

Note that after the first times is imported, there im0 performance penalty in using functions fraa instead
of directly from the operating system dependent built-in module, so there shouturbason not to uses!

exceptionerror

name

path

This exception is raised when a function returns a system-related error (not for illegal argument types or
other incidental errors). This is also known as the built-in exce@@8i&rror . The accompanying value is

a pair containing the numeric error code fremno and the corresponding string, as would be printed by
the C functionperror() . See the modulerrno , which contains names for the error codes defined by
the underlying operating system.

When exceptions are classes, this exception carries two attriterre®y and strerror . The first
holds the value of the @rrno variable, and the latter holds the corresponding error message from
strerror() . For exceptions that involve a file system path (sucltladir() or unlink()), the
exception instance will contain a third attribufdename , which is the file name passed to the function.

The name of the operating system dependent module imported. The following names have currently been

registered’posix’ ,’'nt ,’java’ ,’riscos’

,’mac’ ,’os2’ ,’ce’
The corresponding operating system dependent standard module for pathname operations, such as
posixpath or macpath . Thus, given the proper importss.path.split(file) is equivalent to

but more portable thaposixpath.split(file) . Note that this is also an importable module: it may be
imported directly a®s.path

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ

chdir
fchdir

A mapping object representing the string environment. For exaraplé,on[HOME’] is the pathname
of your home directory (on some platforms), and is equivalegetenv("HOME") in C.

If the platform supports thputenv() function, this mapping may be used to modify the environment as
well as query the environmenputenv() will be called automatically when the mapping is modified.
Note: On some platforms, including FreeBSD and Mac OS X, setimgron may cause memory leaks.
Refer to the system documentation for putenv.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation functions to
cause child processes to use a modified environment.

(path
(fd)

getcwd ()

cterm

geteg

geteu

These functions are described in “Files and Directories” (section 6.1.4).

id ()

Return the filename corresponding to the controlling terminal of the process. Availabitityc. U

id ()

Return the effective group id of the current process. This corresponds to the ‘set id’ bit on the file being
executed in the current process. Availabilitynix.

id ()

Return the current process’ effective user id. Availabilityxi.

getgid ()

Return the real group id of the current process. Availabilityix.

getgroups ()

Return list of supplemental group ids associated with the current process. Availabiity. U

getlogin ()

186

Chapter 6. Generic Operating System Services

Return the name of the user logged in on the controlling terminal of the process. For most pur-
poses, it is more useful to use the environment variable LOGNAME to find out who the user is, or
pwd.getpwuid(os.getuid())[0] to get the login name of the currently effective user ID. Avail-
ability: UNIX.

getpgid (pid)
Return the process group id of the process with procegslidf pid is 0, the process group id of the current
process is returned. Availability: \Ux. New in version 2.3.

getpgrp ()
Return the id of the current process group. Availabilityxi.

getpid ()
Return the current process id. Availability:Nuk, Windows.

getppid ()
Return the parent’s process id. Availability NUx .

getuid ()
Return the current process’ user id. AvailabilityNLX.

getenv (varname{, value])
Return the value of the environment variabBrnameif it exists, orvalueif it doesn’t. valuedefaults to
None. Availability: most flavors of Wix, Windows.

putenv (varname, valug
Set the environment variable namedrnameto the stringvalue Such changes to the environment af-
fect subprocesses started with.system() , popen() orfork() andexecv() . Availability: most
flavors of WINIx, Windows.

Note: On some platforms, including FreeBSD and Mac OS X, seimgron may cause memory leaks.
Refer to the system documentation for putenv.

Whenputenv() is supported, assignments to itemsomenviron are automatically translated into
corresponding calls tputenv() ; however, calls tqoutenv() don’t updateos.environ , so it is
actually preferable to assign to itemsas.environ

setegid (egid)
Set the current process’s effective group id. Availabilitysii.

seteuid (euid)
Set the current process’s effective user id. Availabilityaik.

setgid (gid)
Set the current process’ group id. Availability N .

setgroups (group9
Set the list of supplemental group ids associated with the current procgssujgs groupsmust be a
sequence, and each element must be an integer identifying a group. This operation is typical available only
to the superuser. Availability: NiX. New in version 2.2.

setpgrp ()
Calls the system calletpgrp() or setpgrp(0, 0) depending on which version is implemented (if
any). See the Nix manual for the semantics. Availability: NUX .

setpgid (pid, pgrp
Calls the system cadletpgid() to set the process group id of the process witpidito the process group
with id pgrp. See the Wix manual for the semantics. Availability: NUX .

setreuid (ruid, euid)

Set the current process’s real and effective user ids. AvailabilityxU
setregid (rgid, egid

Set the current process’s real and effective group ids. AvailabilityrxU

setsid ()
Calls the system cafletsid() . See the Wix manual for the semantics. Availability: NJX.

6.1. os — Miscellaneous operating system interfaces 187

setuid (uid)
Set the current process’ user id. AvailabilityNX.

strerror (code
Return the error message corresponding to the error cattedi| Availability: UNIX, Windows.

umask(masR
Set the current numeric umask and returns the previous umask. Availabikity, Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5
strings: (sysname nodenamg release version maching. Some systems truncate the nodename to
8 characters or to the leading component; a better way to get the hostnsme&es.gethostname()
or even socket.gethostbyaddr(socket.gethostname()) . Availability: recent flavors of
UNIX.

6.1.2 File Object Creation

These functions create new file objects.

fdopen (fd[, modd, bufsizd |)
Return an open file object connected to the file descrifitorThe modeand bufsizearguments have the
same meaning as the corresponding arguments to the boifien() function. Availability: Macintosh,
UNIX, Windows.

Changed in version 2.3: When specified, thedeargument must now start with one of the lettar§ ‘ w,
or ‘a’, otherwise avalueError s raised.

popen (comman@, mode[, bufsizd])
Open a pipe to or froosommand The return value is an open file object connected to the pipe, which can
be read or written depending on whetheodeis'r' (default) orw’ . Thebufsizeargument has the same
meaning as the corresponding argument to the buitig@n() function. The exit status of the command
(encoded in the format specified famit()) is available as the return value of tobwse() method
of the file object, except that when the exit status is zero (termination without erwsg is returned.
Availability: UNIx, Windows.

Changed in version 2.0: This function worked unreliably under Windows in earlier versions of Python. This
was due to the use of thgpopen() function from the libraries provided with Windows. Newer versions
of Python do not use the broken implementation from the Windows libraries.

tmpfile ()
Return a new file object opened in update modetfy’). The file has no directory entries associated with
it and will be automatically deleted once there are no file descriptors for the file. Availabilityix,U
Windows.

For each of thespopen() variants, ifbufsizeis specified, it specifies the buffer size for the 1/O pipesde
if provided, should be the strinp’ or’t’ ; on Windows this is needed to determine whether the file objects
should be opened in binary or text mode. The default valuenfmdeis 't’

These methods do not make it possible to retrieve the return code from the child processes. The only way to
control the input and output streams and also retrieve the return codes is to BfepnS andPopen4 classes
from thepopen2 module; these are only available omLX.

For a discussion of possible deadlock conditions related to the use of these functioridpge€dntrol Issues
(section 6.8.2).

popen2 (cmc{, mode[, bufsizd])
Executexmdas a sub-process. Returns the file objéatsild_stdin, child_stdou) . Availability: UNIX,
Windows. New in version 2.0.

popen3 (cmc{, mode[, bufsize]])
Executescmd as a sub-process. Returns the file objdathild_stdin child_stdout child_stderr) .
Availability: UNix, Windows. New in version 2.0.

popen4 (cmc{, mode[, bufsize]])

188 Chapter 6. Generic Operating System Services

Executexmdas a sub-process. Returns the file objéatsild_stdin, child_stdout_and_stderr) . Avail-
ability: UNIX, Windows. New in version 2.0.

This functionality is also available in thopen2 module using functions of the same names, but the return values
of those functions have a different order.

6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close (fd)
Close file descriptofd. Availability: Macintosh, Wix, Windows.

Note: this function is intended for low-level 1/0O and must be applied to a file descriptor as returned by
open() orpipe() . To close a “file object” returned by the built-in functiopen() or bypopen() or
fdopen() ,useitsclose() method.

dup (fd)
Return a duplicate of file descriptf. Availability: Macintosh, Wix, Windows.

dup2 (fd, fd2
Duplicate file descriptofd to fd2, closing the latter first if necessary. Availability:Nux, Windows.

fdatasync (fd)
Force write of file with filedescriptodid to disk. Does not force update of metadata. Availabilitydi.

fpathconf (fd, namé
Return system configuration information relevant to an open fiemespecifies the configuration value
to retrieve; it may be a string which is the name of a defined system value; these names are specified in a
number of standards (POSIX.1 N 95, UNIX98, and others). Some platforms define additional names
as well. The names known to the host operating system are given patheonf _names dictionary.
For configuration variables not included in that mapping, passing an integeafeis also accepted.
Availability: UNIX.

If nameis a string and is not knowiValueError s raised. If a specific value forameis not supported by
the host system, even ifitis includedpathconf _names, anOSError is raised witherrno.EINVAL
for the error number.

fstat (fd)
Return status for file descriptéd, like stat() . Availability: UNIX, Windows.

fstatvfs (fd)
Return information about the filesystem containing the file associated with file descfitdike
statvfs() . Availability: UNIX.

fsync (fd)
Force write of file with filedescriptofd to disk. On Wix, this calls the nativédsync() function; on
Windows, the MS_commit() function.

If youre starting with a Python file objectf, first do f.flush) , and then do
os.fsync(f.fileno()) , to ensure that all internal buffers associated wiithre written to disk.
Availability: UNIX, and Windows starting in 2.2.3.

ftruncate (fd, length
Truncate the file corresponding to file descripfhrso that it is at mosiengthbytes in size. Availability:
UNIX.

isatty (fd)
ReturnTrue if the file descriptoifd is open and connected to a tty(-like) device, élatse . Availability:
UNIX.

Iseek (fd, pos, hoy
Set the current position of file descriptiorto positionpos modified byhow. 0 to set the position relative
to the beginning of the filet to set it relative to the current positioP;to set it relative to the end of the file.
Availability: Macintosh, WNIX, Windows.

6.1. os — Miscellaneous operating system interfaces 189

open (file, fIags[, modd)
Open the filefile and set various flags according ftagsand possibly its mode according meode The
defaultmodeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for
the newly opened file. Availability: Macintosh,Nux, Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constants (like
O_RDONLYandO_WRONL)¥are defined in this module too (see below).

Note: this function is intended for low-level /0. For normal usage, use the built-in fungien() , which
returns a “file object” withread() andwrite() methods (and many more).

openpty ()
Open a new pseudo-terminal pair. Return a pair of file descriptmaster slave for the pty and the tty,
respectively. For a (slightly) more portable approach, usethe module. Availability: Some flavors of
UNIX.

pipe ()
Create a pipe. Return a pair of file descriptbrs w) usable for reading and writing, respectively. Avail-
ability: UNix, Windows.

read (fd, n)
Read at mosh bytes from file descriptdid. Return a string containing the bytes read. If the end of the file
referred to byfd has been reached, an empty string is returned. Availability: Macintoshs Windows.

Note: this function is intended for low-level /0O and must be applied to a file descriptor as returned by
open() orpipe() . Toread a “file object” returned by the built-in functiopen() or by popen() or
fdopen() ,orsys.stdin ,useitsread() orreadline() methods.

tcgetpgrp (fd)
Return the process group associated with the terminal giveid fgn open file descriptor as returned by
open()). Availability: UNIX.

tcsetpgrp (fd, pg
Set the process group associated with the terminal givefdi{gn open file descriptor as returned by

open()) to pg. Availability: UNIX.

ttyname (fd)
Return a string which specifies the terminal device associated with file-desddptbfd is not associated
with a terminal device, an exception is raised. Availabilitysi.

write (fd, str)
Write the stringstr to file descriptoifd. Return the number of bytes actually written. Availability: Macin-
tosh, WNIX, Windows.

Note: this function is intended for low-level 1/0 and must be applied to a file descriptor as returned by
open() orpipe() . To write a “file object” returned by the built-in functiapen() or bypopen() or
fdopen() ,orsys.stdout orsys.stderr ,useitswrite() method.

The following data items are available for use in constructinglégsparameter to thepen() function.

O_RDONLY

O_WRONLY

O_RDWR

O_NDELAY

O_NONBLOCK

O_APPEND

O_DSYNC

O_RSYNC

O_SYNC

O_NOCTTY

O_CREAT

O_EXCL

O_TRUNC
Options for theflag argument to thepen() function. These can be bit-wise OR’d together. Availability:
Macintosh, Wix, Windows.

190 Chapter 6. Generic Operating System Services

O_BINARY
Option for theflag argument to thepen() function. This can be bit-wise OR'd together with those listed
above. Availability: Macintosh, Windows.

O_NOINHERIT

O_SHORTLIVED

O_TEMPORARY

O_RANDOM

O_SEQUENTIAL

O_TEXT
Options for theflag argument to thepen() function. These can be bit-wise OR'd together. Availability:
Windows.

6.1.4 Files and Directories

access (path, modg
Use the real uid/gid to test for accesspgath Note that most operations will use the effective uid/gid,
therefore this routine can be used in a suid/sgid environment to test if the invoking user has the specified
access tgpath modeshould be_OKto test the existence @fath or it can be the inclusive OR of one or
more of R_OK W_OK andX_OKto test permissions. Retufnif access is allowed) if not. See the Wix
man pagecces§) for more information. Availability: Wix, Windows.

F_OK
Value to pass as thmodeparameter ofccess() to test the existence plath

R_OK
Value to include in thenodeparameter oficcess() to test the readability gfath

W_OK
Value to include in thenodeparameter oficcess() to test the writability ofpath

X_OK
Value to include in thenodeparameter oficcess() to determine ifpathcan be executed.

chdir (path)
Change the current working directorypath Availability: Macintosh, WNix, Windows.

fchdir (fd)
Change the current working directory to the directory represented by the file destdipidre descriptor
must refer to an opened directory, not an open file. Availabilityixd New in version 2.3.

getcwd ()
Return a string representing the current working directory. Availability: Macintoshx [MWindows.

getcwdu ()
Return a Unicode object representing the current working directory. Availabilitgx UwWindows. New
in version 2.3.

chroot (path
Change the root directory of the current procesgdth Availability: UNix. New in version 2.2.

chmod(path, modg
Change the mode gfathto the numerianode modemay take one of the following values:
eS_ISUID
¢S_ISGID
oS_ENFMT
S_ISVTX
eS_IREAD
oS_IWRITE
oS_|IEXEC
S_IRWXU

6.1. os — Miscellaneous operating system interfaces 191

oS_IRUSR
oS_IWUSR
oS_IXUSR
oS_IRWXG
oS_IRGRP
oS_IWGRP
oS_IXGRP
oS_IRWXO
¢S_IROTH
oS_IWOTH
oS_IXOTH

Availability: UNiX, Windows.

chown (path, uid, gig
Change the owner and group iddthto the numeriaiid andgid. Availability: UNIX.

Ichown (path, uid, gig
Change the owner and group idmdithto the numeriaiid and gid. This function will not follow symbolic
links. Availability: UNIX. New in version 2.3.

link (src, ds)
Create a hard link pointing terc nameddst Availability: UNIX.

listdir (path
Return a list containing the names of the entries in the directory. The list is in arbitrary order. It does not
include the special entries and’.."” even if they are present in the directory. Availability: Macintosh,
UNIX, Windows.

Changed in version 2.3: On Windows NT/2k/XP and Unixpathis a Unicode object, the result will be a
list of Unicode objects..

Istat (path)
Like stat() , but do not follow symbolic links. Availability: Wiix.

mkfifo (path], modd])
Create a FIFO (a named pipe) nanmath with numeric modemode The defaultmodeis 0666 (octal).
The current umask value is first masked out from the mode. AvailabilityxU

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes:
the server opens the FIFO for reading, and the client opens it for writing. Notentfdb() doesn't

open the FIFO — it just creates the rendezvous point.

mknod(patl“[, mode=0600, devicb
Create a filesystem node (file, device special file or named pipe) named filenadespecifies both the
permissions to use and the type of node to be created, being combined (bitwise OR) with aifeRES,
S_IFCHR, S_IFBLK, and S_IFIFO (those constants are availablestat). For S IFCHR and SIFBLK,
devicedefines the newly created device special file (probably ustnmakedev()), otherwise it is ig-
nored. New in version 2.3.

major (device

Extracts a device major number from a raw device number. New in version 2.3.
minor (devicg

Extracts a device minor number from a raw device number. New in version 2.3.

makedev (major, mino)
Composes a raw device number from the major and minor device numbers. New in version 2.3.

mkdir (path, mode])
Create a directory nameaghth with numeric modenode The defaultmodeis 0777 (octal). On some
systemsmodeis ignored. Where it is used, the current umask value is first masked out. Availability:
Macintosh, Wix, Windows.

192 Chapter 6. Generic Operating System Services

makedirs (patr{, modd)
Recursive directory creation function. Likekdir() , but makes all intermediate-level directories needed
to contain the leaf directory. Throws @&mror exception if the leaf directory already exists or cannot be
created. The defautbhodeis 0777 (octal). This function does not properly handle UNC paths (only relevant
on Windows systems; Universal Naming Convention paths are those that usadsépath ' syntax).
New in version 1.5.2.

pathconf (path, namg
Return system configuration information relevant to a named fifanespecifies the configuration value
to retrieve; it may be a string which is the name of a defined system value; these names are specified in a
number of standards (POSIX.1 N 95, UNIX98, and others). Some platforms define additional names
as well. The names known to the host operating system are given patheonf _names dictionary.
For configuration variables not included in that mapping, passing an integeafeis also accepted.
Availability: UNIX.

If nameis a string and is not knowiValueError s raised. If a specific value forameis not supported by
the host system, even if it is includedpathconf _names, anOSError is raised witherrno.EINVAL
for the error number.

pathconf _names
Dictionary mapping names accepted fgthconf() andfpathconf() to the integer values defined
for those names by the host operating system. This can be used to determine the set of names known to the
system. Availability: WNix.

readlink (path
Return a string representing the path to which the symbolic link points. The result may be either
an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname using
os.path.join(os.path.dirname(path), resuld . Availability: UNIX.

remove (path
Remove the filgpath If pathis a directoryOSError is raised; seemdir() below to remove a directory.
This is identical to thaunlink() function documented below. On Windows, attempting to remove a file
that is in use causes an exception to be raised; Rrxthe directory entry is removed but the storage
allocated to the file is not made available until the original file is no longer in use. Availability: Macintosh,
UNIX, Windows.

removedirs (path
Removes directories recursively. Works likmdir() except that, if the leaf directory is successfully
removed, directories corresponding to rightmost path segments will be pruned way until either the whole
path is consumed or an error is raised (which is ignored, because it generally means that a parent directory
is not empty). Throws amrror exception if the leaf directory could not be successfully removed. New
in version 1.5.2.

rename (src, ds})
Rename the file or directogrcto dst If dstis a directoryOSError will be raised. On Wix, if dstexists
and is a file, it will be removed silently if the user has permission. The operation may fail on seme U
flavors if src anddst are on different filesystems. If successful, the renaming will be an atomic operation
(this is a POSIX requirement). On Windows di§t already existsOSError will be raised even if it is a
file; there may be no way to implement an atomic rename wigtnames an existing file. Availability:
Macintosh, Wix, Windows.

renames (old, new
Recursive directory or file renaming function. Works lilename() , except creation of any intermedi-
ate directories needed to make the new pathname good is attempted first. After the rename, directories
corresponding to rightmost path segments of the old name will be pruned awayesiogedirs()

Note: this function can fail with the new directory structure made if you lack permissions needed to remove
the leaf directory or file. New in version 1.5.2.

rmdir (path)
Remove the directorgath Availability: Macintosh, WNix, Windows.

stat (path)
Perform astat() system call on the given path. The return value is an object whose attributes correspond

6.1. os — Miscellaneous operating system interfaces 193

stat

to the members of thetat structure, namely:st _mode (protection bits),st _ino (inode number),

st _dev (device),st _nlink (number of hard links)st _uid (user ID of owner)st _gid (group ID

of owner),st _size (size of file, in bytes)st _atime (time of most recent accessf, _mtime (time

of most recent content modificatiorgt _ctime (time of most recent content modification or metadata
change).

Changed in version 2.3: Btat _float _times returns true, the time values are floats, measuring sec-
onds. Fractions of a second may be reported if the system supports that. On Mac OS, the times are always
floats. Seestat _float _times for further discussion. .

On some Unix systems (such as Linux), the following attributes may also be avagahlblocks (num-
ber of blocks allocated for fileyt _blksize (filesystem blocksizekt _rdev (type of device if an inode
device).

On Mac OS systems, the following attributes may also be availaBle_rsize , st _creator |,
st _type .

On RISCOS systems, the following attributes are also availadile:ftype (file type),st _attrs (at-
tributes),st _obtype (object type).

For backward compatibility, the return valuesift() is also accessible as a tuple of at least 10 integers
giving the most important (and portable) members ofstae¢ structure, in the ordest _mode, st _ino ,

st _dev,st _nlink ,st _uid ,st _gid ,st _size ,st _atime ,st _mtime, st _ctime . More items
may be added at the end by some implementations. The standard nstatuledefines functions and
constants that are useful for extracting information frosta structure. (On Windows, some items are
filled with dummy values.) Availability: Macintosh, ux, Windows.

Changed in version 2.2: Added access to values as attributes of the returned object.

_float _times ([newvalud)
Determine whethestat _result represents time stamps as float objects. If newval is True, future calls
to stat() return floats, if it is False, future calls return ints. If newval is omitted, return the current setting.

For compatibility with older Python versions, accessitat _result as a tuple always returns integers.

For compatibility with Python 2.2, accessing the time stamps by field name also returns integers. Appli-
cations that want to determine the fractions of a second in a time stamp can use this function to have time
stamps represented as floats. Whether they will actually observe non-zero fractions depends on the system.

Future Python releases will change the default of this setting; applications that cannot deal with floating
point time stamps can then use this function to turn the feature off.

It is recommended that this setting is only changed at program startup time in_thain__ module;
libraries should never change this setting. If an application uses a library that works incorrectly if float-
ing point time stamps are processed, this application should turn the feature off until the library has been
corrected.

statvfs (path)

Perform astatvfs() system call on the given path. The return value is an object whose attributes
describe the filesystem on the given path, and correspond to the membersstétiie structure,
namely:f _frsize ,f _blocks ,f _bfree ,f _bavail ,f_files ,f_ffree ,f_favail ,f _flag ,

f _namemax Availability: UNIX.

For backward compatibility, the return value is also accessible as a tuple whose values correspond to the
attributes, in the order given above. The standard mostalerfs ~ defines constants that are useful for
extracting information from &tatvfs structure when accessing it as a sequence; this remains useful
when writing code that needs to work with versions of Python that don’t support accessing the fields as
attributes.

Changed in version 2.2: Added access to values as attributes of the returned object.

symlink ('src, ds)

Create a symbolic link pointing terc nameddst Availability: UNiX.

tempnam([dir[, prefix]])

Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path
that names a potential directory entry in the directdiryor a common location for temporary filesdir is

omitted orNone. If given and notNone, prefixis used to provide a short prefix to the filename. Applications

are responsible for properly creating and managing files created using paths returtesdpbam() ;

194

Chapter 6. Generic Operating System Services

no automatic cleanup is provided. OmLX, the environment variable TMPDIR overridds, while on
Windows the TMP is used. The specific behavior of this function depends on the C library implementation;
some aspects are underspecified in system documentefeoning: Use oftempnam() is vulnerable to
symlink attacks; consider usinmpfile() instead. Availability: Wix, Windows.

tmpnam()
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in a common location for temporary files. Applications are responsible
for properly creating and managing files created using paths returngpomam() ; no automatic cleanup
is provided.Warning: Use oftmpnam() is vulnerable to symlink attacks; consider ustngpfile()
instead. Availability: Wix, Windows. This function probably shouldn’t be used on Windows, though:
Microsoft's implementation ofmpnam() always creates a name in the root directory of the current drive,
and that's generally a poor location for a temp file (depending on privileges, you may not even be able to
open a file using this name).

TMP_MAX
The maximum number of unique names ttrapnam() will generate before reusing names.

unlink (path)
Remove the filpath This is the same function asmove() ;theunlink() name is its traditional ¥ix
name. Availability: Macintosh, Nix, Windows.

utime (path, time}
Set the access and modified times of the file specifiegdtly If timesis None, then the file’s access and
modified times are set to the current time. Otherwtgaesmust be a 2-tuple of numbers, of the form
(atime mtim@ which is used to set the access and modified times, respectively. Changed in version 2.0:
Added support foNone for times Availability: Macintosh, Wix, Windows.

walk (top[, topdowrFTrue [onerror:None]])
walk() generates the file names in a directory tree, by walking the tree either top down or bottom up.
For each directory in the tree rooted at directtop (including top itself), it yields a 3-tuplg dirpath,
dirnames filename}.

dirpathis a string, the path to the directogirnamesis a list of the names of the subdirectorieglirpath
(excluding’.” and’..”). filenamess a list of the names of the non-directory filesdinpath. Note that
the names in the lists contain no path components. To get a full path (which begin®pyitb a file or
directory indirpath, doos.path.join(dirpath, namg.

If optional argumentopdownis true or not specified, the triple for a directory is generated before the triples
for any of its subdirectories (directories are generated top dowtgpdfownis false, the triple for a directory
is generated after the triples for all of its subdirectories (directories are generated bottom up).

Whentopdownis true, the caller can modify thdirnamedlist in-place (e.g., vialel or slice assignment),
andwalk() will only recurse into the subdirectories whose names remadirirames this can be used
to prune the search, impose a specific order of visiting, or even to infaali() about directories the
caller creates or renames before it resumalk() again. Modifyingdirnameswhentopdownis false is
ineffective, because in bottom-up mode the directoriediinamesare generated befodirnamesitself is
generated.

By default errors from thes.listdir() call are ignored. If optional argumeanerror is specified, it
should be a function; it will be called with one argument, an os.error instance. It can report the error to
continue with the walk, or raise the exception to abort the walk. Note that the filename is available as the
filename attribute of the exception object.

Note: If you pass a relative pathname, don’t change the current working directory between resumptions of
walk() .walk() never changes the current directory, and assumes that its caller doesn't either.

Note: On systems that support symbolic links, links to subdirectories appeanamedists, butwalk()
will not visit them (infinite loops are hard to avoid when following symbolic links). To visit linked directo-
ries, you can identify them witbs.path.islink(path) , and invokewalk(path) on each directly.

This example displays the number of bytes taken by non-directory files in each directory under the starting
directory, except that it doesn’t look under any CVS subdirectory:

6.1. os — Miscellaneous operating system interfaces 195

import os
from os.path import join, getsize
for root, dirs, files in os.walk(’python/Lib/email’):
print root, "consumes",
print sum([getsize(join(root, name)) for name in files]),
print "bytes in", len(files), "non-directory files"
if 'CVS’ in dirs:
dirs.remove('CVS’) # don't visit CVS directories

In the next example, walking the tree bottom up is essentiaftir() doesn't allow deleting a directory
before the directory is empty:

import os
from os.path import join
Delete everything reachable from the directory named in ’top’.
CAUTION: This is dangerous! For example, if top == 7, it
could delete all your disk files.
for root, dirs, files in os.walk(top, topdown=False):
for name in files:
os.remove(join(root, name))
for name in dirs:
os.rmdir(join(root, name))

New in version 2.3.

6.1.5 Process Management

These functions may be used to create and manage processes.

The variousexec*() functions take a list of arguments for the new program loaded into the process. In each
case, the first of these arguments is passed to the new program as its own name rather than as an argument a user
may have typed on a command line. For the C programmer, this &8¢w0] passed to a progranrsain() .

For example, 6s.execv('/bin/echo’, [foo’, ’bar’]) " will only print * bar ’ on standard output;

‘foo ’ will seem to be ignored.

abort ()
Generate &IGABRT signal to the current process. OmlX, the default behavior is to produce a core
dump; on Windows, the process immediately returns an exit code dde aware that programs which
usesignal.signal() to register a handler f@IGABRTwill behave differently. Availability: Wix,
Windows.

execl (path, arg0, argl, .).

execle (path, arg0, arg1l, ..., env

execlp (file, arg0, arg1l, .)

execlpe (file, arg0, argl, ..., env

execv (path, arg3

execve (path, args, eny

execvp (file, arg9

execvpe (file, args, eny
These functions all execute a new program, replacing the current process; they do not retuNixQtiéJ
new executable is loaded into the current process, and will have the same process ID as the caller. Errors
will be reported a®SError exceptions.

The 1’ and ‘v’ variants of theexec*() functions differ in how command-line arguments are passed.
The ‘| ’ variants are perhaps the easiest to work with if the number of parameters is fixed when the code is
written; the individual parameters simply become additional parameters ex#o#*() functions. The

‘v’ variants are good when the number of parameters is variable, with the arguments being passed in a list
or tuple as thergsparameter. In either case, the arguments to the child process must start with the name of
the command being run.

196 Chapter 6. Generic Operating System Services

The variants which include @' near the enddxeclp() , execlpe() ,execvp() , andexecvpe())

will use the PATH environment variable to locate the progfaen When the environment is being replaced
(using one of thexec*e() variants, discussed in the next paragraph), the new environment is used as the
source of the PATH variable. The other variamtsecl() , execle() ,execv() ,andexecve() , will

not use the PATH variable to locate the executapkth must contain an appropriate absolute or relative
path.

For execle() , execlpe() , execve() , andexecvpe() (note that these all end ire”), the env
parameter must be a mapping which is used to define the environment variables for the new process; the
execl() ,execlp() ,execv() ,andexecvp() all cause the new process to inherit the environment

of the current process. Availability: lux, Windows.

_exit (n)
Exit to the system with statug without calling cleanup handlers, flushing stdio buffers, etc. Availability:
UNIx, Windows.

Note: the standard way to exit &ys.exit(n). _exit() should normally only be used in the child
process after fork()

The following exit codes are a defined, and can be used ve#it() , although they are not required. These are
typically used for system programs written in Python, such as a mail server’s external command delivery program.

EX_OK
Exit code that means no error occurred. Availabilitysid. New in version 2.3.

EX_USAGE
Exit code that means the command was used incorrectly, such as when the wrong number of arguments are
given. Availability: UNIX. New in version 2.3.

EX_DATAERR
Exit code that means the input data was incorrect. AvailabilityiXJ New in version 2.3.

EX_NOINPUT
Exit code that means an input file did not exist or was not readable. Availabilityx U New in version
2.3.

EX_NOUSER
Exit code that means a specified user did not exist. Availability1XJ New in version 2.3.

EX_NOHOST
Exit code that means a specified host did not exist. AvailabilityiXJ New in version 2.3.

EX_UNAVAILABLE
Exit code that means that a required service is unavailable. Availabilityx U New in version 2.3.

EX_SOFTWARE
Exit code that means an internal software error was detected. Availabilityx UNew in version 2.3.

EX_OSERR
Exit code that means an operating system error was detected, such as the inability to fork or create a pipe.
Availability: UNIX. New in version 2.3.

EX_OSFILE
Exit code that means some system file did not exist, could not be opened, or had some other kind of error.
Availability: UNIX. New in version 2.3.

EX_CANTCREAT
Exit code that means a user specified output file could not be created. Availability:.. UNew in version
2.3.

EX_IOERR
Exit code that means that an error occurred while doing I/O on some file. Availabilityx U New in
version 2.3.

EX_TEMPFAIL
Exit code that means a temporary failure occurred. This indicates something that may not really be an error,
such as a network connection that couldn’t be made during a retryable operation. Availability: Nlew

6.1. os — Miscellaneous operating system interfaces 197

in version 2.3.

EX_PROTOCOL
Exit code that means that a protocol exchange was illegal, invalid, or not understood. Availability: U
New in version 2.3.

EX_NOPERM
Exit code that means that there were insufficient permissions to perform the operation (but not intended for
file system problems). Availability: Nix. New in version 2.3.

EX_CONFIG
Exit code that means that some kind of configuration error occurred. Availabilityx U New in version
2.3.

EX_NOTFOUND
Exit code that means something like “an entry was not found”. AvailabilityixJ New in version 2.3.

fork ()
Fork a child process. Retufhin the child, the child’s process id in the parent. Availabilityniy.

forkpty ()
Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return & jpédt, of

fd) , wherepid is O in the child, the new child’s process id in the parent, &his the file descriptor of the
master end of the pseudo-terminal. For a more portable approach, ysg timeodule. Availability: Some
flavors of UNIX.

kill (pid, sig
Kill the processpid with signalsig. Constants for the specific signals available on the host platform are
defined in thesignal module. Availability: UNIX.

killpg (pgid, si9
Kill the process grouppgid with the signakig. Availability: UNIX. New in version 2.3.

nice (incremeny
Add incrementto the process’s “niceness”. Return the new niceness. AvailabilityxU

plock (op)
Lock program segments into memory. The valueopf(defined in<sys/lock.h>) determines which
segments are locked. Availability: Nux.

popen (..)

popen2 (...)

popen3 (...

popen4 (...
Run child processes, returning opened pipes for communications. These functions are described in section
6.1.2.

spawnl (mode, path,).

spawnle (mode, path, ..., efv

spawnlp (mode, file, .).

spawnlpe (mode, file, ..., env

spawnv (mode, path, args

spawnve (mode, path, args, ehv

spawnvp (mode, file, args

spawnvpe (mode, file, args, env
Execute the programathin a new process. Ifhodeis P_NOWAIT this function returns the process ID of
the new process; ihodeis P_WAIT, returns the process’s exit code if it exits normally; signal where
signalis the signal that killed the process. On Windows, the process ID will actually be the process handle,
so can be used with theaitpid() function.

The ‘1 " and ‘v’ variants of thespawn*() functions differ in how command-line arguments are passed.
The ‘1 * variants are perhaps the easiest to work with if the number of parameters is fixed when the code is
written; the individual parameters simply become additional parameters spalwenl*() functions. The

‘v’ variants are good when the number of parameters is variable, with the arguments being passed in a list
or tuple as thargsparameter. In either case, the arguments to the child process must start with the name of

198 Chapter 6. Generic Operating System Services

the command being run.

The variants which include a secongl near the endgpawnlp() , spawnlpe() , spawnvp() , and
spawnvpe()) will use the PATH environment variable to locate the progrdm When the environ-
ment is being replaced (using one of sawn*e() variants, discussed in the next paragraph), the new
environment is used as the source of the PATH variable. The other vaspatsnl() , spawnle()
spawnv() , andspawnve() , will not use the PATH variable to locate the executabplgth must contain

an appropriate absolute or relative path.

For spawnle() , spawnlpe() , spawnve() , andspawnvpe() (note that these all end i), the
envparameter must be a mapping which is used to define the environment variables for the new process;
the spawnl() , spawnlp() , spawnv() , andspawnvp() all cause the new process to inherit the
environment of the current process.

As an example, the following calls spawnlp() andspawnvpe() are equivalent:

import os
os.spawnlp(os.P_WAIT, 'cp’, 'cp’, 'index.html’, '/dev/null’)

L = [cp’, 'index.html’, */dev/null’]
os.spawnvpe(os.P_WAIT, ’cp’, L, os.environ)

Availability: UNix, Windows. spawnlp() , spawnlpe() , spawnvp() andspawnvpe() are not
available on Windows. New in version 1.6.

P_NOWAIT

P_NOWAITO
Possible values for themodeparameter to thepawn*() family of functions. If either of these values is
given, thespawn*() functions will return as soon as the new process has been created, with the process
ID as the return value. Availability: Nix, Windows. New in version 1.6.

P_WAIT
Possible value for thenodeparameter to thepawn*() family of functions. If this is given asnode
thespawn*() functions will not return until the new process has run to completion and will return the
exit code of the process the run is successful, gignalif a signal kills the process. Availability: Nix,
Windows. New in version 1.6.

P_DETACH

P_OVERLAY
Possible values for thmodeparameter to thepawn*() family of functions. These are less portable than
those listed aboveP_DETACHS similar toP_NOWAIT but the new process is detached from the console
of the calling process. P_OVERLAYs used, the current process will be replacedsipevn*() function
will not return. Availability: Windows. New in version 1.6.

startfile (path)
Start a file with its associated application. This acts like double-clicking the file in Windows Explorer, or
giving the file name as an argument to gtart command from the interactive command shell: the file is
opened with whatever application (if any) its extension is associated.

startfile() returns as soon as the associated application is launched. There is no option to wait for the
application to close, and no way to retrieve the application’s exit statuspdth@arameter is relative to the
current directory. If you want to use an absolute path, make sure the first character is not d Siagte(’
underlying Win32ShellExecute() function doesn’t work if it is. Use thes.path.normpath()

function to ensure that the path is properly encoded for Win32. Availability: Windows. New in version
2.0.

system (commandl
Execute the command (a string) in a subshell. This is implemented by calling the Standard C function
system() , and has the same limitations. Changepdsix.environ , Sys.stdin , etc. are not re-
flected in the environment of the executed command.

On UNIX, the return value is the exit status of the process encoded in the format specifieait{pr .
Note that POSIX does not specify the meaning of the return value of thgstém() function, so the
return value of the Python function is system-dependent.

6.1. os — Miscellaneous operating system interfaces 199

On Windows, the return value is that returned by the system shell after runomgand given by the
Windows environment variable COMSPEC: command.comsystems (Windows 95, 98 and ME) this is
always0; oncmd.exesystems (Windows NT, 2000 and XP) this is the exit status of the command run; on
systems using a non-native shell, consult your shell documentation.

Availability: UNIX, Windows.

times ()
Return a 5-tuple of floating point numbers indicating accumulated (processor or other) times, in seconds.
The items are: user time, system time, children’s user time, children’s system time, and elapsed real time
since a fixed point in the past, in that order. See theXUmanual pageimeg2) or the corresponding
Windows Platform API documentation. Availability: Nux, Windows.

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a
16-bit number, whose low byte is the signal number that killed the process, and whose high byte is the
exit status (if the signal number is zero); the high bit of the low byte is set if a core file was produced.
Availability: UNIX.

waitpid (pid, option$
The details of this function differ on Mx and Windows.
On UNIx: Wait for completion of a child process given by procesgiit] and return a tuple containing its
process id and exit status indication (encoded aw&it()). The semantics of the call are affected by the
value of the integeoptions which should bé for normal operation.

If pid is greater tha®, waitpid() requests status information for that specific procesgpidyis 0, the
request is for the status of any child in the process group of the current procgsd.idfl , the request
pertains to any child of the current processpil is less thanrl , status is requested for any process in the
process group pid (the absolute value gfid).

On Windows: Wait for completion of a process given by process haridjeand return a tuple containing

pid, and its exit status shifted left by 8 bits (shifting makes cross-platform use of the function eagét). A
less than or equal t@ has no special meaning on Windows, and raises an exception. The value of integer
optionshas no effectpid can refer to any process whose id is known, not necessarily a child process. The
spawn() functions called witiP_NOWAITreturn suitable process handles.

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is available immediately. Availabil-
ity: UNIX.

WCONTINUED

This option causes child processes to be reported if they have been continued from a job control stop since
their status was last reported. Availability: Somai systems. New in version 2.3.

WUNTRACED
This option causes child processes to be reported if they have been stopped but their current state has not
been reported since they were stopped. AvailabilitjtixXd New in version 2.3.

The following functions take a process status code as returneydtgm() , wait() , or waitpid() as a
parameter. They may be used to determine the disposition of a process.

WCOREDUtatug
ReturnsTrue if a core dump was generated for the process, otherwise it reRaise . Availability:
UNIX. New inversion 2.3.

WIFCONTINUEDstatug
ReturnsTrue if the process has been continued from a job control stop, otherwise it refaiss .
Availability: UNIX. New in version 2.3.

WIFSTOPPEDstatug
ReturnsTrue if the process has been stopped, otherwise it retiatse . Availability: UNIX.

WIFSIGNALEQ statug
ReturnsTrue if the process exited due to a signal, otherwise it retialse . Availability: UNIX.

WIFEXITED(statug

200 Chapter 6. Generic Operating System Services

ReturnsTrue if the process exited using thexit(2) system call, otherwise it returfglse . Availability:
UNIX.

WEXITSTATUS statug
If WIFEXITED(statug is true, return the integer parameter to &xé2) system call. Otherwise, the return
value is meaningless. Availability: NX.

WSTOPSIGstatug
Return the signal which caused the process to stop. AvailabiligixU

WTERMSIGstatug
Return the signal which caused the process to exit. AvailabilitytxJ

6.1.6 Miscellaneous System Information

confstr (name
Return string-valued system configuration valusanespecifies the configuration value to retrieve; it may
be a string which is the name of a defined system value; these names are specified in a number of standards
(POSIX, UNIX95, UNIX 98, and others). Some platforms define additional names as well. The names known
to the host operating system are given in¢befstr _names dictionary. For configuration variables not
included in that mapping, passing an integerrfameis also accepted. Availability: NIX.

If the configuration value specified Imameisn’t defined, the empty string is returned.

If nameis a string and is not knowN,alueError s raised. If a specific value forameis not supported by
the host system, even if it is includeddonfstr _names, anOSError is raised witherrno.EINVAL
for the error number.

confstr _names
Dictionary mapping names accepteddnnfstr() to the integer values defined for those names by the
host operating system. This can be used to determine the set of names known to the system. Availability:
UNIX.

getloadavg ()
Return the number of processes in the system run queue averaged over the last 1, 5, and 15 minutes or raises

OSError if the load average was unobtainable.
New in version 2.3.

sysconf (namg
Return integer-valued system configuration values. If the configuration value specifiedrigysn’'t de-
fined,-1 is returned. The comments regarding treneparameter foconfstr() apply here as well;
the dictionary that provides information on the known names is givesybgonf _names. Availability:
UNIX.

sysconf _names
Dictionary mapping names accepteddysconf() to the integer values defined for those names by the
host operating system. This can be used to determine the set of names known to the system. Availability:
UNIX.

The follow data values are used to support path manipulation operations. These are defined for all platforms.
Higher-level operations on pathnames are defined imshgath module.

curdir
The constant string used by the operating system to refer to the current directory. For eXamplar
POSIX or:” for the Macintosh. Also available vias.path

pardir
The constant string used by the operating system to refer to the parent directory. For examplefor
POSIX or::" for the Macintosh. Also available vias.path

sep
The character used by the operating system to separate pathname components, for exaimpROSIX
or ;' for the Macintosh. Note that knowing this is not sufficient to be able to parse or concatenate path-

6.1. os — Miscellaneous operating system interfaces 201

names — uses.path.split() andos.path.join() — but it is occasionally useful. Also avail-
able viaos.path

altsep
An alternative character used by the operating system to separate pathname compohkmts,ibonly
one separator character exists. This is set tooh Windows systems whersep is a backslash. Also
available viaos.path

extsep
The character which separates the base filename from the extension; for exampléjthes.py’. Also
available viaos.path . New in version 2.2,

pathsep
The character conventionally used by the operating system to separate search patch components (as in
PATH), such as:*’ for POSIX or ‘; ’ for Windows. Also available vias.path

defpath
The default search path useddwec*p*() andspawn*p*() if the environment doesn't havéRATH’
key. Also available vias.path

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single
character, such @8’ for POSIX or'\r' for Mac OS, or multiple characters, for examplen’ for
Windows.

6.2 o0s.path — Common pathname manipulations

This module implements some useful functions on pathnames.

Warning: On Windows, many of these functions do not properly support UNC pathneaspéginc() and
ismount() do handle them correctly.

abspath (path
Return a normalized absolutized version of the pathnpate On most platforms, this is equivalent to
normpath(join(os.getcwd(), path) . New in version 1.5.2.

basename (path
Return the base name of pathnapah This is the second half of the pair returned $pfit(path) .
Note that the result of this function is different from theild basenameprogram; wherdasenamefor
‘[foolbar/’ returnsbar’ , thebasename() function returns an empty string ().

commonprefix (list)
Return the longest path prefix (taken character-by-character) that is a prefix of all pégs Ihlist is
empty, return the empty string (). Note that this may return invalid paths because it works a character at
atime.

dirname (path
Return the directory name of pathnapegh This is the first half of the pair returned Bplit(path) .

exists (path)
ReturnTrue if pathrefers to an existing path.

expanduser (path)
Return the argument with an initial component©for ‘™ user replaced by thatisers home directory. An
initial *~ " is replaced by the environment variable HOME; an initialiser is looked up in the password
directory through the built-in modulewd. If the expansion fails, or if the path does not begin with a tilde,
the path is returned unchanged. On the Macintosh, this always retatimsnchanged.

expandvars (path)
Return the argument with environment variables expanded. Substrings of thebioamé or ‘ ${ namég’
are replaced by the value of environment variatdene Malformed variable names and references to non-
existing variables are left unchanged. On the Macintosh, this always retatimsnchanged.

getatime (path)

202 Chapter 6. Generic Operating System Services

Return the time of last accesspdith The return value is a number giving the number of seconds since the
epoch (see théme module). Raises.error if the file does not exist or is inaccessible. New in version
1.5.2. Changedinversion 2.3:d6.stat _float _times() returns True, the resultis a floating point
number.

getmtime (path)
Return the time of last modification glath The return value is a number giving the number of seconds
since the epoch (see tlime module). Rais@s.error if the file does not exist or is inaccessible. New
in version 1.5.2. Changed in version 2.3poK.stat _float _times() returns True, the result is a
floating point number.

getctime (path
Return the time of creation gfath The return value is a number giving the number of seconds since the
epoch (see theme module). Raises.error if the file does not exist or is inaccessible. New in version
2.3.

getsize (path
Return the size, in bytes, giath Raiseos.error if the file does not exist or is inaccessible. New in
version 1.5.2.

isabs (path
ReturnTrue if pathis an absolute pathname (begins with a slash).

isfile (path
ReturnTrue if pathis an existing regular file. This follows symbolic links, so baskink() and
isfile() can be true for the same path.

isdir (path
Return True if pathis an existing directory. This follows symbolic links, so bd#hink() and
isdir() can be true for the same path.

islink (path

ReturnTrue if pathrefers to a directory entry that is a symbolic link. Alwdyalse if symbolic links are
not supported.

ismount (path
ReturnTrue if pathnamepathis amount point a point in a file system where a different file system has
been mounted. The function checks whetpattis parent, path'..’, is on a different device thapath, or
whether path'..” and path point to the same i-node on the same device — this should detect mount points
for all UNIX and POSIX variants.

join (pathl[, pathi,]])
Joins one or more path components intelligently. If any component is an absolute path, all previous compo-
nents are thrown away, and joining continues. The return value is the concatengtadhlfind optionally
path2 etc., with exactly one directory separatos(sep) inserted between components, unlpath2is
empty. Note that on Windows, since there is a current directory for each deyegth.join("c:",
"foo") represents a path relative to the current directory on d@ve“c:foo’), not ‘c:\\foo'.

normcase (path)
Normalize the case of a pathname. ORiY, this returns the path unchanged; on case-insensitive filesys-
tems, it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (path)
Normalize a pathname. This collapses redundant separators and up-level referendé/® e.4/./B and
Al/fool..IB all becomeA/B . It does not normalize the case (uswmcase() for that). On Windows,
it converts forward slashes to backward slashes.

realpath (path)
Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path.
Availability: UNIX. New in version 2.2,

samefile (pathl, path®
ReturnTrue if both pathname arguments refer to the same file or directory (as indicated by device number
and i-node number). Raise an exception ibastat() call on either pathname fails. Availability:
Macintosh, WiX.

6.2. os.path — Common pathname manipulations 203

sameopenfile (fpl, fp2d
ReturnTrue if the file objectfplandfp2refer to the same file. The two file objects may represent different
file descriptors. Availability: Macintosh, KX.

samestat (statl, stat®
ReturnTrue if the stat tuplesstatl and stat2 refer to the same file. These structures may have been

returned byfstat() ,Istat() ,orstat() . This function implements the underlying comparison used
by samefile() andsameopenfile() . Availability: Macintosh, WNIX.
split (path)

Split the pathnameathinto a pair,(head tail) wheretail is the last pathname component drehdis
everything leading up to that. THhail part will never contain a slash; ffath ends in a slashail will be
empty. If there is no slash ipath headwill be empty. If pathis empty, bothheadandtail are empty.
Trailing slashes are stripped froneadunless it is the root (one or more slashes only). In nearly all cases,
join(head tail) equalgath(the only exception being when there were multiple slashes sepahaiialy
from tail).

splitdrive (path)
Split the pathnameathinto a pair(drive, tail) wheredrive is either a drive specification or the empty
string. On systems which do not use drive specificatidrigse will always be the empty string. In all cases,
drive + tail will be the same apath New in version 1.3.

splitext (path
Split the pathnampathinto a pair(root, exf) such thatoot + ext == path andextis empty or begins
with a period and contains at most one period.

walk (path, visit, arg
Calls the functiorwvisit with argumentg arg, dirname name$ for each directory in the directory tree
rooted atpath (including pathitself, if it is a directory). The argumemtirnamespecifies the visited direc-
tory, the argumentamedists the files in the directory (gotten froos.listdir(dirnamg). Thevisit
function may modifynameso influence the set of directories visited beldisname e.g., to avoid visiting
certain parts of the tree. (The object referred tonlaynesmust be modified in place, usirdgl or slice
assignment.)

Note: Symbolic links to directories are not treated as subdirectories, andimgd&f) therefore will
not visit them. To visit linked directories you must identify them witb.path.islink(file) and
os.path.isdir(file) , and invokewalk() as necessary.

Note: The newems .walk() generator supplies similar functionality and can be easier to use.

supports _unicode _filenames
True if arbitrary Unicode strings can be used as file names (within limitations imposed by the file system),
and if os.listdir() returns Unicode strings for a Unicode argument. New in version 2.3.

6.3 dircache — Cached directory listings

Thedircache module defines a function for reading directory listing using a cache, and cache invalidation using
themtimeof the directory. Additionally, it defines a function to annotate directories by appending a slash.

Thedircache module defines the following functions:

listdir (path)
Return a directory listing gbath, as gotten fronos.listdir() . Note that unlespathchanges, further
call tolistdir() will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should change it to
return a tuple?)

opendir (path
Same adistdir() . Defined for backwards compatibility.

annotate (head, lis}
Assumelist is a list of paths relative tbead and append, in place, 4'to each path which points to a
directory.

204 Chapter 6. Generic Operating System Services

>>> jmport dircache

>>> a=dircache.listdir(’/")

>>> ag=a[:] # Copy the return value so we can change 'a’

>>> a

[bin’, ’boot’, 'cdrom’, 'dev’, ’etc’, 'floppy’, ’home’, ’initrd’, ’lib’, ’lost+
found’, 'mnt’, 'proc’, 'root’, 'sbin’, 'tmp’, 'usr’, 'var’, 'vmlinuz’]

>>> dircache.annotate(’/’, a)

>>> g

['bin/, 'boot/, 'cdrom/’, 'dev/’, ’etcl’, ‘floppy/, 'home/’, ’initrd/, 'lib/
', 'lost+found/’, 'mnt/’, 'proc/’, 'root/’, 'sbin/’, 'tmp/’, 'usr/’, 'var/’, 'vm

linuz’]
6.4 stat — Interpreting stat() results
Thestat module defines constants and functions for interpreting the resudtssht() , 0s.fstat() and
os.Istat() (if they exist). For complete details about thiat() , fstat() andlstat() calls, consult

the documentation for your system.
Thestat module defines the following functions to test for specific file types:

S_ISDIR (modg
Return non-zero if the mode is from a directory.

S_ISCHR(modeg
Return non-zero if the mode is from a character special device file.

S_ISBLK (modg
Return non-zero if the mode is from a block special device file.

S_ISREG(modg
Return non-zero if the mode is from a regular file.

S_ISFIFO (modg
Return non-zero if the mode is from a FIFO (named pipe).

S_ISLNK (mode¢
Return non-zero if the mode is from a symbolic link.

S_ISSOCK(modg
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S_IMODK mod§
Return the portion of the file's mode that can be sebbychmod() —that is, the file’s permission bits,
plus the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S_IFMT(modg
Return the portion of the file’'s mode that describes the file type (used & t#8%() functions above).

Normally, you would use thes.path.is*() functions for testing the type of a file; the functions here are
useful when you are doing multiple tests of the same file and wish to avoid the overheadtt(he system
call for each test. These are also useful when checking for information about a file that isn’t hanoleokly

like the tests for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returneabisgat() , 0s.fstat()
or os.Istat()

ST_MODE
Inode protection mode.

ST_INO

6.4. stat — Interpreting stat() results 205

Inode number.

ST_DEV

Device inode resides on.
ST_NLINK

Number of links to the inode.
ST_UID

User id of the owner.
ST_GID

Group id of the owner.
ST_SIZE

Size in bytes of a plain file; amount of data waiting on some special files.
ST_ATIME

Time of last access.
ST_MTIME

Time of last modification.
ST_CTIME

Time of last status change (see manual pages for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file in
bytes. For FIFOs and sockets under most flavorsmifdJSincluding Linux in particular), the “size” is the number

of bytes waiting to be read at the time of the callamstat() , 0s.fstat() , or os.Istat() ; this can
sometimes be useful, especially for polling one of these special files after a non-blocking open. The meaning of
the size field for other character and block devices varies more, depending on the implementation of the underlying
system call.

Example:

import os, sys
from stat import *

def walktree(top, callback):
"recursively descend the directory tree rooted at top,
calling the callback function for each regular file™

for f in os.listdir(top):

pathname = os.path.join(top, f)

mode = os.stat(pathname)[ST_MODE]

if S_ISDIR(mode):
It's a directory, recurse into it
walktree(pathname, callback)

elif S_ISREG(mode):
It's a file, call the callback function
callback(pathname)

else:
Unknown file type, print a message
print 'Skipping %s’ % pathname

def visitfile(file):
print ‘visiting’, file

if _ name__ =="'_ main__"
walktree(sys.argv[1], visitfile)

206 Chapter 6. Generic Operating System Services

6.5 statcache — An optimization of os.stat()

Deprecated since release 2.2Use os .stat() directly instead of using the cache; the cache introduces a
very high level of fragility in applications using it and complicates application code with the addition of cache
management support.

Thestatcache module provides a simple optimization és.stat() : remembering the values of previous
invocations.

Thestatcache module defines the following functions:

stat (path)
This is the main module entry-point. Identical fos.stat() , except for remembering the result for
future invocations of the function.

The rest of the functions are used to clear the cache, or parts of it.

reset ()
Clear the cache: forget all results of previatat() calls.

forget (path
Forget the result oftat(path) , if any.

forget _prefix (prefiX
Forget all results oftat(path) for pathstarting withprefix

forget _dir (prefiy
Forget all results otat(path) for patha file in the directoryprefix includingstat(prefiy .

forget _except _prefix (prefiy
Similar toforget _prefix() , but for all pathvaluesnot starting withprefix

Example:

>>> import os, statcache

>>> statcache.stat(’.")

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)
>>> os.stat(’.”)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

6.6 statvfs — Constants used with os.statvfs()

Thestatvfs module defines constants so interpreting the resolt.gtatvfs() , which returns a tuple, can
be made without remembering “magic numbers.” Each of the constants defined in this moduladextod the
entry in the tuple returned hys.statvfs() that contains the specified information.

F_BSIZE
Preferred file system block size.

F_FRSIZE
Fundamental file system block size.

F_BLOCKS
Total number of blocks in the filesystem.

F_BFREE
Total number of free blocks.

F_BAVAIL
Free blocks available to non-super user.

F_FILES
Total number of file nodes.

6.5. statcache — An optimization of os.stat() 207

F_FFREE
Total number of free file nodes.

F_FAVAIL
Free nodes available to non-super user.

F_FLAG
Flags. System dependent: statvfs() man page.

F_NAMEMAX
Maximum file name length.

6.7 filecmp — File and Directory Comparisons

Thefilecmp module defines functions to compare files and directories, with various optional time/correctness
trade-offs.

Thefilecmp module defines the following functions:

cmp(1, f2[, Sha||OV\[, us&statcache]])
Compare the files namédil andf2, returningTrue if they seem equakalse otherwise.

Unlessshallowis given and is false, files with identicak.stat() signatures are taken to be equal.
Changed in version 2.8ise_statcachds obsolete and ignored..

Files that were compared using this function will not be compared again unlessgtstat() signature
changes.

Note that no external programs are called from this function, giving it portability and efficiency.

cmpfiles (dirl, dir2, commoﬁ, shaIIOV\[, us&statcachd])
Returns three lists of file namematch mismatch errors. matchcontains the list of files match in both
directoriesmismatchncludes the names of those that don’t, @ndos lists the names of files which could
not be compared. Files may be listeceimors because the user may lack permission to read them or many
other reasons, but always that the comparison could not be done for some reason.

The commonparameter is a list of file names found in both directories. 3tmalowanduse_statcache
parameters have the same meanings and default valuesfésdop.cmp()

Example:

>>> import filecmp

>>> filecmp.cmp(libundoc.tex’, ’'libundoc.tex’)
True

>>> filecmp.cmp(libundoc.tex’, ’lib.tex’)
False

6.7.1 The dircmp class

dircmp instances are built using this constructor:

classdircmp (a, b[ignore[, hide]])
Construct a new directory comparison object, to compare the directodrdb. ignoreis a list of names
to ignore, and defaults foRCS’, 'CVS’, 'tags’] . hideis a list of names to hide, and defaults to
[os.curdir, os.pardir]

Thedircmp class provides the following methods:

report ()
Print (tosys.stdout) a comparison betweemandb.

report _partial _closure ()
Print a comparison betweerandb and common immediate subdirctories.

208 Chapter 6. Generic Operating System Services

report _full _closure ()
Print a comparison betweernandb and common subdirctories (recursively).

Thedircmp offers a number of interesting attributes that may be used to get various bits of information about
the directory trees being compared.

Note that via__getattr __() hooks, all attributes are computed lazilly, so there is no speed penalty if only
those attributes which are lightweight to compute are used.
left _list

Files and subdirectories m filtered byhideandignore

right _list
Files and subdirectories I filtered byhideandignore

common
Files and subdirectories in bodhandb.

left _only
Files and subdirectories only &

right _only
Files and subdirectories only n

common_dirs
Subdirectories in both andb.

common._files
Files in botha andb

common_funny
Names in botla andb, such that the type differs between the directories, or names for wkistat()
reports an error.

same_files
Files which are identical in bothandb.
diff _files

Files which are in botla andb, whose contents differ.

funny _files
Files which are in botla andb, but could not be compared.

subdirs
A dictionary mapping names itcommon_dirs todircmp objects.

6.8 popen2 — Subprocesses with accessible 1/0 streams

This module allows you to spawn processes and connect to their input/output/error pipes and obtain their return
codes under Nix and Windows.

Note that starting with Python 2.0, this functionality is available using functions fromghaodule which have
the same names as the factory functions here, but the order of the return values is more intuitiee imtickule
variants.

The primary interface offered by this module is a trio of factory functions. For each of thésésiies specified,

it specifies the buffer size for the 1/0O pipenode if provided, should be the stririg’ or’t’ ; on Windows this

is needed to determine whether the file objects should be opened in binary or text mode. The default value for
modeis '’

The only way to retrieve the return codes for the child processes is by usimlile or wait() methods

on thePopen3 andPopen4 classes; these are only available ori¥. This information is not available when

using thepopen2() , popen3() , andpopend() functions, or the equivalent functions in the module.

popen2 (cm({, bufsiz{, modé])
Executexmdas a sub-process. Returns the file objéactsild_stdout child_stdin) .

6.8. popen2 — Subprocesses with accessible 1/0 streams 209

popen3 (cmc{, bufsizé, mode]])
Executexmdas a sub-process. Returns the file objéctsild_stdout child_stdin, child_stderr) .

popen4 (cm<{, bufsizé, modd])
Executecmdas a sub-process. Returns the file objéatisild_stdout and_stderr, child_stdin). New
in version 2.0.

On UNIX, a class defining the objects returned by the factory functions is also available. These are not used for
the Windows implementation, and are not available on that platform.

classPopen3 (cmo[, capturestder[, bufsize]])
This class represents a child process. Norm&lbpen3 instances are created using fhepen2() and
popen3() factory functions described above.

If not using one of the helper functions to creR@pen3 objects, the parametemdis the shell command

to execute in a sub-process. Ttepturestderiflag, if true, specifies that the object should capture standard
error output of the child process. The default is false. Iflibésizeparameter is specified, it specifies the
size of the I/O buffers to/from the child process.

classPopen4 (cmo[, bufsizd)
Similar toPopen3, but always captures standard error into the same file object as standard output. These
are typically created usingopen4() . New in version 2.0.

6.8.1 Popen3 and Popen4 Objects

Instances of th®open3 andPopen4 classes have the following methods:

poll ()
Returns-1 if child process hasn’t completed yet, or its return code otherwise.

wait ()
Waits for and returns the status code of the child process. The status code encodes both the return code of
the process and information about whether it exited usingxit€) system call or died due to a signal.
Functions to help interpret the status code are defined imshmodule; see section 6.1.5 for the&()
family of functions.

The following attributes are also available:

fromchild
A file object that provides output from the child process. Popen4 instances, this will provide both the
standard output and standard error streams.

tochild
A file object that provides input to the child process.

childerr
Where the standard error from the child process goeapturestderwas true for the constructor, blone.
This will always beNone for Popen4 instances.

pid
The process ID of the child process.

6.8.2 Flow Control Issues

Any time you are working with any form of inter-process communication, control flow needs to be carefully
thought out. This remains the case with the file objects provided by this module (@s tm®dule equivalents).

When reading output from a child process that writes a lot of data to standard error while the parent is reading
from the child’s standard output, a deadlock can occur. A similar situation can occur with other combinations of
reads and writes. The essential factors are that more tR@nPIPE _BUFbytes are being written by one process

in a blocking fashion, while the other process is reading from the other process, also in a blocking fashion.

There are several ways to deal with this situation.

The simplest application change, in many cases, will be to follow this model in the parent process:

210 Chapter 6. Generic Operating System Services

import popen2

r, w, e = popen2.popen3(python slave.py’)
e.readlines()

r.readlines()

r.close()

e.close()

w.close()

with code like this in the child:

import 0s
import sys

note that each of these print statements
writes a single long string

print >>sys.stderr, 400 * 'this is a test\n’
os.close(sys.stderr.fileno())
print >>sys.stdout, 400 * ’this is another test\n’

In particular, note thagys.stderr must be closed after writing all data, adlines() won't return. Also
note thatos.close() must be used, asys.stderr.close() won't closestderr (otherwise assigning
tosys.stderr will silently close it, so no further errors can be printed).

Applications which need to support a more general approach should integrate 1/O over pipes wsti gy
loops, or use separate threads to read each of the individual files provided by whisbeeat() function or
Popen* class was used.

6.9 datetime — Basic date and time types

New in version 2.3.

The datetime module supplies classes for manipulating dates and times in both simple and complex ways.
While date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for
output formatting and manipulation.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object
has any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment.
Whether a naivelatetime object represents Coordinated Universal Time (UTC), local time, or time in some
other timezone is purely up to the program, just like it's up to the program whether a particular number represents
meters, miles, or mass. Naidatetime objects are easy to understand and to work with, at the cost of ignoring
some aspects of reality.

For applications requiring moréatetime andtime objects have an optional time zone information member,
tzinfo , that can contain an instance of a subclass of the ab&tiafitt class. Thes&zinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect.
Note that no concretizinfo classes are supplied by tHatetime module. Supporting timezones at whatever
level of detail is required is up to the application. The rules for time adjustment across the world are more political
than rational, and there is no standard suitable for every application.

Thedatetime module exports the following constants:

MINYEAR
The smallest year number allowed inlate or datetime object. MINYEARis 1.

MAXYEAR
The largest year number allowed irdate or datetime object. MAXYEARS 9999 .

6.9. datetime — Basic date and time types 211

See Also:

Modulecalendar (section 5.17):
General calendar related functions.

Moduletime (section 6.10):
Time access and conversions.

6.9.1 Available Types

classdate
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes:year , month, andday .

classtime
Anidealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds
(there is no notion of "leap seconds” here). Attributbsur , minute , second , microsecond , and
tzinfo

classdatetime
A combination of a date and a time. Attributegear , month, day, hour , minute , second ,
microsecond , andtzinfo

classtimedelta
A duration expressing the difference between tede , time , or datetime instances to microsecond
resolution.

classtzinfo
An abstract base class for time zone information objects. These are used dgtetliene andtime
classes to provide a customizable notion of time adjustment (for example, to account for time zone and/or
daylight saving time).

Objects of these types are immutable.
Objects of thedate type are always naive.

An objectd of typetime or datetime may be naive or awared is aware ifd.tzinfo is not None and
d.tzinfo.utcoffset(d) does not returtfNone. If d.tzinfo is None, or if d.tzinfo is notNone but
d.tzinfo.utcoffset(d) returnsNone, d is naive.

The distinction between naive and aware doesn't apptiyriedelta objects.

Subclass relationships:

object
timedelta
tzinfo
time
date
datetime

6.9.2 timedelta Objects

Atimedelta object represents a duration, the difference between two dates or times.

classtimedelta (days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0
All arguments are optional. Arguments may be ints, longs, or floats, and may be positive or negative.

Only days secondsindmicrosecondare stored internally. Arguments are converted to those units:

oA millisecond is converted to 1000 microseconds.
oA minute is converted to 60 seconds.

212 Chapter 6. Generic Operating System Services

eAn hour is converted to 3600 seconds.
oA week is converted to 7 days.

and days, seconds and microseconds are then normalized so that the representation is unique, with

0 <= microseconds< 1000000
e0 <= seconds< 3600*24 (the number of seconds in one day)
¢-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float,
the conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated ra@ygerflowError is raised.
Note that normalization of negative values may be surprising at first. For example,

>>> d = timedelta(microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes are:

min
The most negativémedelta object timedelta(-999999999)

max
The most positive timedelta object, timedelta(days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999)

resolution
The smallest possible difference between non-equaltimedelta objects,
timedelta(microseconds=1)

Note that, because of normalizatidimedelta.max >-timedelta.min . -timedelta.max is not rep-

resentable astimedelta object.

Instance attributes (read-only):

Attribute | Value
days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds Between 0 and 999999 inclusive
Supported operations:
Operation Result
t1 = t2 + t3 Sum oft2 andt3. Afterwardst1-t2 == t3 andt1-t3 ==t2 are true. (1)
t1 =t2 - t3 Difference oft2 andt3. Afterwardstl ==1t2 - t3 andt2 ==t1 + t3 are true. (1)
tl =t2* i or tl =i * t2 | Delta multiplied by an integer or long. Afterwarthk// i == t2 is true, provided '= 0
In generalfl *i == t1* (i-1) + tlis true. (1)
t1 =t2// i The floor is computed and the remainder (if any) is thrown away. (3)
+t1 Returns dimedelta object with the same value. (2)
-1l equivalent tcdimedelta (-t1.days -tl.secondstl.microsecondsand totl* -1. (1)(4)
abs(t) equivalent to +whent.days >= 0 ,andtotwhent.days < 0 . (2)
Notes:

(1) This is exact, but may overflow.

6.9. datetime — Basic date and time types 213

(2) This is exact, and cannot overflow.
(3) Division by 0 raiseZeroDivisionError

(4) -timedelta.maxs not representable agimedelta object.

In addition to the operations listed abotimedelta objects support certain additions and subtractions with
date anddatetime objects (see below).

Comparisons ofimedelta objects are supported with thienedelta object representing the smaller dura-

tion considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the
default comparison by object address, whetimeedelta object is compared to an object of a different type,
TypeError is raised unless the comparisorris or != . The latter cases retufralse or True , respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts,
atimedelta object is considered to be true if and only if it isn't equatitoedelta(0)

6.9.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called
day number 2, and so on. This matches the definition of the "proleptic Gregorian” calendar in Dershowitz and
Reingold’s bookCalendrical Calculationswhere it’'s the base calendar for all computations. See the book for
algorithms for converting between proleptic Gregorian ordinals and many other calendar systems.

classdate (year, month, day
All arguments are required. Arguments may be ints or longs, in the following ranges:

eMINYEAR <=year <= MAXYEAR
el <= month <= 12
el <= day <= number of days in the given month and year

If an argument outside those ranges is givéalueError is raised.
Other constructors, all class methods:

today ()
Return the current local date. This is equivalendabe.fromtimestamp(time.time())

fromtimestamp (timestamp
Return the local date corresponding to the POSIX timestamp, such as is returtiedetime()
This may raisevalueError , if the timestamp is out of the range of values supported by the platform
C localtime() function. It's common for this to be restricted to years from 1970 through 2038. Note
that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap seconds are
ignored byfromtimestamp()

fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordi-
nal 1. ValueError s raised unles§ <= ordinal <= date.max.toordinal() . For any dated,
date.fromordinal(d.toordinal()) == d.

Class attributes:

min

The earliest representable dadaje(MINYEAR, 1, 1)
max

The latest representable datate(MAXYEAR, 12, 31)
resolution

The smallest possible difference between non-equal date olijewtslelta(days=1)

Instance attributes (read-only):

214 Chapter 6. Generic Operating System Services

year
BetweenMINYEARandMAXYEARclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation | Result
date2 = datel + timedelta| date2istimedeltadays days removed frordatel (1)
date2 = datel - timedelta] Computesiate2such thatlate2 + timedelta == datel (2)
timedelta = datel - date2| (3)

datekdate2 datelis considered less thatate2whendatelprecedeslate2in time. (4)

Notes:

(1) date2is moved forward in time ifimedeltadays > 0 , or backward itimedeltadays < 0 . Afterward
date2 - datel == timedeltadays .timedeltaseconds andtimedeltamicroseconds areignored.
OverflowError is raised ifdate2year would be smaller thaMINYEARor larger tharlMAXYEAR

(2) Thisisn't quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases where
datel - timedelta does ndimedeltaseconds andtimedeltamicroseconds are ignored.

(3) This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== datel after.

(4) In other words,datel < date2 if and only if dateltoordinal() < date2toordinal() . In
order to stop comparison from falling back to the default scheme of comparing object addresses, date
comparison normally raiseBypeError if the other comparand isn’t also date object. However,
Notimplemented is returned instead if the other comparand hdsnetuple attribute. This hook
gives other kinds of date objects a chance at implementing mixed-type comparison. If not, dditen a
object is compared to an object of a different typgpeError s raised unless the comparisorss or
1= . The latter cases retuffalse or True , respectively.

Dates can be used as dictionary keys. In Boolean contextiat@l| objects are considered to be true.
Instance methods:

replace (year, month, day
Return a date with the same value, except for those members given new values by whichever keyword
arguments are specified. For example iE= date(2002, 12, 31) , thend.replace(day=26)
== date(2000, 12, 26)

timetuple ()
Return a 9-element tuple of the form returnectinye.localtime() . The hours, minutes and seconds
are 0, and the DST flag is -H.timetuple() is equivalent to d.year, d.month, d.day, O,
0, 0, d.weekday(), d.toordinal() - date(d.year, 1, 1).toordinal() + 1,
-1)

toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. Bateany

objectd, date.fromordinal(d.toordinal()) == d.

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For exatgi002,
12, 4).weekday() == , @ Wednesday. See alsoweekday()

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For exmatg§002,
12, 4).isoweekday() == , @ Wednesday. See alseekday() ,isocalendar()

6.9. datetime — Basic date and time types 215

isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. See
http://www.phys.uu.nl/ vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday.
The first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This
is called week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, soda&(2003, 12, 29).isocalendar() == (2004, 1,
1) anddate(2004, 1, 4).isocalendar() == (2004, 1, 7) .

isoformat ()
Return a string representing the date in ISO 8601 format, "YYYY-MM-DD'. For exangaé& (2002,
12, 4).isoformat() == '2002-12-04’

_str _()
For a dated, str(d) is equivalent tal.isoformat()

ctime ()
Return a string representing the date, for example date(2002, 12, 4).ctime() == 'Wed Dec 4 00:00:00 2002'.
d.ctime() is equivalent tdime.ctime(time.mktime(d.timetuple())) on platforms where
the native Cctime() function (whichtime.ctime() invokes, but whicldate.ctime() does not

invoke) conforms to the C standard.

stritime (formai
Return a string representing the date, controlled by an explicit format string. Format codes referring to
hours, minutes or seconds will see 0 values. See the sectisinfoime() behavior.

6.9.4 datetime Objects

A datetime object is a single object containing all the information frordaie object and a&ime object.
Like adate object,datetime assumes the current Gregorian calendar extended in both directions; like a time
object,datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

classdatetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tzinfo=None
The year, month and day arguments are requigdfomay beNone, or an instance of zinfo subclass.
The remaining arguments may be ints or longs, in the following ranges:

oeMINYEAR <=year <= MAXYEAR

el <= month <= 12

el <= day <= number of days in the given month and year
0 <= hour < 24

e0 <= minute < 60

0 <= second< 60

0 <= microsecond< 1000000

If an argument outside those ranges is givéalueError is raised.

Other constructors, all class methods:

today ()
Return the current local datetime, withtzinfo None . This is equivalent to
datetime.fromtimestamp(time.time()) . See alsmow() , fromtimestamp()

now(tz=None) ()
Return the current local date and time. |If optional arguminis None or not specified, this is
like today() , but, if possible, supplies more precision than can be gotten from going through

216 Chapter 6. Generic Operating System Services

a time.time() timestamp (for example, this may be possible on platforms supplying the C
gettimeofday() function).

Else tz must be an instance of a classzinfo subclass, and the current date
and time are converted tozs time zone. In this case the result is equivalent to
tz fromutc(datetime.utcnow().replace(tzinfo= tz)) . See alsdoday() , utcnow()

utcnow ()

Return the current UTC date and time, witinfo None . This is likenow() , but returns the current
UTC date and time, as a naidatetime object. See alsnow() .

fromtimestamp (timestamp, tz=Norje
Return the local date and time corresponding to the POSIX timestamp, such as is returned by
time.time() . If optional argumentz is None or not specified, the timestamp is converted to the plat-
form’s local date and time, and the returrdatetime object is naive.

Else tz must be an instance of a classtzinfo subclass, and the times-
tamp is converted totzs time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamjpreplace(tzinfo= t2) .

fromtimestamp() may raiseValueError , if the timestamp is out of the range of values supported by
the platform Clocaltime() orgmtime() functions. It's common for this to be restricted to years in
1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a times-
tamp, leap seconds are ignored fogmtimestamp() , and then it's possible to have two timestamps
differing by a second that yield identicdhtetime objects. See alsatcfromtimestamp()

utcfromtimestamp (timestamp
Return the UTQlatetime corresponding to the POSIX timestamp, witinfo None . This may raise
ValueError , if the timestamp is out of the range of values supported by the platfogmt®ne() func-
tion. It's common for this to be restricted to years in 1970 through 2038. Se&amtimestamp()

fromordinal (ordinal)
Return thedatetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1.ValueError israised unles& <= ordinal <= datetime.max.toordinal() . The
hour, minute, second and microsecond of the result are all Ozaafd is None.

combine (date, timg
Return a newdatetime object whose date members are equal to the gdete object’s, and whose
time andtzinfo members are equal to the givéime object’s. For anydatetime objectd, d
== datetime.combine(d.date(), d.timetz()) . If date is adatetime object, its time and
tzinfo members are ignored.

Class attributes:

min
The earliest representaldatetime |, datetime(MINYEAR, 1, 1, tzinfo=None)

max
The latest representabtiatetime , datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None)

resolution

The smallest possible difference between non-equaldatetime objects,
timedelta(microseconds=1)

Instance attributes (read-only):

year
BetweenMINYEARandMAXYEARclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

hour
In range(24)

6.9. datetime — Basic date and time types 217

minute
In range(60)

second
In range(60)

microsecond
In range(1000000)

tzinfo
The object passed as ttenfoargument to thelatetime constructor, oNone if none was passed.

Supported operations:

Operation | Result
datetime2 = datetimel+ timedelta| (1)
datetime2 = datetimel- timedelta| (2)
timedelta = datetimel- datetime2| (3)
datetimel< datetime2 Compareslatetime todatetime . (4)

(1) datetime2 is a duration of timedelta removed from datetimel, moving forward in tiineeifleltadays ¢, O,
or backward iftimedeltadays j 0. The result has the sanwnfo member as the input datetime, and
datetime? - datetimel == timedelta aft@verflowError is raised if datetime2.year would be smaller
thanMINYEARor larger tharMAXYEARNote that no time zone adjustments are done even if the input is
an aware object.

(2) Computes the datetime2 such that datetime2 + timedelta == datetimel. As for addition, the result has the
sametzinfo member as the input datetime, and no time zone adjustments are done even if the input is
aware. This isn't quite equivalent to datetimel + (-timedelta), because -timedelta in isolation can overflow
in cases where datetimel - timedelta does not.

(3) Subtraction of edatetime from adatetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naigpeError s raised.

If both are naive, or both are aware and have the ¢amf® member, thézinfo members are ignored,
and the resultis imedelta objectt such thatlatetime2+ t == datetimelNo time zone adjustments
are done in this case.

If both are aware and have differet#info members,a-b acts as ifa and b were first converted

to naive UTC datetimes first. The result (s.replace(tzinfo=None) - a.utcoffset())
- (b.replace(tzinfo=None) - b.utcoffset()) except that the implementation never over-
flows.

(4) datetimelis considered less thatatetime2vhendatetimelprecedeslatetimen time.

If one comparand is naive and the other is awaggeError s raised. If both comparands are aware, and
have the sam&zinfo member, the commatzinfo member is ignored and the base datetimes are com-
pared. If both comparands are aware and have diffézarfo members, the comparands are first adjusted

by subtracting their UTC offsets (obtained fralf.utcoffset()). Note: In order to stop compari-

son from falling back to the default scheme of comparing object addresses, datetime comparison normally
raisesTypeError if the other comparand isn't alsodatetime object. HoweverNotimplemented

is returned instead if the other comparand hématuple attribute. This hook gives other kinds of date
objects a chance at implementing mixed-type comparison. If not, whiettetime object is compared

to an object of a different typd,ypeError is raised unless the comparisorris or = . The latter cases
returnFalse or True , respectively.

datetime objects can be used as dictionary keys. In Boolean contextiataliime objects are considered to
be true.

Instance methods:

date ()
Returndate object with same year, month and day.

218 Chapter 6. Generic Operating System Services

time ()
Returntime object with same hour, minute, second and microsectamafo is None. See also method
timetz()

timetz ()
Returntime object with same hour, minute, second, microsecond, and tzinfo members. See also method
time()

replace (year=, month=, day=, hour=, minute=, second=, microsecond=, tzinfo=
Return a datetime with the same members, except for those members given new values by whichever key-
word arguments are specified. Note tt@bfo=None can be specified to create a naive datetime from
an aware datetime with no conversion of date and time members.

astimezone (t2)
Return adatetime object with newtzinfo membertz, adjusting the date and time members so the
result is the same UTC time aslf, but intzs local time.

tzmust be an instance oftainfo subclass, and itstcoffset() anddst() methods must not return
None. self must be awaresglf.tzinfo must not beNone, andself.utcoffset() must not return
None).

If self.tzinfo is tz, self.astimezone(t2) is equal toself: no adjustment of date or time members is
performed. Else the resultis local time in time zdneepresenting the same UTC timesadf: afterastz =
dtastimezone(t2), astz - astzutcoffset() will usually have the same date and time members
asdt - dt.utcoffset() . The discussion of clagginfo explains the cases at Daylight Saving Time
transition boundaries where this cannot be achieved (an issue dnijnddels both standard and daylight
time).

If you merely want to attach a time zone objézto a datetimedt without adjustment of date and time
members, usdt.replace(tzinfo= t2) . If you merely want to remove the time zone object from an
aware datetimet without conversion of date and time members, diseplace(tzinfo=None)

Note that the defaulizinfo.fromutc() method can be overridden irntzinfo subclass to effect the
result returned bypstimezone() . Ignoring error casesstimezone() acts like:

def astimezone(self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz's local time.
return tz.fromutc(utc)

utcoffset ()
If tzinfo is None, returnsNone, else returnself.tzinfo.utcoffset(self) , and raises an excep-
tion if the latter doesn’t returiNone, or atimedelta object representing a whole number of minutes
with magnitude less than one day.

dst ()
If tzinfo is None, returnsNone, else returnsself.tzinfo.dst(self) , and raises an exception if
the latter doesn't returiNone, or atimedelta object representing a whole number of minutes with
magnitude less than one day.

tzname ()
If tzinfo is None, returnsNone, else returnself.tzinfo.tzname(self) , raises an exception if the
latter doesn’t returtNone or a string object,

timetuple ()
Return a 9-element tuple of the form returnedtivge.localtime() . d.timetuple() is equiv-
alent to (d.year, d.month, d.day, d.hour, d.minute, d.second, d.weekday(),
d.toordinal() - date(d.year, 1, 1).toordinal() + 1, dst) The tm_isdst flag

of the resultis set according tothst() method:tzinfo isNone ordst() returnsNone, tm_isdst
is setto-1 ; else ifdst() returns a non-zero valuem _isdst is set tol; elsetm _isdst is set to0.

6.9. datetime — Basic date and time types 219

utctimetuple 0

If datetime instanced is naive, this is the same dgimetuple() except thatm _isdst is forced
to O regardless of what.dst() returns. DST is never in effect for a UTC time.
If dis aware,d is normalized to UTC time, by subtractirdyutcoffset() , and a timetuple for the

normalized time is returnedm _isdst is forced to 0. Note that the resultsn _year member may be
MINYEAR1 or MAXYEARL, if d.year wasMINYEARor MAXYEARINd UTC adjustment spills over a year
boundary.

toordinal ()
Return the proleptic Gregorian ordinal of the date. The sanseléslate().toordinal()

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as
self.date().weekday() . See alsasoweekday()

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date().isoweekday() . See alsaveekday() , isocalendar()

isocalendar ()
Return a 3-tuple, (ISO vyear, I1SO week number, ISO weekday). The same as
self.date().isocalendar()

isoformat (sep="T")
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, ifmicrosecond is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not returiNone, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm-+HH:MM or, microsecond isOYYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argumergep(default’T’) is a one-character separator, placed between the date and time
portions of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):
def utcoffset(self, dt): return timedelta(minutes=-399)

>>> datetime(2002, 12, 25, tzinfo=TZ()).isoformat(’ ")
'2002-12-25 00:00:00-06:39’

__str __()
For adatetime instanced, str(d) is equivalent tal.isoformat(’ ’)

ctime ()
Return a string representing the date and time, for exangéeetime(2002, 12, 4,
20, 30, 40).ctime() == 'Wed Dec 4 20:30:40 2002’ . d.ctime() is equivalent to
time.ctime(time.mktime(d.timetuple())) on platforms where the native @me() func-
tion (whichtime.ctime() invokes, but whicldatetime.ctime() does not invoke) conforms to the
C standard.

stritime (formaf)
Return a string representing the date and time, controlled by an explicit format string. See the section on
strftime() behavior.

6.9.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

classtime (hour=0, minute=0, second=0, microsecond=0, tzinfo=Npne
All arguments are optionaltzinfo may beNone, or an instance of &info subclass. The remaining
arguments may be ints or longs, in the following ranges:

220 Chapter 6. Generic Operating System Services

0 <= hour < 24

e0 <= minute < 60

e0 <= second< 60

e0 <= microsecond< 1000000 .

If an argument outside those ranges is givéalueError is raised.

Class attributes:

min

The earliest representalilee , time(0, 0, 0, 0)
max

The latest representaltiene , time(23, 59, 59, 999999)
resolution

The smallest possible difference between non-etjma objects,timedelta(microseconds=1) ,
although note that arithmetic dime objects is not supported.

Instance attributes (read-only):

hour
In range(24)

minute
In range(60)

second
In range(60)

microsecond
In range(1000000)

tzinfo
The object passed as the tzinfo argument tdithe constructor, oNone if none was passed.

Supported operations:

e comparison ofime totime , wherea is considered less thanwhena precede® in time. If one com-
parand is naive and the other is awargpeError is raised. If both comparands are aware, and have the
samezinfo member, the commozinfo member is ignored and the base times are compared. If both
comparands are aware and have diffeteimfo =~ members, the comparands are first adjusted by subtract-
ing their UTC offsets (obtained frorelf.utcoffset()). In order to stop mixed-type comparisons
from falling back to the default comparison by object address, whignea object is compared to an object
of a different typeTypeError s raised unless the comparisorrisor = . The latter cases retufralse
or True , respectively.

e hash, use as dict key
o efficient pickling

¢ in Boolean contexts, @me object is considered to be true if and only if, after converting it to minutes and
subtractingutcoffset() (or O if that's None), the result is non-zero.

Instance methods:

replace (()
hour=, minute=, second=, microsecond=, tzinfo=) Retutime with the same value, except for those
members given new values by whichever keyword arguments are specified. Nd#tfeetNone can
be specified to create a naitime from an awardime , without conversion of the time members.

isoformat ()
Return a string representing the time in 1ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset() does not returriNone, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm-+HH:MM or, if self.microsecond is 0,
HH:MM:SS+HH:MM

6.9. datetime — Basic date and time types 221

__str __()
For a timet, str(t) is equivalent td.isoformat()

stritime (formatf)
Return a string representing the time, controlled by an explicit format string. See the section on
strftime() behavior.

utcoffset ()
If tzinfo is None, returnsNone, else returnself.tzinfo.utcoffset(None) , and raises an ex-
ception if the latter doesn’t retuidone or atimedelta object representing a whole number of minutes
with magnitude less than one day.

dst ()
If tzinfo is None, returnsNone, else returnself.tzinfo.dst(None) , and raises an exception if
the latter doesn't returiNone, or atimedelta object representing a whole number of minutes with
magnitude less than one day.

tzname ()
If tzinfo is None, returnsNone, else returnself.tzinfo.tzname(None) , Or raises an exception if
the latter doesn’t returNone or a string object.

6.9.6 tzinfo Objects

tzinfo is an abstract base clase, meaning that this class should not be instantiated directly. You need to de-
rive a concrete subclass, and (at least) supply implementations of the st&ridird methods needed by the
datetime methods you use. Thi#atetime module does not supply any concrete subclassesrdd

An instance of (a concrete subclass tfinffo can be passed to the constructorsdatetime andtime

objects. The latter objects view their members as being in local time, artditiie object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time
object passed to them.

Special requirement for pickling: #&info subclass must have aninit __ method that can be called with
no arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that may be
relaxed in the future.

A concrete subclass dzinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of adatietime objects. If in doubt, simply implement all of them.

utcoffset (' self, d)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should
be negative. Note that this is intended to be the total offset from UTC; for exampléziiifa object
represents both time zone and DST adjustmentaffset() should return their sum. If the UTC offset
isn't known, returrNone. Else the value returned must béraedelta object specifying a whole number
of minutes in the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less
than one day). Most implementationsug€offset() will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset() does not returtNone, dst() should not returiNone either.
The default implementation aftcoffset() raisesNotimplementedError

dst (self, d)
Return the daylight saving time (DST) adjustment, in minutes east of UT@8paoe if DST information
isn't known. Returntimedelta(0) if DST is not in effect. If DST is in effect, return the offset as a
timedelta object (seeaitcoffset() for details). Note that DST offset, if applicable, has already been
added to the UTC offset returned biycoffset() , SO there’s no need to consdist() unless you're
interested in obtaining DST info separately. For examgiégetime.timetuple() calls itstzinfo

member'dst() method to determine how thie _isdst flag should be set, artdinfo.fromutc()
callsdst() to account for DST changes when crossing time zones.

222 Chapter 6. Generic Operating System Services

An instancetz of atzinfo subclass that models both standard and daylight times must be consistent in

this sense:

tz.utcoffset(dt) - tzdst(dt

must return the same result for evefgtetime dt with dt.tzinfo== tz For sandzinfo subclasses,

this expression yields the time zone’s "standard offset”, which should not depend on the date or the time,
but only on geographic location. The implementatiordatetime.astimezone() relies on this, but
cannot detect violations; it's the programmer’s responsibility to ensure it.tdfirdo subclass cannot
guarantee this, it may be able to override the default implementati¢zindgd.fromutc() to work

correctly withastimezone() regardless.
Most implementations adst() will probably look like one of these two:

return timedelta(0) # a fixed-offset class: doesn’'t account for DST
or

Code to set dston and dstoff to the time zone’s DST transition
times based on the input dt.year, and expressed in standard local
time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta(hours=1)

else:
return timedelta(0)

The default implementation afst() raisesNotimplementedError

tzname (self, d)
Return the time zone name corresponding todhtetime objectdt, as a string. Nothing about string
names is defined by thaatetime module, and there’s no requirement that it mean anything in particular.
For example, "GMT", "UTC", "-500", "-5:00", "EDT", "US/Eastern”, "America/New York” are all valid
replies. ReturrNone if a string name isn't known. Note that this is a method rather than a fixed string
primarily because somzinfo subclasses will wish to return different names depending on the specific
value ofdt passed, especially if thginfo class is accounting for daylight time.

The default implementation atname() raisesNotimplementedError

These methods are called bylatetime ortime object, in response to their methods of the same names. A
datetime object passes itself as the argument, anidn@ object passeblone as the argument. Azinfo
subclass’s methods should therefore be prepared to acdeptgument ofNone, or of classdatetime

WhenNone is passed, it's up to the class designer to decide the best response. For example, ridtmeiig
appropriate if the class wishes to say that time objects don’t participate imitfie protocols. It may be more
useful forutcoffset(None) to return the standard UTC offset, as there is no other convention for discovering
the standard offset.

When adatetime object is passed in response taaetime method,dt.tzinfo is the same object as
self. tzinfo methods can rely on this, unless user code ¢aliso methods directly. The intent is that the
tzinfo methods interpratt as being in local time, and not need worry about objects in other timezones.

There is one mor&zinfo method that a subclass may wish to override:

fromutc (self, d)
This is called from the defaulatetime.astimezone() implementation. When called from that,
dt.tzinfo is self, anddt's date and time members are to be viewed as expressing a UTC time. The
purpose ofromutc() is to adjust the date and time members, returning an equivalent datetsat'sn
local time.

Mosttzinfo subclasses should be able to inherit the defaoitutc() implementation without prob-

lems. It's strong enough to handle fixed-offset time zones, and time zones accounting for both standard
and daylight time, and the latter even if the DST transition times differ in different years. An example of a
time zone the defaufromutc() implementation may not handle correctly in all cases is one where the
standard offset (from UTC) depends on the specific date and time passed, which can happen for political

6.9. datetime — Basic date and time types 223

reasons. The default implementationsastimezone() andfromutc() may not produce the result
you want if the result is one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the defdtdmutc() implementation acts like:

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset()
dtdst = dt.dst()
raise ValueError if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self's standard offset
if delta:

dt += delta # convert to standard local time
dtdst = dt.dst()
raise ValueError if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

Exampletzinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta(0)
HOUR = timedelta(hours=1)

A UTC class.

class UTC(tzinfo):

def utcoffset(self, dt):
return ZERO

def tzname(self, dt):
return "UTC"

def dst(self, dt):
return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset(0, "UTC") is a different way to build a
UTC tzinfo object.

class FixedOffset(tzinfo):
""Fixed offset in minutes east from UTC.""

def __init_ (self, offset, name):
self.__offset = timedelta(minutes = offset)
self.__name = name

def utcoffset(self, dt):
return self. offset

def tzname(self, dt):
return self._ _name

def dst(self, dt):
return ZERO

224 Chapter 6. Generic Operating System Services

A class capturing the platform’s idea of local time.

import time as _time

STDOFFSET = timedelta(seconds = -_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = -_time.altzone)
else:

DSTOFFSET = STDOFFSET

DSTDIFF = DSTOFFSET - STDOFFSET
class LocalTimezone(tzinfo):

def utcoffset(self, dt):
if self._isdst(dt):
return DSTOFFSET
else:
return STDOFFSET

def dst(self, dt):
if self._isdst(dt):
return DSTDIFF
else:
return ZERO

def tzname(self, dt):
return _time.tzname[self._isdst(dt)]

def _isdst(self, dt):
tt = (dt.year, dt.month, dt.day,
dt.hour, dt.minute, dt.second,
dt.weekday(), 0, -1)
stamp = _time.mktime(tt)
tt = _time.localtime(stamp)
return tt.tm_isdst > O

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days to_go = 6 - dt.weekday()
if days_to_go:
dt += timedelta(days_to_go)
return dt

In the US, DST starts at 2am (standard time) on the first Sunday in April.
DSTSTART = datetime(1, 4, 1, 2)

and ends at 2am (DST time; lam standard time) on the last Sunday of Oct.
which is the first Sunday on or after Oct 25.

DSTEND = datetime(1, 10, 25, 1)

class USTimeZone(tzinfo):

def __init__(self, hours, reprname, stdname, dstname):
self.stdoffset = timedelta(hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dstname = dstname

6.9. datetime — Basic date and time types 225

def __repr__(self):
return self.reprname

def tzname(self, dt):
if self.dst(dt):
return self.dsthame
else:
return self.stdname

de

-+

utcoffset(self, dt):
return self.stdoffset + self.dst(dt)

def dst(self, dt):

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc() implementation (called by the default astimezone()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find first Sunday in April & the last in October.
start = first_sunday_on_or_after(DSTSTART.replace(year=dt.year))
end = first_sunday_on_or_after(DSTEND.replace(year=dt.year))

Can't compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:
return HOUR
else:
return ZERO

Eastern = USTimeZone(-5, "Eastern”, "EST", "EDT")
Central = USTimeZone(-6, "Central", "CST", "CDT")
Mountain = USTimeZone(-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone(-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per yeatzmB subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT
begins the minute after 1:59 (EST) on the first Sunday in April, and ends the minute after 1:59 (EDT) on the last
Sunday in October:

utc 3MM 4MM 5MM 6MM 7:MM 8MM
EST 22:MM 23:MM OMM 1:MM 2:MM 3:MM
EDT 23:MM O:MM 1:.MM 2:MM 3:MM 4:MM

start 22:MM 23:MM O:MM 1.MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:.MM 2:.MM 3:MM

When DST starts (the "start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn't really make sense on that dayastimezone(Eastern) won't deliver a result witthour==2 on

the day DST begins. In order faistimezone() to make this guarantee, theinfo.dst() method must
consider times in the "missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the "end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unam-
biguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the
day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguouastimezone() mimics the local clock’s behavior by mapping

two adjacent UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM
and 6:MM both map to 1:MM when converted to Eastern. In ordeatimezone() to make this guarantee,

226 Chapter 6. Generic Operating System Services

the tzinfo.dst() method must consider times in the "repeated hour” to be in standard time. This is easily
arranged, as in the example, by expressing DST switch times in the time zone’s standard local time.

Applications that can’t bear such ambiguities should avoid using hybinfo subclasses; there are no ambi-
guities when using UTC, or any other fixed-offéghfo subclass (such as a class representing only EST (fixed
offset -5 hours), or only EDT (fixed offset -4 hours)).

6.9.7 stritime() Behavior

date , datetime , andtime objects all support atrftime(formaf) method, to create a string representing

the time under the control of an explicit format string. Broadly speakdrsirftime(fmt) acts like theime
module’stime.strftime(fmt, d.timetuple()) although not all objects supporttametuple()
method.

Fortime objects, the format codes for year, month, and day should not be used, as time objects have no such
values. If they're used anywa$900 is substituted for the year, afidfor the month and day.

Fordate objects, the format codes for hours, minutes, and seconds should not be utzte, azbjects have no
such values. If they're used anywdyijs substituted for them.

For a naive object, th&zand%Zformat codes are replaced by empty strings.

For an aware object:

%z utcoffset() is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a
2-digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC
offset minutes. For example, iftcoffset() returnstimedelta(hours=-3, minutes=-30) ,
%zis replaced with the string0330’

%Z If tzname() returnsNone, %Zis replaced by an empty string. Otherwieis replaced by the returned
value, which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime() function, and platform variations are common. The documentation for Pythiores module

lists the format codes that the C standard (1989 version) requires, and those work on all platforms with a standard
C implementation. Note that the 1999 version of the C standard added additional format codes.

The exact range of years for whigltrftime() works also varies across platforms. Regardless of platform,
years before 1900 cannot be used.

6.10 time — Time access and conversions

This module provides various time-related functions. It is always available, but not all functions are available on
all platforms. Most of the functions defined in this module call platform C library functions with the same name. It
may sometimes be helpful to consult the platform documentation, because the semantics of these functions varies
among platforms.

An explanation of some terminology and conventions is in order.

e The epochis the point where the time starts. On January 1st of that year, at 0 hours, the “time since the
epoch” is zero. For Wix, the epoch is 1970. To find out what the epoch is, looratime(0)

e The functions in this module do not handle dates and times before the epoch or far in the future. The cut-off
point in the future is determined by the C library; fonlX, it is typically in 2038.

e Year 2000 (Y2K) issues Python depends on the platform’s C library, which generally doesn't have year
2000 issues, since all dates and times are represented internally as seconds since the epoch. Functions
accepting astruct _time (see below) generally require a 4-digit year. For backward compatibility, 2-
digit years are supported if the module variabteeept2dyear is a non-zero integer; this variable is
initialized to1 unless the environment variable PYTHONY2K is set to a non-empty string, in which case

6.10. time — Time access and conversions 227

it is initialized to 0. Thus, you can set PYTHONY2K to a non-empty string in the environment to require
4-digit years for all year input. When 2-digit years are accepted, they are converted according to the POSIX
or X/Open standard: values 69-99 are mapped to 1969-1999, and values 0-68 are mapped to 2000—2068.
Values 100-1899 are always illegal. Note that this is new as of Python 1.5.2(a2); earlier versions, up to
Python 1.5.1 and 1.5.2al, would add 1900 to year values below 1900.

e UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The acronym
UTC is not a mistake but a compromise between English and French.

e DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year.
DST rules are magic (determined by local law) and can change from year to year. The C library has a table
containing the local rules (often it is read from a system file for flexibility) and is the only source of True
Wisdom in this respect.

e The precision of the various real-time functions may be less than suggested by the units in which their value
or argument is expressed. E.g. on mostxsystems, the clock “ticks” only 50 or 100 times a second, and
on the Mac, times are only accurate to whole seconds.

e On the other hand, the precisiontihe() andsleep() is better than their Nix equivalents: times
are expressed as floating point numbéiree() returns the most accurate time available (using>J
gettimeofday() where available), andleep() will accept a time with a nonzero fraction {x
select() is used to implement this, where available).

e The time value as returned bymtime() , localtime() , and strptime() , and accepted by
asctime() ,mktime() andstrftime() ,isasequence of 9 integers. The return valuegdime() ,
localtime() , andstrptime() also offer attribute names for individual fields.

Index | Attribute Values
0 tm _year (for example, 1993)
1 tm_mon range [1,12]
2 tm_mday | range[1,31]
3 tm _hour range [0,23]
4 tm_min range [0,59]
5 tm_sec range [0,61]; se€l) in strftime() description
6 tm _wday range [0,6], Monday is O
7 tm _yday range [1,366]
8 tm _isdst 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be handled
as described under “Year 2000 (Y2K) issues” abovel Aargument as the daylight savings flag, passed to
mktime() will usually result in the correct daylight savings state to be filled in.

When a tuple with an incorrect length is passed to a function expectitigiet _time , or having ele-
ments of the wrong type, BypeError s raised.

Changed in version 2.2: The time value sequence was changed from a tugguota _time , with the
addition of attribute names for the fields.

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default, but will be
set to false if the environment variable PYTHONY2K has been set to a non-empty string. It may also be
modified at run time.

altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative if the
local DST timezone is east of UTC (as in Western Europe, including the UK). Only use dlaiglight
iS nonzero.

asctime ([t])
Convert a tuple ostruct _time representing a time as returneddmtime() or localtime() toa
24-character string of the following formSun Jun 20 23:21:05 1993’ . If tis not provided, the

228 Chapter 6. Generic Operating System Services

current time as returned lgcaltime() is used. Locale information is not used&sctime() . Note:
Unlike the C function of the same name, there is no trailing newline. Changed in version 2.1: Atltaved
be omitted.

clock ()
On UNIX, return the current processor time as a floating point number expressed in seconds. The precision,
and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the
same name, but in any case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a
floating point number, based on the Win32 funct@uoeryPerformanceCounter() . The resolution
is typically better than one microsecond.

ctime ([secs])
Convert a time expressed in seconds since the epoch to a string representing local timecs If
is not provided, the current time as returned faye() is used. ctime(sec$ is equivalent to
asctime(localtime(secy) . Locale information is not used bstime() . Changed in version
2.1: Allowedsecsto be omitted.

daylight
Nonzero if a DST timezone is defined.

gmtime ([secs])
Convert a time expressed in seconds since the epoclsttoet _time in UTC in which the dst flag is
always zero. Isecds not provided, the current time as returnedioye() is used. Fractions of a second
are ignored. See above for a description ofgtrect _time object. Changed in version 2.1: Allowed
secsto be omitted.

localtime ([secs])
Like gmtime() but converts to local time. The dst flag is setitavhen DST applies to the given time.
Changed in version 2.1: Alloweskcsto be omitted.

mktime (t)
This is the inverse function ddcaltime() . Itsargument s thetruct _time or full 9-tuple (since the
dst flag is needed; usé& as the dst flag if it is unknown) which expresses the timiedal time, not UTC.
It returns a floating point number, for compatibility witime() . If the input value cannot be represented
as a valid time, eithe®verflowError or ValueError will be raised (which depends on whether the
invalid value is caught by Python or the underlying C libraries). The earliest date for which it can generate
a time is platform-dependent.

sleep (sec$
Suspend execution for the given number of seconds. The argument may be a floating point number to
indicate a more precise sleep time. The actual suspension time may be less than that requested because any
caught signal will terminate thaleep() following execution of that signal’s catching routine. Also, the
suspension time may be longer than requested by an arbitrary amount because of the scheduling of other
activity in the system.

strftime (format[, t])
Convert a tuple ostruct _time representing a time as returned gsntime() or localtime()
to a string as specified by tHermat argument. Ift is not provided, the current time as returned by
localtime() is usedformatmust be a string. Changed in version 2.1: Allowied be omitted.

The following directives can be embedded in fhematstring. They are shown without the optional field
width and precision specification, and are replaced by the indicated characterstirftiime() result:

6.10. time — Time access and conversions 229

Directive | Meaning Notes

%a Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%cC Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%l Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61]. Q)
%U Week number of the year (Sunday as the first day of |the
week) as a decimal number [00,53]. All days in a new ygar
preceding the first Sunday are considered to be in week|0.
%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the
week) as a decimal number [00,53]. All days in a new ygar
preceding the first Monday are considered to be in week 0.

%X Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.

%Z Time zone name (no characters if no time zone exists).
%% A literal *9% character.

Notes:
(1)The range really i§ to 61; this accounts for leap seconds and the (very rare) double leap seconds.

Here is an example, a format for dates compatible with that specified in the RFC 2822 Internet email
standard?

>>> from time import gmtime, strftime
>>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())
'Thu, 28 Jun 2001 14:17:15 +0000’

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the initial
‘9% of a directive in the following order; this is also not portable. The field width is normally 2 except for
%j where itis 3.

strptime (string[, format])
Parse a string representing a time according to a format. The return valugtrisc _time as re-
turned bygmtime() or localtime() . Theformat parameter uses the same directives as those used
by strftime() ; it defaults to"%a %b %d %H:%M:%S %Which matches the formatting returned
by ctime() . If string cannot be parsed accordingftomat ValueError s raised. If the string to be
parsed has excess data after parsuayeError is raised. The default values used to fill in any missing
datais(1900, 1, 1, 0, 0, O, O, 1, -1)

Support for thedoZdirective is based on the values containetzilmme and whethedaylight s true.
Because of this, it is platform-specific except for recognizing UTC and GMT which are always known (and
are considered to be non-daylight savings timezones).

1The use of6Zis now deprecated, but tHéz escape that expands to the preferred hour/minute offset is not supported by all ANSI C
libraries. Also, a strict reading of the original 1982 RFC 822 standard calls for a two-digit year (%y rather than %Y), but practice moved to
4-digit years long before the year 2000. The 4-digit year has been mandated by RFC 2822, which obsoletes RFC 822.

230 Chapter 6. Generic Operating System Services

struct _time
The type of the time value sequence returnedjimgime() , localtime() , andstrptime() . New
in version 2.2.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even
though the time is always returned as a floating point number, not all systems provide time with a better
precision than 1 second. While this function normally returns non-decreasing values, it can return a lower
value than a previous call if the system clock has been set back between the two calls.

timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (negative in most of Western Europe,
positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the
local DST timezone. If no DST timezone is defined, the second string should not be used.

tzset ()
Resets the time conversion rules used by the library routines. The environment variable TZ specifies how
this is done. New in version 2.3.

Availability: UNIX.

Note: Although in many cases, changing the TZ environment variable may affect the output of functions
like localtime without callingtzset , this behavior should not be relied on.

The TZ environment variable should contain no whitespace.
The standard format of the TZ environment variable is: (whitespace added for clarity)

std offset [dst [offset],start[/time], end[/time]]]]

Where:

std and dstThree or more alphanumerics giving the timezone abbreviations. These will be propogated into
time.tzname

offsetThe offset has the formt:hh[:mm([:ss]]. This indicates the value added the local time to arrive at
UTC. If preceded by a -, the timezone is east of the Prime Meridian; otherwise, it is west. If no offset
follows dst, summmer time is assumed to be one hour ahead of standard time.

start[/time,end[/time]] Indicates when to change to and back from DST. The format of the start and end dates are
one of the following:

JnThe Julian day (1 j=n j= 365). Leap days are not counted, so in all years February 28 is day 59
and March 1 is day 60.
nThe zero-based Julian day (0 5= 365). Leap days are counted, and it is possible to refer to
February 29.
Mm.n.dThed'th day (0 j=d j= 6) or weekn of monthm of the year (1 j=n j=5, 1 j=m j= 12, where
week 5 means "the lastday in monthm” which may occur in either the fourth or the fifth week).
Week 1 is the first week in which trdéth day occurs. Day zero is Sunday.

time has the same format as offset except that no leading sign (-’ or '+") is allowed. The default, if
time is not given, is 02:00:00.

>>> os.environ[TZ’] = 'EST+05EDT,M4.1.0,M10.5.0’

>>> time.tzset()

>>> time.strftime('%X %x %Z’)

'02:07:36 05/08/03 EDT’

>>> os.environ['TZ’] = 'AEST-10AEDT-11,M10.5.0,M3.5.0’
>>> time.tzset()

>>> time.strftime('%X %x %Z’)

'16:08:12 05/08/03 AEST’

6.10. time — Time access and conversions 231

On many Unix systems (including *BSD, Linux, Solaris, and Darwin), it is more convenient to use the sys-
tem’s zoneinfo {zfilg(5)) database to specify the timezone rules. To do this, set the TZ environment variable
to the path of the required timezone datafile, relative to the root of the systems 'zoneinfo’ timezone database,
usually located at/Uisr/share/zoneinfo’. For example,US/Eastern’ , 'Australia/Melbourne’ .

‘Egypt’ or’Europe/Amsterdam’

>>> os.environ['TZ’] = 'US/Eastern’
>>> time.tzset()

>>> time.tzname

(CEST’, 'EDT)

>>> os.environ['TZ’] = 'Egypt’

>>> time.tzset()

>>> time.tzname

(CEET’, 'EEST)

See Also:

Modulelocale (section 6.26):
Internationalization services. The locale settings can affect the return values for some of the functions in
thetime module.

Modulecalendar (section 5.17):
General calendar-related functiotisnegm() is the inverse ogmtime() from this module.

6.11 sched — Event scheduler

Thesched module defines a class which implements a general purpose event scheduler:

classscheduler (timefunc, delayfurjc
Thescheduler class defines a generic interface to scheduling events. It needs two functions to actually
deal with the “outside world” —timefuncshould be callable without arguments, and return a number (the
“time”, in any units whatsoever). Ttaelayfundunction should be callable with one argument, compatible
with the output oftimefung and should delay that many time unitielayfuncwill also be called with the
argumenD after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time
>>> s=sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()

>>> def print_some_times():
print time.time()
s.enter(5, 1, print_time, ())
s.enter(10, 1, print_time, ())
s.run()
print time.time()

>>> print_some_times()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

6.11.1 Scheduler Objects

scheduler instances have the following methods:

enterabs (time, priority, action, argument

232 Chapter 6. Generic Operating System Services

Schedule a new event. Tliene argument should be a numeric type compatible with the return value of
thetimefuncfunction passed to the constructor. Events scheduled for the thamwill be executed in the
order of theirpriority.

Executing the event means executagion* argumen}. argumentmust be a sequence holding the pa-
rameters foaction

Return value is an event which may be used for later cancellation of the evect(smd()).

enter (delay, priority, action, argumet
Schedule an event fatelaymore time units. Other then the relative time, the other arguments, the effect
and the return value are the same as thoseriterabs()

cancel (evenj
Remove the event from the queue.eifentis not an event currently in the queue, this method will raise a
RuntimeError

empty ()
Return true if the event queue is empty.

run ()
Run all scheduled events. This function will wait (using dleéayfunc function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunccan raise an exception. In either case, the scheduler will maintain a consistent
state and propagate the exception. If an exception is raisedttign the event will not be attempted in
future calls torun()

If a sequence of events takes longer to run than the time available before the next event, the scheduler will
simply fall behind. No events will be dropped; the calling code is responsible for canceling events which
are no longer pertinent.

6.12 mutex — Mutual exclusion support

The mutex module defines a class that allows mutual-exclusion via acquiring and releasing locks. It does not
require (or imply) threading or multi-tasking, though it could be useful for those purposes.

Themutex module defines the following class:

classmutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue is
empty. Otherwise, the queue contains zero or njduaction argumen} pairs representing functions (or
methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first
queue entry is removed and ftenction(argumeny pair called, implying it now has the lock.

Of course, no multi-threading is implied — hence the funny interfackofik() , where a function is called
once the lock is acquired.

6.12.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and retlime , otherwise, returiralse .

lock (function, argument
Executefunction(argumen} , unless the mutex is locked. In the case it is locked, place the function and
argument on the queue. Saelock for explanation of whefunctiorn(argumen} is executed in that case.

6.12. mutex — Mutual exclusion support 233

unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

6.13 getpass — Portable password input

Thegetpass module provides two functions:

getpass ([prompt])
Prompt the user for a password without echoing. The user is prompted using thepstmmgt which
defaults toPassword: ' . Availability: Macintosh, WNix, Windows.

getuser ()
Return the “login name” of the user. Availability: Nux, Windows.

This function checks the environment variables LOGNAME, USER, LNAME and USERNAME, in order,
and returns the value of the first one which is set to a non-empty string. If none are set, the login name from
the password database is returned on systems which suppanivthemodule, otherwise, an exception is
raised.

6.14 curses — Terminal handling for character-cell displays

Changed in version 1.6: Added support for tieairses library and converted to a package.

The curses module provides an interface to the curses library, the de-facto standard for portable advanced
terminal handling.

While curses is most widely used in thenlk environment, versions are available for DOS, OS/2, and possibly
other systems as well. This extension module is designed to match the API of ncurses, an open-source curses
library hosted on Linux and the BSD variants ofilX.

See Also:

Module curses.ascii (section 6.17):
Utilities for working with Ascii characters, regardless of your locale settings.

Module curses.panel (section 6.18):
A panel stack extension that adds depth to curses windows.

Modulecurses.textpad (section 6.15):
Editable text widget for curses supportiBghacslike bindings.

Modulecurses.wrapper (section 6.16):
Convenience function to ensure proper terminal setup and resetting on application entry and exit.

Curses Programming with Python

(http://www.python.org/doc/howto/curses/curses.html)
Tutorial material on using curses with Python, by Andrew Kuchling and Eric Raymond, is available on the
Python Web site.

The ‘Demol/curses/’ directory in the Python source distribution contains some example programs using the curses
bindings provided by this module.

6.14.1 Functions

The modulecurses defines the following exception:

exceptionerror
Exception raised when a curses library function returns an error.

Note: Whenevex ory arguments to a function or a method are optional, they default to the current cursor location.
Wheneveiattr is optional, it defaults té&_NORMAL

234 Chapter 6. Generic Operating System Services

The modulecurses defines the following functions:

baudrate ()
Returns the output speed of the terminal in bits per second. On software terminal emulators it will have a
fixed high value. Included for historical reasons; in former times, it was used to write output loops for time
delays and occasionally to change interfaces depending on the line speed.

beep ()
Emit a short attention sound.

can _change _color ()
Returns true or false, depending on whether the programmer can change the colors displayed by the terminal.

cbreak ()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is turned off
and characters are available to be read one by one. However, unlike raw mode, special characters (interrupt,
quit, suspend, and flow control) retain their effects on the tty driver and calling program. Callimgvi¢st
thencbreak() leaves the terminal in cbreak mode.

color _content (color_numbej
Returns the intensity of the red, green, and blue (RGB) components in thecotdarnumber which must
be betweer® and COLORSA 3-tuple is returned, containing the R,G,B values for the given color, which
will be betweerD (no component) antil000 (maximum amount of component).

color _pair (color_numbej
Returns the attribute value for displaying text in the specified color. This attribute value can be combined
with A_STANDOUJTA_REVERSEand the otheA_* attributes.pair _number() is the counterpart to
this function.

curs _set (visibility)
Sets the cursor statgisibility can be setto 0, 1, or 2, for invisible, normal, or very visible. If the terminal
supports the visibility requested, the previous cursor state is returned; otherwise, an exception is raised. On
many terminals, the “visible” mode is an underline cursor and the “very visible” mode is a block cursor.

def _prog _mode()
Saves the current terminal mode as the “program” mode, the mode when the running program is using
curses. (Its counterpart is the “shell” mode, for when the program is not in curses.) Subsequent calls to
reset _prog _mode() will restore this mode.

def _shell _mode()
Saves the current terminal mode as the “shell” mode, the mode when the running program is not using
curses. (Its counterpart is the “program” mode, when the program is using curses capabilities.) Subsequent
callstoreset _shell _mode() will restore this mode.

delay _output (m9g
Inserts aitmsmillisecond pause in output.

doupdate ()
Update the physical screen. The curses library keeps two data structures, one representing the current
physical screen contents and a virtual screen representing the desired next stdtaupdsee() ground
updates the physical screen to match the virtual screen.

The virtual screen may be updated bgautrefresh() call after write operations such agdstr()

have been performed on a window. The normediesh() call is simplynoutrefresh() followed

by doupdate() ; if you have to update multiple windows, you can speed performance and perhaps reduce
screen flicker by issuingoutrefresh() calls on all windows, followed by a singléoupdate()

echo ()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

endwin ()
De-initialize the library, and return terminal to normal status.

erasechar ()
Returns the user’s current erase character. Undex Operating systems this is a property of the controlling
tty of the curses program, and is not set by the curses library itself.

6.14. curses — Terminal handling for character-cell displays 235

filter ()
Thefilter() routine, if used, must be called befdretscr() is called. The effect is that, during
those calls, LINES is set to 1; the capabilities clear, cup, cud, cudl, cuul, cuu, vpa are disabled; and the
home string is set to the value of cr. The effect is that the cursor is confined to the current line, and so are
screen updates. This may be used for enabling cgaracter-at-a-time line editing without touching the rest of
the screen.

flash ()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval. Some people
prefer such as ‘visible bell’ to the audible attention signal produceidsp() .

flushinp ()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has not yet
been processed by the program.

getmouse ()
After getch() returns KEY_MOUSE0 signal a mouse event, this method should be call to re-
trieve the queued mouse event, represented as a 5ughle x, y, z bstatg. id is an ID value
used to distinguish multiple devices, ardy, z are the event's coordinates.z i6 currently unused.).
bstateis an integer value whose bits will be set to indicate the type of event, and will be the bit-
wise OR of one or more of the following constants, wherés the button number from 1 to 4:
BUTTON_PRESSEDBUTTOM_RELEASED BUTTOM_CLICKED, BUTTON_DOUBLECLICKED,
BUTTON_TRIPLE _CLICKED, BUTTONSHIFT, BUTTONCTRL BUTTONALT.

getsyx ()
Returns the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true, then -1,-1
is returned.

getwin (file)
Reads window related data stored in the file by an eapligwin() call. The routine then creates and
initializes a new window using that data, returning the new window object.

has _colors ()
Returns true if the terminal can display colors; otherwise, it returns false.

has _ic ()
Returns true if the terminal has insert- and delete- character capabilities. This function is included for
historical reasons only, as all modern software terminal emulators have such capabilities.

has _il ()
Returns true if the terminal has insert- and delete-line capabilities, or can simulate them using scrolling
regions. This function is included for historical reasons only, as all modern software terminal emulators
have such capabilities.

has _key (ch)
Takes a key valueh, and returns true if the current terminal type recognizes a key with that value.

halfdelay (tenth3
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user are immedi-
ately available to the program. However, after blockingtéarthstenths of seconds, an exception is raised
if nothing has been typed. The valuetehthsmust be a number between 1 and 255. bisebreak() to
leave half-delay mode.

init _color (color_number,r, g, b
Changes the definition of a color, taking the number of the color to be changed followed by three RGB
values (for the amounts of red, green, and blue components). The vatabofnumbermust be between
0 andCOLORSEach ofr, g, b, must be a value betwe®and1000 . Wheninit _color() is used, all
occurrences of that color on the screen immediately change to the new definition. This function is a no-op
on most terminals; it is active only ¢flan _change _color() returnsl.

init _pair (pair_number, fg, by
Changes the definition of a color-pair. It takes three arguments: the number of the color-pair to be changed,
the foreground color number, and the background color number. The vahag ohumbemust be between
1 andCOLORPAIRS - 1 (theO color pair is wired to white on black and cannot be changed). The value

236 Chapter 6. Generic Operating System Services

of fg andbg arguments must be betwe®nand COLORSIf the color-pair was previously initialized, the
screen is refreshed and all occurrences of that color-pair are changed to the new definition.

initscr ()
Initialize the library. Returns &VindowObject which represents the whole screéviote: If there is an
error opening the terminal, the underlying curses library may cause the interpreter to exit.

isendwin ()
Returns true iendwin() has been called (that is, the curses library has been deinitialized).

keyname (k)
Return the name of the key numbeled’ he name of a key generating printable ASCII character is the key’s
character. The name of a control-key combination is a two-character string consisting of a caret followed
by the corresponding printable ASCII character. The name of an alt-key combination (128-255) is a string
consisting of the prefix ‘M-’ followed by the name of the corresponding ASCII character.

killchar ()
Returns the user’s current line kill character. UndenixJ) operating systems this is a property of the con-
trolling tty of the curses program, and is not set by the curses library itself.

longname ()
Returns a string containing the terminfo long name field describing the current terminal. The maximum
length of a verbose description is 128 characters. It is defined only after the iaibtw()

meta (ye9
If yesis 1, allow 8-bit characters to be input.yiésis 0, allow only 7-bit chars.

mouseinterval (interval)
Sets the maximum time in milliseconds that can elapse between press and release events in order for them
to be recognized as a click, and returns the previous interval value. The default value is 200 msec, or one
fifth of a second.

mousemask(mousemasgk
Sets the mouse events to be reported, and returns a (tapkilmask oldmask. availmaskindicates
which of the specified mouse events can be reported; on complete failure it retuimidraskis the
previous value of the given window’s mouse event mask. If this function is never called, no mouse events
are ever reported.

napms(mg
Sleep formsmilliseconds.

newpad (nlines, ncol}
Creates and returns a pointer to a new pad data structure with the given number of lines and columns. A pad
is returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily associated
with a particular part of the screen. Pads can be used when a large window is needed, and only a part of the
window will be on the screen at one time. Automatic refreshes of pads (such as from scrolling or echoing
of input) do not occur. Theefresh() andnoutrefresh() methods of a pad require 6 arguments to
specify the part of the pad to be displayed and the location on the screen to be used for the display. The
arguments are pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol; the p arguments refer to the upper
left corner of the the pad region to be displayed and the s arguments define a clipping box on the screen
within which the pad region is to be displayed.

newwin ([nlines, ncols] begin_y, begin x)
Return a new window, whose left-upper corner is(&egin.y, begin_ x), and whose height/width is
nlinegncols

By default, the window will extend from the specified position to the lower right corner of the screen.

nl-()

Enter newline mode. This mode translates the return key into newline on input, and translates newline into
return and line-feed on output. Newline mode is initially on.

nocbreak ()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

6.14. curses — Terminal handling for character-cell displays 237

noecho ()
Leave echo mode. Echoing of input characters is turned off,

nonl ()
Leave newline mode. Disable translation of return into newline on input, and disable low-level translation
of newline into newline/return on output (but this does not change the behavéaoideh('\n’) , Which

always does the equivalent of return and line feed on the virtual screen). With translation off, curses can
sometimes speed up vertical motion a little; also, it will be able to detect the return key on input.

noqiflush ()
When the nogiflush routine is used, normal flush of input and output queues associated with the INTR,
QUIT and SUSP characters will not be done. You may want toreaiflush() in a signal handler if
you want output to continue as though the interrupt had not occurred, after the handler exits.

noraw ()
Leave raw mode. Return to normal “cooked” mode with line buffering.

pair _content (pair_numbej
Returns a tuplé fg, bg) containing the colors for the requested color pair. The valugadf_number
must be betweefl andCOLORPAIRS - 1.

pair _number (attr)
Returns the number of the color-pair set by the attribute vattre color _pair() is the counterpart to
this function.

putp (string)
Equivalent totputs(str, 1, putchar) ; emits the value of a specified terminfo capability for the
current terminal. Note that the output of putp always goes to standard output.

qifiush ([flag])
If flagis false, the effect is the same as callmagiflush() . If flagis true, or no argument is provided,
the queues will be flushed when these control characters are read.

raw ()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend, and flow
control keys are turned off; characters are presented to curses input functions one by one.

reset _prog _mode()
Restores the terminal to “program” mode, as previously saveteby prog _mode() .

reset _shell _mode()
Restores the terminal to “shell” mode, as previously saveddfy_shell _mode() .

setsyx (v, X
Sets the virtual screen cursorytox. If y andx are both -1, then leaveok is set.

setupterm ([termstr, fd])
Initializes the terminal.termstris a string giving the terminal name; if omitted, the value of the TERM
environment variable will be usettl is the file descriptor to which any initialization sequences will be sent;
if not supplied, the file descriptor fays.stdout will be used.

start _color ()
Must be called if the programmer wants to use colors, and before any other color manipulation routine is
called. Itis good practice to call this routine right afieitscr()

start _color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white),
and two global variables in theurses module, COLOR&NdCOLORPAIRS, containing the maximum
number of colors and color-pairs the terminal can support. It also restores the colors on the terminal to the
values they had when the terminal was just turned on.

termattrs ()
Returns a logical OR of all video attributes supported by the terminal. This information is useful when a
curses program needs complete control over the appearance of the screen.

termname ()
Returns the value of the environment variable TERM, truncated to 14 characters.

238 Chapter 6. Generic Operating System Services

tigetflag (capnamg
Returns the value of the Boolean capability corresponding to the terminfo capabilityazgmame The
value-1 is returned iftapnames not a Boolean capability, @ if it is canceled or absent from the terminal
description.

tigethum (capnamg
Returns the value of the numeric capability corresponding to the terminfo capabilitycepname The
value -2 is returned ifcapnameis not a numeric capability, ol if it is canceled or absent from the
terminal description.

tigetstr ~ (capnamg
Returns the value of the string capability corresponding to the terminfo capability cegnameNone is
returned ifcapnames not a string capability, or is canceled or absent from the terminal description.

tparm (str[,...])
Instantiates the stringtr with the supplied parameters, wheste should be a parameterized string obtained
from the terminfo database. Efparm(tigetstr("cup”), 5, 3) could resultinm\033[6;4H’ .
the exact result depending on terminal type.

typeahead (fd)
Specifies that the file descriptfat be used for typeahead checkingfdfis -1 , then no typeahead checking
is done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while updating
the screen. If input is found, and it is coming from a tty, the current update is postponed until refresh or
doupdate is called again, allowing faster response to commands typed in advance. This function allows
specifying a different file descriptor for typeahead checking.

unctrl (ch)
Returns a string which is a printable representation of the charett€ontrol characters are displayed as
a caret followed by the character, for examplé@sPrinting characters are left as they are.

ungetch (ch)
Pushch so the nexgetch() will return it. Note: Only onech can be pushed befogetch() s called.

ungetmouse (id, X, y, z, bstate
Push &KEY_MOUSEevent onto the input queue, associating the given state data with it.

use _env (flag)
If used, this function should be called befanétscr() or newterm are called. Wheftagis false, the
values of lines and columns specified in the terminfo database will be used, even if environment variables
LINES and COLUMNS (used by default) are set, or if curses is running in a window (in which case default
behavior would be to use the window size if LINES and COLUMNS are not set).

6.14.2 Window Objects

Window obijects, as returned lyitscr() andnewwin() above, have the following methods:

addch ([y, x,] ch[, attr])
Note: A charactermeans a C character (ascCll code), rather then a Python character (a string of length
1). (This note is true whenever the documentation mentions a character.) Thedmdi()in is handy for
conveying strings to codes.

Paint charactechat(y, x) with attributesattr, overwriting any character previously painter at that loca-
tion. By default, the character position and attributes are the current settings for the window object.

addnstr ([y, x,] str, n[, attr])
Paint at mosh characters of the stringfr at (y, x) with attributesattr, overwriting anything previously
on the display.

addstr ([y, x,] str[, attr])
Paint the stringstr at(y, X) with attributesattr, overwriting anything previously on the display.

attroff ~ (attr)
Remove attributattr from the “background” set applied to all writes to the current window.

6.14. curses — Terminal handling for character-cell displays 239

attron (attr)
Add attributeattr from the “background” set applied to all writes to the current window.

attrset (attr)
Set the “background” set of attributesdtir. This set is initially O (no attributes).

bkgd (ch[, attr])
Sets the background property of the window to the charadtewith attributesattr. The change is then
applied to every character position in that window:

eThe attribute of every character in the window is changed to the new background attribute.
eWherever the former background character appears, it is changed to the new background character.

bkgdset (ch[, attr])
Sets the window’s background. A window’s background consists of a character and any combination of
attributes. The attribute part of the background is combined (OR’ed) with all non-blank characters that
are written into the window. Both the character and attribute parts of the background are combined with
the blank characters. The background becomes a property of the character and moves with the character
through any scrolling and insert/delete line/character operations.

border ([Is, rs[, s, b, [, [, bi[, br] 1111111)

Draw a border around the edges of the window. Each parameter specifies the character to use for a specific
part of the border; see the table below for more details. The characters can be specified as integers or as
one-character strings.

Note: A 0 value for any parameter will cause the default character to be used for that parameter. Keyword
parameters canotbe used. The defaults are listed in this table:

Parameter | Description Default value

Is Left side ACS_VLINE

rs Right side ACS_VLINE

ts Top ACS HLINE

bs Bottom ACS_HLINE

tl Upper-left corner | ACS_.ULCORNER
tr Upper-right corner | ACS_URCORNER
bl Bottom-left corner | ACS_BLCORNER
br Bottom-right corner| ACS_ BRCORNER

box ([vertch, horcr])
Similar to border() , but bothls andrs are vertch and bothts and bs arehorch The default corner
characters are always used by this function.

clear ()
Like erase() , but also causes the whole window to be repainted upon next aatfresh()

clearok (yes
If yesis 1, the next call toefresh() will clear the window completely.

clrtobot ()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the equivalent
of clrtoeol() is performed.

clrtoeol ()

Erase from cursor to the end of the line.

cursyncup ()
Updates the current cursor position of all the ancestors of the window to reflect the current cursor position
of the window.

delch ([x,y])
Delete any character &, x) .

deleteln ()
Delete the line under the cursor. All following lines are moved up by 1 line.

derwin ([nlines, ncols] begin_y, begin x)
An abbreviation for “derive window’derwin() is the same as callingubwin() , except thabegin_y

240 Chapter 6. Generic Operating System Services

andbegin_x are relative to the origin of the window, rather than relative to the entire screen. Returns a
window object for the derived window.

echochar (ch[, attr])
Add charactechwith attributeattr, and immediately callefresh() on the window.

enclose (v, X
Tests whether the given pair of screen-relative character-cell coordinates are enclosed by the given window,
returning true or false. It is useful for determining what subset of the screen windows enclose the location
of a mouse event.

erase ()
Clear the window.

getbegyx ()
Return atupl€ y, X) of co-ordinates of upper-left corner.

getch ([x, y])
Get a character. Note that the integer returned doebave to be imascii range: function keys, keypad
keys and so on return numbers higher than 256. In no-delay mode, -1 is returned if there is no input.

getkey ([x,y])
Get a character, returning a string instead of an integgyeteh() does. Function keys, keypad keys and
so on return a multibyte string containing the key name. In no-delay mode, an exception is raised if there is
no input.

getmaxyx ()
Return atupl€ y, x) of the height and width of the window.

getparyx ()
Returns the beginning coordinates of this window relative to its parent window into two integer variables y
and x. Returnsl,-1 if this window has no parent.

getstr ([x, y])
Read a string from the user, with primitive line editing capacity.

getyx ()
Return atuplé y, x) of current cursor position relative to the window’s upper-left corner.

hine ([y,x,] ch, 0
Display a horizontal line starting &y, x) with lengthn consisting of the characteh.

idcok (flag)
If flagis false, curses no longer considers using the hardware insert/delete character feature of the terminal,
if flag is true, use of character insertion and deletion is enabled. When curses is first initialized, use of
character insert/delete is enabled by default.

idlok (ye9
If called with yesequal to 1,curses will try and use hardware line editing facilities. Otherwise, line
insertion/deletion are disabled.

immedok (flag)
If flag is true, any change in the window image automatically causes the window to be refreshed; you
no longer have to callefresh() yourself. However, it may degrade performance considerably, due to
repeated calls to wrefresh. This option is disabled by default.

inch ([x, y])
Return the character at the given position in the window. The bottom 8 bits are the character proper, and
upper bits are the attributes.

insch ([y, x,] ch[, attr])
Paint charactechat(y, X) with attributesattr, moving the line from positiox right by one character.

insdelln (nlineg
Insertsnlineslines into the specified window above the current line. Theesbottom lines are lost. For
negativenlines deletenlineslines starting with the one under the cursor, and move the remaining lines up.
The bottonnlineslines are cleared. The current cursor position remains the same.

6.14. curses — Terminal handling for character-cell displays 241

insertin ()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

insnstr - ([y, x,] str, n[, attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor,
up ton characters. Ihis zero or negative, the entire string is inserted. All characters to the right of the
cursor are shifted right, with the the rightmost characters on the line being lost. The cursor position does
not change (after moving ty x, if specified).

insstr ([y, X,] str [attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor. All
characters to the right of the cursor are shifted right, with the the rightmost characters on the line being lost.
The cursor position does not change (after moving tq if specified).

instr ([y, x] [n])
Returns a string of characters, extracted from the window starting at the current cursor positignxaf at
specified. Attributes are stripped from the characters.isfspecifiedjnstr() returns return a string at
mostn characters long (exclusive of the trailing NUL).

is _linetouched (line)
Returns true if the specified line was modified since the last ca#éfresh() ; otherwise returns false.
Raises aurses.error exception ifline is not valid for the given window.

is _wintouched ()
Returns true if the specified window was modified since the last caktftesh() ; otherwise returns
false.

keypad (ye9
If yesis 1, escape sequences generated by some keys (keypad, function keys) will be interpretseidy.
If yesis 0, escape sequences will be left as is in the input stream.

leaveok (ye9g
If yesis 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible the cursor will be made invisible.

If yesis 0, cursor will always be at “cursor position” after an update.

move(new_y, new x)
Move cursor tq Nnew_y, new.x) .

mvderwin (Y, X
Moves the window inside its parent window. The screen-relative parameters of the window are not changed.
This routine is used to display different parts of the parent window at the same physical position on the
screen.

mvwin (new_y, new x)
Move the window so its upper-left corner is(@ew.y, new.x) .

nodelay (ye9g
If yesis 1, getch() will be non-blocking.

notimeout (ye9
If yesis 1, escape sequences will not be timed out.

If yesis 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the input
stream as is.

noutrefresh ()
Mark for refresh but wait. This function updates the data structure representing the desired state of the
window, but does not force an update of the physical screen. To accomplish thdgadlate()

overlay (destwir[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmahol
Overlay the window on top oflestwin The windows need not be the same size, only the overlapping
region is copied. This copy is non-destructive, which means that the current background character does not
overwrite the old contents afestwin

To get fine-grained control over the copied region, the second fomwerday() can be usedsminrow
andsmincolare the upper-left coordinates of the source window, and the other variables mark a rectangle in

242 Chapter 6. Generic Operating System Services

the destination window.

overwrite (destwir[, sminrow, smincol, dminrow, dmincol, dmaxrow, dma>}§to|
Overwrite the window on top adlestwin The windows need not be the same size, in which case only the
overlapping region is copied. This copy is destructive, which means that the current background character
overwrites the old contents destwin

To get fine-grained control over the copied region, the second foowesfvrite() can be usedsminrow
andsmincolare the upper-left coordinates of the source window, the other variables mark a rectangle in the
destination window.

putwin (file)
Writes all data associated with the window into the provided file object. This information can be later
retrieved using thgetwin() function.

redrawln (beg, num
Indicates that theumscreen lines, starting at lineeg are corrupted and should be completely redrawn on
the nextrefresh() call.

redrawwin ()
Touches the entire window, causing it to be completely redrawn on theefessh() call.

refresh ([pminrow, pmincol, sminrow, smincol, smaxrow, sma}):ol
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad creatatewjthd() . The
additional parameters are needed to indicate what part of the pad and screen are involiredwand
pmincolspecify the upper left-hand corner of the rectangle to be displayed in thespadrow sminco)
smaxrow andsmaxcolspecify the edges of the rectangle to be displayed on the screen. The lower right-
hand corner of the rectangle to be displayed in the pad is calculated from the screen coordinates, since
the rectangles must be the same size. Both rectangles must be entirely contained within their respective
structures. Negative values pininrow, pmincol sminrow or smincolare treated as if they were zero.

scroll [Iines = 1])
Scroll the screen or scrolling region upwardlmeslines.

scrollok (flag)
Controls what happens when the cursor of a window is moved off the edge of the window or scrolling
region, either as a result of a newline action on the bottom line, or typing the last character of the last line.
If flagis false, the cursor is left on the bottom line flHg is true, the window is scrolled up one line. Note
that in order to get the physical scrolling effect on the terminal, it is also necessary il @()

setscrreg (top, botton
Set the scrolling region from linepto line bottom All scrolling actions will take place in this region.

standend ()
Turn off the standout attribute. On some terminals this has the side effect of turning off all attributes.

standout ()
Turn on attributeA_STANDOUT

subpad ([nlines, ncols] begin_y, begin x)
Return a sub-window, whose upper-left corner is(degin_y, begin_x), and whose width/height is
ncolgnlines

subwin ([nlines, ncols] begin_y, begin x)
Return a sub-window, whose upper-left corner is(aegin.y, begin_x), and whose width/height is
ncolgnlines

By default, the sub-window will extend from the specified position to the lower right corner of the window.

syncdown ()
Touches each location in the window that has been touched in any of its ancestor windows. This routine is
called byrefresh() , so it should almost never be necessary to call it manually.

syncok (flag)
If called with flag set to true, thesyncup() is called automatically whenever there is a change in the
window.

6.14. curses — Terminal handling for character-cell displays 243

syncup ()
Touches all locations in ancestors of the window that have been changed in the window.

timeout (delay)
Sets blocking or non-blocking read behavior for the windowddfayis negative, blocking read is used
(which will wait indefinitely for input). Ifdelayis zero, then non-blocking read is used, and -1 will be
returned bygetch() if no input is waiting. Ifdelayis positive, thengetch() will block for delay
milliseconds, and return -1 if there is still no input at the end of that time.

touchline (start, coun}
Pretendcountlines have been changed, starting with Igtert

touchwin ()
Pretend the whole window has been changed, for purposes of drawing optimizations.

untouchwin ()
Marks all lines in the window as unchanged since the last caéftesh()

vline ([y, x,] ch,n
Display a vertical line starting gty, x) with lengthn consisting of the characteh.

6.14.3 Constants

Thecurses module defines the following data members:

ERR
Some curses routines that return an integer, sugeth() , returnERRupon failure.

OK
Some curses routines that return an integer, suctapms() , returnOKupon success.

version
A string representing the current version of the module. Also availahle @srsion __.

Several constants are available to specify character cell attributes:

Attribute Meaning

A_ALTCHARSET] Alternate character set mode.
A_BLINK Blink mode.

A_BOLD Bold mode.

A_DIM Dim mode.

A_NORMAL Normal attribute.
A_STANDOUT Standout mode.
A_UNDERLINE | Underline mode.

Keys are referred to by integer constants with names starting KiEN_"". The exact keycaps available are system
dependent.

Key constant Key

KEY_MIN Minimum key value
KEY_BREAK Break key (unreliable)
KEY_DOWN Down-arrow

KEY_UP Up-arrow

KEY_LEFT Left-arrow

KEY_RIGHT Right-arrow

KEY_HOME Home key (upward-+left arrow)
KEY_BACKSPACH Backspace (unreliable)
KEY_FO Function keys. Up to 64 function keys are supported.
KEY_Fn Value of function keyn
KEY_DL Delete line

KEY_IL Insert line

244 Chapter 6. Generic Operating System Services

Key constant

Key

KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL
KEY_A1l
KEY_A3
KEY_B2
KEY_C1
KEY_C3
KEY_BTAB
KEY_BEG
KEY_CANCEL
KEY_CLOSE
KEY_-COMMAND
KEY_COPY
KEY_CREATE
KEY_END
KEY_EXIT
KEY_FIND
KEY_HELP
KEY_MARK
KEY_MESSAGE
KEY_-MOVE
KEY_NEXT
KEY_OPEN
KEY_OPTIONS
KEY_PREVIOUS
KEY_REDO
KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME
KEY_SAVE
KEY_SBEG
KEY_SCANCEL
KEY_SCOMMAND
KEY_SCOPY
KEY_SCREATE
KEY_SDC
KEY_SDL
KEY_SELECT
KEY_SEND

Delete character

Insert char or enter insert mode
Exit insert char mode

Clear screen

Clear to end of screen

Clear to end of line

Scroll 1 line forward

Scroll 1 line backward (reverse)
Next page

Previous page

Set tab

Clear tab

Clear all tabs

Enter or send (unreliable)

Soft (partial) reset (unreliable)
Reset or hard reset (unreliable)
Print

Home down or bottom (lower left)

Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad
Back tab

Beg (beginning)
Cancel

Close

Cmd (command)
Copy

Create

End

Exit

Find

Help

Mark

Message

Move

Next

Open

Options

Prev (previous)
Redo

Ref (reference)
Refresh

Replace

Restart

Resume

Save

Shifted Beg (beginning)
Shifted Cancel
Shifted Command
Shifted Copy
Shifted Create
Shifted Delete char
Shifted Delete line
Select

Shifted End

6.14. curses

— Terminal handling for character-cell displays

245

Key constant Key

KEY_SEOL Shifted Clear line
KEY_SEXIT Shifted Dxit
KEY_SFIND Shifted Find
KEY_SHELP Shifted Help
KEY_SHOME Shifted Home
KEY_SIC Shifted Input
KEY_SLEFT Shifted Left arrow
KEY_SMESSAGE | Shifted Message
KEY_SMOVE Shifted Move
KEY_SNEXT Shifted Next

KEY_SOPTIONS
KEY_SPREVIOUS
KEY_SPRINT
KEY_SREDO
KEY_SREPLACE
KEY_SRIGHT
KEY_SRSUME
KEY_SSAVE
KEY_SSUSPEND
KEY_SUNDO
KEY_SUSPEND
KEY_UNDO
KEY_MOUSE
KEY_RESIZE
KEY_MAX

Shifted Options

Shifted Prev
Shifted Print
Shifted Redo

Shifted Replace
Shifted Right arrow
Shifted Resume

Shifted Save

Shifted Suspend

Shifted Undo
Suspend
Undo

Mouse event has occurred
Terminal resize event
Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least four function
keys KEY_F1, KEY_F2, KEY_F3, KEY_F4) available, and the arrow keys mappediaY_UP, KEY_DOWN
KEY_LEFT andKEY_RIGHT in the obvious way. If your machine has a PC keybboard, it is safe to expect arrow
keys and twelve function keys (older PC keyboards may have only ten function keys); also, the following keypad
mappings are standard:

Keycap Constant
Insert KEY_IC
Delete KEY_DC
Home KEY_HOME
End KEY_END
Page Up KEY _NPAGE
Page Down | KEY_PPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100 terminal,
and will generally be available on software emulations such as X terminals. When there is no graphic available,
curses falls back on a crude printable ASCII approximatidpte: These are available only afteritscr()

has been called.

ACS code Meaning

ACS BBSS alternate name for upper right corner
ACS BLOCK solid square block

ACS BOARD board of squares

ACS BSBS alternate name for horizontal line
ACS BSSB alternate name for upper left corner
ACS BSSS alternate name for top tee

ACS BTEE bottom tee

ACS BULLET bullet

246 Chapter 6. Generic Operating System Services

ACS code Meaning
ACS _CKBOARD | checker board (stipple)
ACS DARROW | arrow pointing down
ACS DEGREE | degree symbol
ACS_DIAMOND | diamond
ACS GEQUAL greater-than-or-equal-to
ACS HLINE horizontal line
ACS LANTERN | lantern symbol
ACS LARROW | left arrow
ACS LEQUAL less-than-or-equal-to
ACS_LLCORNER lower left-hand corner
ACS_LRCORNER lower right-hand corner
ACS LTEE left tee
ACS _NEQUAL not-equal sign
ACS_PI letter pi
ACS_PLMINUS | plus-or-minus sign
ACS_PLUS big plus sign
ACS RARROW | right arrow
ACS RTEE right tee
ACS S1 scan line 1
ACS S3 scan line 3
ACS S7 scan line 7
ACS_S9 scan line 9
ACS _SBBS alternate name for lower right corner
ACS_SBSB alternate name for vertical line
ACS _SBSS alternate name for right tee
ACS_SSBB alternate name for lower left corner
ACS_SSBS alternate name for bottom tee
ACS_SSSB alternate name for left tee
ACS_SSSS alternate name for crossover or big plus
ACS _STERLING | pound sterling
ACS TTEE top tee
ACS_UARROW | up arrow
ACS_ULCORNER upper left corner
ACS_URCORNER upper right corner
ACS VLINE vertical line
The following table lists the predefined colors:
Constant Color
COLORBLACK Black
COLORBLUE Blue
COLORCYAN Cyan (light greenish blue)
COLORGREEN Green
COLORMAGENTA Magenta (purplish red)
COLORRED Red
COLORWHITE White
COLORYELLOW | Yellow

6.15 curses.textpad

New in version 1.6.

Text input widget for curses programs

6.15. curses.textpad — Text input wi

dget for curses programs

247

The curses.textpad module provides &extbox class that handles elementary text editing in a curses
window, supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator, BBedit
6.x, FrameMaker, and many other programs). The module also provides a rectangle-drawing function useful for
framing text boxes or for other purposes.

The modulecurses.textpad defines the following function:

rectangle (win, uly, ulx, Iry, IrY
Draw a rectangle. The first argument must be a window object; the remaining arguments are coordinates
relative to that window. The second and third arguments are the y and x coordinates of the upper left hand
corner of the rectangle To be drawn; the fourth and fifth arguments are the y and x coordinates of the lower
right hand corner. The rectangle will be drawn using VT100/IBM PC forms characters on terminals that
make this possible (including xterm and most other software terminal emulators). Otherwise it will be
drawn with ASCII dashes, vertical bars, and plus signs.

6.15.1 Textbox objects

You can instantiate #extbox object as follows:

classTextbox (win)
Return a textbox widget object. Thein argument should be a cursé¢éindowObject in which the
textbox is to be contained. The edit cursor of the textbox is initially located at the upper left hand corner of
the containin window, with coordinat¢8, 0) . The instance’'stripspaces flag is initially on.

Textbox objects have the following methods:

edit ([validator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the termination
keystrokes is entered. Vfalidator is supplied, it must be a function. It will be called for each keystroke
entered with the keystroke as a parameter; command dispatch is done on the result. This method returns the
window contents as a string; whether blanks in the window are included is affected &tyitispaces
member.

do _command ch)
Process a single command keystroke. Here are the supported special keystrokes:

Keystroke Action

Control-A Go to left edge of window.

Control-B Cursor left, wrapping to previous line if appropriate.
Control-D Delete character under cursor.

Control-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Control-F Cursor right, wrapping to next line when appropriate.
Control-G Terminate, returning the window contents.

Control-H Delete character backward.

Control-J Terminate if the window is 1 line, otherwise insert newline.
Control-K If line is blank, delete it, otherwise clear to end of line.
Control-L Refresh screen.

Control-N Cursor down; move down one line.

Control-O Insert a blank line at cursor location.

Control-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The following
synonyms are supported where possible:

Constant Keystroke
KEY_LEFT Control-B
KEY_RIGHT Control-F
KEY_UP Control-P
KEY_DOWN Control-N
KEY_BACKSPACE Control-h

All other keystrokes are treated as a command to insert the given character and move right (with line wrap-
ping).

248 Chapter 6. Generic Operating System Services

gather ()
This method returns the window contents as a string; whether blanks in the window are included is affected
by thestripspaces member.

stripspaces
This data member is a flag which controls the interpretation of blanks in the window. When it is on, trailing
blanks on each line are ignored; any cursor motion that would land the cursor on a trailing blank goes to the
end of that line instead, and trailing blanks are stripped when the window contents is gathered.

6.16 curses.wrapper — Terminal handler for curses programs

New in version 1.6.

This module supplies one functiowrapper() , which runs another function which should be the rest of your
curses-using application. If the application raises an excepticapper() will restore the terminal to a sane
state before passing it further up the stack and generating a traceback.

wrapper (func,..)
Wrapper function that initializes curses and calls another funchiow, restoring normal keyboard/screen
behavior on error. The callable objdccis then passed the main window 'stdscr’ as its first argument,
followed by any other arguments passeavtapper()

Before calling the hook functionyrapper() turns on cbreak mode, turns off echo, enables the terminal keypad,
and initializes colors if the terminal has color support. On exit (whether normally or by exception) it restores
cooked mode, turns on echo, and disables the terminal keypad.

6.17 curses.ascii — Utilities for ASCII characters

New in version 1.6.

Thecurses.ascii module supplies name constants A&&rCii characters and functions to test membership in
variousAscli character classes. The constants supplied are names for control characters as follows:

6.16. curses.wrapper — Terminal handler for curses programs 249

Name | Meaning
NUL
SOH | Start of heading, console interrupt
STX Start of text

ETX End of text

EOT | End of transmission

ENQ | Enquiry, goes withACKflow control
ACK | Acknowledgement

BEL | Bell
BS Backspace
TAB | Tab

HT Alias for TAB: “Horizontal tab”
LF Line feed

NL Alias for LF: “New line”

VT Vertical tab

FF Form feed

CR Carriage return
SO Shift-out, begin alternate character set
Sl Shift-in, resume default character set

DLE | Data-link escape

DC1 | XON, for flow control

DC2 Device control 2, block-mode flow control
DC3 XOFF, for flow control

DC4 Device control 4

NAK | Negative acknowledgement
SYN | Synchronous idle

ETB End transmission block
CAN | Cancel

EM End of medium

SUB | Substitute

ESC | Escape

FS File separator

GS Group separator

RS Record separator, block-mode terminator
us Unit separator

SP Space

DEL Delete

Note that many of these have little practical significance in modern usage. The mnemonics derive from teleprinter
conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard C library:

isalnum (c)

Checks for amscii alphanumeric character; it is equivalentigalpha(c) or isdigit(c)’.
isalpha (c)

Checks for amscii alphabetic character; it is equivalent teupper(¢) or islower(c’.
isascii (c)

Checks for a character value that fits in the 7AstCII set.

isblank (c)
Checks for amscii whitespace character.

iscntrl (c)

Checks for amscii control character (in the range 0x00 to 0x1f).
isdigit (c)

Checks for amascii decimal digit, 0’ through ‘9’. This is equivalent to¢ in string.digits .
isgraph (c)

Checks forascii any printable character except space.

250 Chapter 6. Generic Operating System Services

islower (c)
Checks for amscli lower-case character.

isprint (c)
Checks for anyascii printable character including space.

ispunct (c)
Checks for any printablescii character which is not a space or an alphanumeric character.

isspace (c)
Checks forascii white-space characters; space, line feed, carriage return, form feed, horizontal tab, vertical
tab.

isupper (c)
Checks for amscil uppercase letter.
isxdigit (c)
Checks for amscil hexadecimal digit. This is equivalent to ‘in string.hexdigits

isctrl (¢)
Checks for amscii control character (ordinal values 0 to 31).

ismeta (c)
Checks for a nomscii character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using the
built-in functionord()

Note that all these functions check ordinal bit values derived from the first character of the string you pass in; they
do not actually know anything about the host machine’s character encoding. For functions that know about the
character encoding (and handle internationalization properly) sexrthe module.

The following two functions take either a single-character string or integer byte value; they return a value of the
same type.

ascii (¢
Return the ASCII value corresponding to the low 7 bitg.of

ctrl (¢)
Return the control character corresponding to the given character (the character bit value is bitwise-anded
with Ox1f).

alt (¢
Return the 8-bit character corresponding to the given ASCII character (the character bit value is bitwise-ored
with 0x80).

The following function takes either a single-character string or integer value; it returns a string.

unctrl (¢)
Return a string representation of thecii characterc. If cis printable, this string is the character itself.
If the character is a control character (0x00-0x1f) the string consists of a caefio{lowed by the corre-
sponding uppercase letter. If the character iaaall delete (0x7f) the string i§?" . If the character has
its meta bit (0x80) set, the meta bit is stripped, the preceding rules applied, ‘goe&pended to the result.

controlnames
A 33-element string array that contains thecii mnemonics for the thirty-twascii control characters
from 0 (NUL) to Ox1f (US), in order, plus the mnemoniBP for the space character.

6.18 curses.panel — A panel stack extension for curses.

Panels are windows with the added feature of depth, so they can be stacked on top of each other, and only the
visible portions of each window will be displayed. Panels can be added, moved up or down in the stack, and
removed.

6.18. curses.panel = — A panel stack extension for curses. 251

6.18.1 Functions

The modulecurses.panel defines the following functions:

bottom _panel ()
Returns the bottom panel in the panel stack.

new_panel (win)
Returns a panel object, associating it with the given windamw

top _panel ()
Returns the top panel in the panel stack.

update _panels ()
Updates the virtual screen after changes in the panel stack. This does moirsedi.doupdate() , SO
you’'ll have to do this yourself.

6.18.2 Panel Objects

Panel objects, as returned byw_panel() above, are windows with a stacking order. There’s always a window
associated with a panel which determines the content, while the panel methods are responsible for the window'’s
depth in the panel stack.

Panel objects have the following methods:

above ()
Returns the panel above the current panel.

below ()
Returns the panel below the current panel.

bottom ()
Push the panel to the bottom of the stack.

hidden ()
Returns true if the panel is hidden (not visible), false otherwise.

hide ()
Hide the panel. This does not delete the object, it just makes the window on screen invisible.

move(y, X

Move the panel to the screen coordinatgs X) .
replace (win)

Change the window associated with the panel to the window
set _userptr (obj)

Set the panel’s user pointer tdj. This is used to associate an arbitrary piece of data with the panel, and
can be any Python object.

show()
Display the panel (which might have been hidden).

top ()
Push panel to the top of the stack.

userptr ()
Returns the user pointer for the panel. This might be any Python object.

window ()
Returns the window object associated with the panel.

6.19 getopt — Parser for command line options

252 Chapter 6. Generic Operating System Services

This module helps scripts to parse the command line argumenysiargv . It supports the same conventions

as the Wix getopt() function (including the special meanings of arguments of the fermand ‘-- ’). Long

options similar to those supported by GNU software may be used as well via an optional third argument. This
module provides a single function and an exception:

getopt (args, optiong, Iongpoptions])
Parses command line options and parameterdigfsis the argument list to be parsed, without the leading
reference to the running program. Typically, this meays.argv[1:] '. optionsis the string of option
letters that the script wants to recognize, with options that require an argument followed by a cglon ('
i.e., the same format thatNUx getopt() uses).

Note: Unlike GNU getopt() , after a non-option argument, all further arguments are considered also
non-options. This is similar to the way non-GNWW systems work.

long_options if specified, must be a list of strings with the names of the long options which should be
supported. The leading’ characters should not be included in the option name. Long options which
require an argument should be followed by an equal sigh.(To accept only long optiongptionsshould

be an empty string. Long options on the command line can be recognized so long as they provide a prefix of
the option name that matches exactly one of the accepted options. For exatoptg,dptionsis ['foo’,

‘frob’] , the option--fo will match as--foo, but--f will not match uniquely, s@etoptError will be

raised.

The return value consists of two elements: the first is a ligtagftion valug pairs; the second is the list

of program arguments left after the option list was stripped (this is a trailing slieegsf. Each option-
and-value pair returned has the option as its first element, prefixed with a hyphen for short options (e.g.,
-x") or two hyphens for long options (e.¢-long-option’), and the option argument as its second
element, or an empty string if the option has no argument. The options occur in the list in the same order in
which they were found, thus allowing multiple occurrences. Long and short options may be mixed.

gnu _getopt (args, optiong, IongLoptions])
This function works likegetopt() , except that GNU style scanning mode is used by default. This means
that option and non-option arguments may be intermixed. gétept() function stops processing op-
tions as soon as a non-option argument is encountered.

If the first character of the option string is '+, or if the environment variable POSIXCORRECT is set,
then option processing stops as soon as a non-option argument is encountered.

exceptionGetoptError
This is raised when an unrecognized option is found in the argument list or when an option requiring an
argument is given none. The argument to the exception is a string indicating the cause of the error. For
long options, an argument given to an option which does not require one will also cause this exception to be
raised. The attributemisg andopt give the error message and related option; if there is no specific option
to which the exception relategpt is an empty string.

Changed in version 1.6: Introduc&etoptError as a synonym foerror

exceptionerror
Alias for GetoptError ; for backward compatibility.

An example using only Nix style options:

>>> import getopt

>>> args = -a -b -cfoo -d bar al a2'.split()
>>> args

[-a’, -b’, '-cfoo’, '-d’, 'bar’, 'al’, 'a2’]

>>> optlist, args = getopt.getopt(args, 'abc:d:’)
>>> optlist

[("a’! ”)! ("b’! ”)! ("C,v ’foo'), (’-d’, ’bar’)]

>>> args

[al’, 'a2’]

Using long option names is equally easy:

6.19. getopt — Parser for command line options 253

>>> g = ’--condition=foo --testing --output-file abc.def -x al a2’
>>> args = s.split()
>>> args
[--condition=foo’, '--testing’, '--output-file’, 'abc.def’, '-x’, 'al’, 'a2’]
>>> optlist, args = getopt.getopt(args, X, [
‘condition=", 'output-file=", 'testing’])
>>> optlist
[(--condition’, 'foo’), (--testing’, ™), (--output-file’, ’abc.def), (-x’,
P
>>> args
[al’, 'a2’]

In a script, typical usage is something like this:

import getopt, sys

def main():
try:
opts, args = getopt.getopt(sys.argv[l:], "ho:v", [*help", "output="])
except getopt.GetoptError:
print help information and exit:
usage()
sys.exit(2)
output = None
verbose = False
for o, a in opts:
if o == "-v"
verbose = True
if o in ("-h", "--help"):
usage()
sys.exit()
if o in ("-0", "--output"):
output = a
..

if _name__ == "_ main__"
main()

6.20 optparse — Powerful parser for command line options.

New in version 2.3.

Theoptparse module is a powerful, flexible, extensible, easy-to-use command-line parsing library for Python.
Usingoptparse |, you can add intelligent, sophisticated handling of command-line options to your scripts with
very little overhead.

Here’s an example of usimgptparse to add some command-line options to a simple script:

254 Chapter 6. Generic Operating System Services

from optparse import OptionParser

parser = OptionParser()
parser.add_option("-f", "--file", dest="filename",
help="write report to FILE", metavar="FILE")
parser.add_option("-q", "--quiet",
action="store_false", dest="verbose", default=True,
help="don’t print status messages to stdout")

(options, args) = parser.parse_args()

With these few lines of code, users of your script can now do the “usual thing” on the command-line:

<yourscript> -f outfile --quiet
<yourscript> -gfoutfile
<yourscript> --file=outfile -q
<yourscript> --quiet --file outfile

@ B BH B

(All of these result iroptions.filename == "outfile" andoptions.verbose == False ,justas
you might expect.)

Even niftier, users can run one of

$ <yourscript> -h
$ <yourscript> --help

andoptparse will print out a brief summary of your script’s options:

usage: <yourscript> [options]

options:
-h, --help show this help message and exit
-fFILE, --file=FILE write report to FILE
-q, --quiet don't print status messages to stdout

That's just a taste of the flexibilitgptparse gives you in parsing your command-line.

6.20.1 Philosophy
The purpose obptparse is to make it very easy to provide the most standard, obvious, straightforward, and

user-friendly user interface foriux command-line programs. Thoptparse philosophy is heavily influenced
by the WNix and GNU toolkits, and this section is meant to explain that philosophy.

Terminology

First, we need to establish some terminology.

argument
a chunk of text that a user enters on the command-line, and that the shell pasesdfo orexecv()
In Python, arguments are elementssyt.argv[1:] . (sys.argv[0] is the name of the program
being executed; in the context of parsing arguments, it's not very importanty &hells also use the term
“word”.
It is occasionally desirable to use an argument list other thamargv[l:] , SO you should read
“argument” as “an element ofys.argv[1:] , or of some other list provided as a substitute for

6.20. optparse — Powerful parser for command line options. 255

sys.argv[1:]

option

an argument used to supply extra information to guide or customize the execution of a program. There are
many different syntaxes for options; the traditionalitd syntax is- followed by a single letter, e.gx or

-F. Also, traditional WNIX syntax allows multiple options to be merged into a single argument,-e -

is equivalent toxF. The GNU project introduceé followed by a series of hyphen-separated words, e.qg.
--file or --dry-run . These are the only two option syntaxes provideaptparse

Some other option syntaxes that the world has seen include:

¢ a hyphen followed by a few letters, e.epf (this is not the same as multiple options merged into a
single argument.)

¢ a hyphen followed by a whole word, e ile (this is technically equivalent to the previous syntax, but
they aren’t usually seen in the same program.)

e a plus sign followed by a single letter, or a few letters, or a word,#f.,gtrgb.

¢ aslash followed by a letter, or a few letters, or a word, #,dfile.

optparse does not support these option syntaxes, and it never will. (If you really want to use one of
those option syntaxes, you'll have to subcl&ystionParser and override all the difficult bits. But
please don'tloptparse does things the traditional Uux/GNU way deliberately; the first three are non-
standard anywhere, and the last one makes sense only if you're exclusively targeting MS-DOS/Windows
and/or VMS.)

option argument

an argument that follows an option, is closely associated with that option, and is consumed from the argu-
ment list when the option is. Often, option arguments may also be included in the same argument as the
option, e.g. :

['-F", "foo"]

may be equivalent to:

['-ffoo"]

(optparse supports this syntax.)

Some options never take an argument. Some options always take an argument. Lots of people want an
“optional option arguments” feature, meaning that some options will take an argument if they see it, and
won't if they don’t. This is somewhat controversial, because it makes parsing ambigueaisinid-b are

both options, anda takes an optional argument, how do we interpedt? optparse does not support
optional option arguments.

positional argument

something leftover in the argument list after options have been parsed, i.e., after options and their arguments
have been parsed and removed from the argument list.

required option

an option that must be supplied on the command-line. The phrase “required option” is an oxymoron; the
presence of “required options” in a program is usually a sign of careless user interface dpgiginse

doesn'’t prevent you from implementing required options, but doesn't give you much help with it either. See
“Extending Examples” (section 6.20.5) for two ways to implement required optionsopiffarse

For example, consider this hypothetical command-line:

prog -v --report /tmp/report.txt foo bar

-v and--report are both options. Assuming theeport option takes one argumeiftmp/report.txt is an
option argumentfoo andbar are positional arguments.

256

Chapter 6. Generic Operating System Services

What are options for?

Options are used to provide extra information to tune or customize the execution of a program. In case it wasn’t
clear, options should beptional A program should be able to run just fine with no options whatsoever. (Pick

a random program from the NUx or GNU toolsets. Can it run without any options at all and still make sense?
The only exceptions | can think of afid, tar, anddd—all of which are mutant oddballs that have been rightly
criticized for their non-standard syntax and confusing interfaces.)

Lots of people want their programs to have “required options”. Think about it. If it's required, themoit's
optional If there is a piece of information that your program absolutely requires in order to run successfully,
that's what positional arguments are for. (However, if you insist on adding “required options” to your programs,
look in “Extending Examples” (section 6.20.5) for two ways of implementing them apthbarse .)

Consider the humblep utility, for copying files. It doesn’t make much sense to try to copy files without supplying
a destination and at least one source. Heopdails if you run it with no arguments. However, it has a flexible,
useful syntax that does not rely on options at all:

$ cp SOURCE DEST
$ cp SOURCE ... DEST-DIR

You can get pretty far with just that. Mosp implementations provide a bunch of options to tweak exactly how the
files are copied: you can preserve mode and modification time, avoid following symlinks, ask before clobbering
existing files, etc. But none of this distracts from the core missiarppivhich is to copy one file to another, or N

files to another directory.

What are positional arguments for?

In case it wasn't clear from the above example: positional arguments are for those pieces of information that your
program absolutely, positively requires to run.

A good user interface should have as few absolute requirements as possible. If your program requires 17 distinct
pieces of information in order to run successfully, it doesn’'t much mhtieryou get that information from the
user—most people will give up and walk away before they successfully run the program. This applies whether
the user interface is a command-line, a configuration file, a GUI, or whatever: if you make that many demands on
your users, most of them will just give up.

In short, try to minimize the amount of information that users are absolutely required to supply—use sensible
defaults whenever possible. Of course, you also want to make your programs reasonably flexible. That’s what
options are for. Again, it doesn't matter if they are entries in a config file, checkboxes in the “Preferences” dialog
of a GUI, or command-line options—the more options you implement, the more flexible your program is, and the
more complicated its implementation becomes. It's quite easy to overwhelm users (and yourself!) with too much
flexibility, so be careful there.

6.20.2 Basic Usage

While optparse is quite flexible and powerful, you don't have to jump through hoops or read reams of docu-
mentation to get it working in basic cases. This document aims to demonstrate some simple usage patterns that
will get you started usingptparse in your scripts.

To parse a command line withptparse , you must create a@ptionParser instance and populate it. Obvi-
ously, you'll have to import th©ptionParser classes in any script that usestparse

from optparse import OptionParser

Early on in the main program, create a parser:

6.20. optparse — Powerful parser for command line options. 257

parser = OptionParser()

Then you can start populating the parser with options. Each option is really a set of synonymous option strings;
most commonly, you'll have one short option string and one long option string —feagd--file:

parser.add_option("-f", "--file", ...)

The interesting stuff, of course, is what comes after the option strings. For now, we’ll only cover four of the things
you can put thereaction, type dest(destination), antielp.

The store action

The action telloptparse what to do when it sees one of the option strings for this option on the command-line.
For example, the actiostoremeans: take the next argument (or the remainder of the current argument), ensure
that it is of the correct type, and store it to your chosen destination.

For example, let’s fill in the “...” of that last option:

parser.add_option("-f*, "--file",
action="store", type="string", dest="filename")

Now let's make up a fake command-line and agkparse to parse it:

args = [-f, "foo.txt"]
(options, args) = parser.parse_args(args)

(Note that if you don't pass an argument listgarse _args() , it automatically usesys.argv[1:])

Whenoptparse sees thef, it consumes the next argumentes.txt —and stores it in théilename at-
tribute of a special object. That object is the first return value fpamse _args() , so:

print options.filename

will print foo.txt

Other option types supported lpptparse areint andfloat . Here's an option that expects an integer
argument:

parser.add_option("-n", type="int", dest="num")

This example doesn’t provide a long option, which is perfectly acceptable. It also doesn’t specify the action—it
defaults to “store”.

Let’s parse another fake command-line. This time, we’ll jam the option argument right up against the option, since
-n42 (one argument) is equivalent tn 42 (two arguments).

(options, args) = parser.parse_args(["-n42"])
print options.num

This prints42.
Trying out the “float” type is left as an exercise for the reader.

If you don't specify a typegptparse assumes “string”. Combined with the fact that the default action is “store”,

258 Chapter 6. Generic Operating System Services

that means our first example can be a lot shorter:

parser.add_option("-f", "--file", dest="filename")

If you don’t supply a destinatiomptparse figures out a sensible default from the option strings: if the first long
option string is-foo-bar, then the default destinationfiso _bar . If there are no long option stringgptparse
looks at the first short option: the default destination-fas f .

Adding types is fairly easy; please refer to section 6.20.5, “Adding new types.”

Other store_* actions

Flag options—set a variable to true or false when a particular option is seen—are quite cooptarse
supports them with two separate actions, “stdree” and “store false”. For example, you might havevarbose
flag that is turned on withv and off with-q:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose")

Here we have two different options with the same destination, which is perfectly OK. (It just means you have to
be a bit careful when setting default values—see below.)

Whenoptparse seesv on the command line, it setsptions.verbose to True ; when it seesq, it sets
options.verbose to False .

Setting default values

All of the above examples involve setting some variable (the “destination”) when certain command-line options
are seen. What happens if those options are never seen? Since we didn’'t supply any defaults, they are all set to
None. Sometimes, this is just fine (which is why it's the default), but sometimes, you want more control. To
address that needptparse lets you supply a default value for each destination, which is assigned before the
command-line is parsed.

First, consider the verbose/quiet example. If we waptparse to setverbose to True unless-q is seen,
then we can do this:

parser.add_option("-v", action="store_true", dest="verbose", default=True)
parser.add_option("-g", action="store_false", dest="verbose")

Oddly enough, this is exactly equivalent:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Those are equivalent because you're supplying a default value for the optéstination and these two options
happen to have the same destination (thkose variable).

Consider this:

parser.add_option("-v", action="store_true", dest="verbose", default=False)
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Again, the default value forerbose will be True : the last default value supplied for any particular destination

6.20. optparse — Powerful parser for command line options. 259

is the one that counts.

Generating help

The last feature that you will use in every scripbjstparse s ability to generate help messages. All you have to

do is supply @elpargument when you add an option. Let’s create a new parser and populate it with user-friendly

(documented) options:

usage = "usage: %prog [options] argl arg2"
parser = OptionParser(usage=usage)
parser.add_option("-v", "--verbose",

action="store_true", dest="verbose", default=True,

help="make lots of noise [default]")
parser.add_option("-q", "--quiet",

action="store_false", dest="verbose",

help="be vewwy quiet (I'm hunting wabbits)")
parser.add_option("-f*, "--file", dest="filename",

metavar="FILE", help="write output to FILE"),
parser.add_option("-m", "--mode",

default="intermediate",

help="interaction mode: one of 'novice’, "

"intermediate’ [default], 'expert™)

If optparse encounters eitheh or --help on the command-line, or if you just cglarser.print _help()
it prints the following to stdout:

usage: <yourscript> [options] argl arg2

options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I'm hunting wabbits)

-fFILE, --file=FILE write output to FILE
-mMODE, --mode=MODE interaction mode: one of 'novice’, 'intermediate’
[default], 'expert’

There’s a lot going on here to hedptparse generate the best possible help message:
e the script defines its own usage message:

usage = "usage: %prog [options] argl arg2"

optparse expands %prog’ in the usage string to the name of the current script, i.e.

os.path.basename(sys.argv|[0]) . The expanded string is then printed before the detailed option
help.

If you don’t supply a usage stringptparse uses a bland but sensible defaultsage: %prog
[options]" , which is fine if your script doesn’t take any positional arguments.

e every option defines a help string, and doesn’t worry about line-wrappomiparse takes care of wrap-
ping lines and making the help output look good.

e options that take a value indicate this fact in their automatically-generated help message, e.g. for the “mode”

option:

-mMODE, --mode=MODE

260 Chapter 6. Generic Operating System Services

Here, “MODE" is called the meta-variable: it stands for the argument that the user is expected to supply to
-m/--mode By default,optparse converts the destination variable name to uppercase and uses that for
the meta-variable. Sometimes, that's not what you want—for exampldiléhameoption explicitly sets
metavar="FILE" , resulting in this automatically-generated option description:

-fFILE, --file=FILE

This is important for more than just saving space, though: the manually written help text uses the meta-
variable “FILE”, to clue the user in that there’s a connection between the formal syntax “-fFILE” and the
informal semantic description “write output to FILE”. This is a simple but effective way to make your help
text a lot clearer and more useful for end users.

When dealing with many options, it is convenient to group these options for better help output. An
OptionParser can contain several option groups, each of which can contain several options.

Continuing with the parser defined above, addinggtionGroup to a parser is easy:

group = OptionGroup(parser, "Dangerous Options",
"Caution: use these options at your own risk.
"It is believed that some of them bite.")
group.add_option("-g", action="store_true", help="Group option.")
parser.add_option_group(group)

This would result in the following help output:

usage: [options] argl arg2

options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I'm hunting wabbits)

-fFILE, --file=FILE write output to FILE
-mMODE, --mode=MODE interaction mode: one of 'novice’, 'intermediate
[default], ’expert’

)

Dangerous Options:
Caution: use of these options is at your own risk. It is believed that
some of them bite.
-g Group option.

Print a version number

Similar to the brief usage stringptparse can also print a version string for your program. You have to supply
the string, as theersionargument tdptionParser

parser = OptionParser(usage="%prog [-f] [-q]", version="%prog 1.0")

versioncan contain anything you liképprog is expanded irversionjust as withusage When you supply it,
optparse automatically adds aversion option to your parser. If it encounters this option on the command
line, it expands youversionstring (by replacingoprog), prints it to stdout, and exits.

For example, if your script is called /usr/bin/foo, a user might do:

6.20. optparse — Powerful parser for command line options. 261

$ Jusr/bin/foo --version
foo 1.0

Error-handling

The one thing you need to know for basic usage is bpiparse behaves when it encounters an error on the
command-line—e.g:n 4x where-n is an integer-valued option. In this cas@tparse prints your usage mes-
sage to stderr, followed by a useful and human-readable error message. Then it terminategs(ealts))
with a non-zero exit status.

If you don't like this, subclas©ptionParser and override therror() method. See section 6.20.5, “Ex-
tendingoptparse "

Putting it all together

Here's whatoptparse -based scripts typically look like:

from optparse import OptionParser
[-]
def main():
usage = "usage: \%prog [-f] [-v] [-q] firstarg secondarg"
parser = OptionParser(usage)
parser.add_option("-f*, "--file", type="string", dest="filename",
help="read data from FILENAME")
parser.add_option("-v", "--verbose",
action="store_true", dest="verbose")
parser.add_option("-q", "--quiet",
action="store_false", dest="verbose")

(options, args) = parser.parse_args()
if len(args) = 1:
parser.error(“incorrect number of arguments")
if options.verbose:
print "reading \%s..." \% options.filename
[... go to work ..]]

if _name__ == "_ main__"
main()

6.20.3 Advanced Usage
Creating and populating the parser

There are several ways to populate the parser with options. One way is to pass aQistiamfs to the
OptionParser constructor:

262 Chapter 6. Generic Operating System Services

from optparse import OptionParser, make_option

[-]
parser = OptionParser(option_list=[
make_option("-f*, "--filename",
action="store", type="string", dest="filename"),
make_option("-gq", "--quiet",
action="store_false", dest="verbose")])

(make_option() s a factory function for generatingption objects.)

For long option lists, it may be more convenient/readable to create the list separately:

option_list = [make_option("-f*, "--filename",
action="store", type="string", dest="filename"),
[... more options ...]
make_option("-gq", "--quiet",
action="store_false", dest="verbose")]
parser = OptionParser(option_list=option_list)

Or, you can use thadd _option() method ofOptionParser to add options one-at-a-time:

parser = OptionParser()
parser.add_option("-f", "--filename",

action="store", type="string", dest="filename")
parser.add_option("-q", "--quiet",

action="store_false", dest="verbose")

This method makes it easier to track down exceptions raised b@fiten constructor, which are common
because of the complicated interdependencies among the various keyword arguments. (If you get it wrong,
optparse raisesOptionError)

add _option() can be called in one of two ways:

e passitarOption instance (as returned logake_option())

e pass it any combination of positional and keyword arguments that are acceptaialegooption() (i.e.,
to theOption constructor), and it will create th@ption instance for you (shown above).

Defining options

EachOption instance represents a set of synonymous command-line options, i.e. options that have the same
meaning and effect, but different spellings. You can specify any number of short or long option strings, but you
must specify at least one option string.

To define an option with only a short option string:

make_option("-f", ...)

And to define an option with only a long option string:

make_option("--foo", ...)

The “...” represents a set of keyword arguments that define attributes Gfpithen object. The rules governing
which keyword args you must supply for a giv®ption are fairly complicated, but you always have to supply

6.20. optparse — Powerful parser for command line options. 263

some If you get it wrong,optparse raises arOptionError exception explaining your mistake.

The most important attribute of an option is its action, i.e. what to do when we encounter this option on the
command-line. The possible actions are:

Action Meaning

store store this option’s argument (default)

store _const | store aconstant value

store _true store a true value

store _false store a false value

append append this option’s argument to a list

count increment a counter by one

callback call a specified function

help print a usage message including all options and the documentation for them

(If you don’t supply an action, the default is “store”. For this action, you may also suppdanddestkeywords;
see below.)

As you can see, most actions involve storing or updating a value somewlogtparse always creates

a particular object (an instance of tMalues class) specifically for this purpose. Option arguments (and
various other values) are stored as attributes of this object, according wethédestination) argument to
make_option() /add _option()

For example, when you call:

parser.parse_args()

one of the first thingeptparse does is create @alues object:

values = Values()

If one of the options in this parser is defined with:

make_option("-f', "--file", action="store", type="string", dest="filename")

and the command-line being parsed includes any of the following:

-ffoo

-f foo
--file=foo
--file foo

thenoptparse , on seeing thef or --file option, will do the equivalent of this:

values.filename = "foo"

Clearly, thetypeanddestarguments are almost as importaniaation actionis the only attribute that is mean-
ingful for all options, though, so it is the most important.

Option actions

The various option actions all have slightly different requirements and effects. Except for the “help” action, you
must supply at least one other keyword argument when creatin@ptien ; the exact requirements for each
action are listed here.

264 Chapter 6. Generic Operating System Services

store
[relevant:type dest nargs choice$

The option must be followed by an argument, which is converted to a value accordymptond stored in
dest If nargs > 1 , multiple arguments will be consumed from the command line; all will be converted
according taypeand stored talestas a tuple. See section 6.20.3, “Option types,” below.

If choiceg(a sequence of strings) is supplied, the type defaults to “choice”.
If typeis not supplied, it defaults to “string”.

If destis not suppliedpptparse derives a destination from the first long option strings (e-§pp-bar
becomedoo _bar). If there are no long option stringeptparse derives a destination from the first
short option string (e.g-f becomes).

Example:

make_option("-f")
make_option("-p", type="float", nargs=3, dest="point")

Given the following command line:

-f foo.txt -p 1 -3.5 4 -fbar.txt

optparse will set:

values.f = "bar.txt"
values.point = (1.0, -3.5, 4.0)

(Actually, values.f will be set twice, but only the second time is visible in the end.)

store_const
[required:const desi

The constvalue supplied to th®ption constructor is stored idest

Example:
make_option("-q", "--quiet",
action="store_const", const=0, dest="verbose"),
make_option("-v", "--verbose",

action="store_const", const=1, dest="verbose"),
make_option("--noisy",
action="store_const", const=2, dest="verbose"),

If --noisyis seenpptparse will set:

values.verbose = 2

store_true
[required:dest

A special case of “storeconst” that storeSrue to dest
store_false

[required:dest

Like “store_true”, but store$-alse

Example:

6.20. optparse — Powerful parser for command line options. 265

make_option(None, "--clobber", action="store_true", dest="clobber")
make_option(None, "--no-clobber”, action="store_false", dest="clobber")

append
[relevant:type dest nargs choice$

The option must be followed by an argument, which is appended to the tigsinIf no default value for
destis supplied (i.e. the default ione), an empty list is automatically created wheptparse first
encounters this option on the command-line.ndfrgs > 1 , multiple arguments are consumed, and a
tuple of lengthnargsis appended tdest

The defaults fotypeanddestare the same as for the “store” action.
Example:

make_option("-t", "--tracks", action="append", type="int")

If -t3 is seen on the command-lingptparse does the equivalent of:

values.tracks = []
values.tracks.append(int("3"))

If, a little later on,--tracks=4 is seen, it does:

values.tracks.append(int("4"))

See “Error handling” (section 6.20.2) for information on hoptparse deals with something like-
tracks=x.

count
[required:dest

Increment the integer stored @st destis set to zero before being incremented the first time (unless you
supply a default value).
Example:

make_option("-v", action="count", dest="verbosity")

The first time-v is seen on the command lingptparse does the equivalent of:

values.verbosity = 0
values.verbosity += 1

Every subsequent occurrence-ofresults in:

values.verbosity += 1

callback
[required:callback relevant:type nargs callback args callback _kwargg

Call the function specified bgallback The signature of this function should be:

266 Chapter 6. Generic Operating System Services

func(option : Option,
opt : string,
value : any,
parser : OptionParser,
*args, **kwargs)

Callback options are covered in detail in section 6.20.4, “Callback Options.”

help
[required: none]

Prints a complete help message for all the options in the current option parser. The help message is con-
structed from theisagestring passed t@ptionParser s constructor and thkelpstring passed to every
option.

If no help string is supplied for an option, it will still be listed in the help message. To omit an option
entirely, use the special valeptparse. SUPPRESS _HELP.

Example:
from optparse import Option, OptionParser, SUPPRESS_HELP

usage = "usage: %prog [options]"
parser = OptionParser(usage, option_list=[
make_option("-h", "--help", action="help"),
make_option("-v", action="store_true", dest="verbose",
help="Be moderately verbose")
make_option("--file", dest="filename",
help="Input file to read data from"),
make_option("--secret”, help=SUPPRESS_HELP)

If optparse sees eitheth or --help on the command line, it will print something like the following help
message to stdout:

usage: <yourscript> [options]

options:
-h, --help Show this help message and exit
-V Be moderately verbose

--file=FILENAME Input file to read data from

After printing the help messageptparse terminates your process wilys.exit(0)

version
[required: none]

Prints the version number supplied to tOptionParser to stdout and exits. The version number is
actually formatted and printed by tipeint _version() method ofOptionParser . Generally only
relevant if theversionargument is supplied to tH@ptionParser constructor.

Option types

optparse supports six option types out of the bastring, int, long, choice floatandcomplex (Of these, string,
int, float, and choice are the most commonly used —long and complex are there mainly for completeness.) It's
easy to add new option types by subclassing@pton class; see section 6.20.5, “Extendinygtparse ."

Arguments to string options are not checked or converted in any way: the text on the command line is stored in
the destination (or passed to the callback) as-is.

6.20. optparse — Powerful parser for command line options. 267

Integer arguments are passed itt() to convert them to Python integers. iifit() fails, so will
optparse , although with a more useful error message. Internafiyparse raisesOptionValueError in
optparse.check _builtin() ; at a higher level (irOptionParser), optparse catches this exception
and terminates your program with a useful error message.

Likewise, float arguments are passedfltat() for conversion, long arguments tong() , and complex
arguments t@omplex() . Apart from that, they are handled identically to integer arguments.

Choice options are a subtype of string options. A master list or tuple of choices (strings) must be passed to the

option constructorrfake_option() or OptionParser.add _option()) as thechoiceskeyword argu-
ment. Choice option arguments are compared against this masterdistparse.check _choice() , and
OptionValueError is raised if an unknown string is given.

Querying and manipulating your option parser
Sometimes, it's useful to poke around your option parser and see what's tOpteonParser provides a
couple of methods to help you out:

has _option (opt_str)
Given an option string such ag or --verbose returns true if th@ptionParser has an option with that
option string.

get _option (opt_str)
Returns théption instance that implements the option string you suppliedare if no options imple-
ment it.

remove _option (opt_str)
If the OptionParser has an option corresponding tpt_str, that option is removed. If that option
provided any other option strings, all of those option strings become invalid.

If opt_str does not occur in any option belonging to thiptionParser , raisesvalueError

Conflicts between options

If you're not careful, it's easy to define conflicting options:

parser.add_option("-n", "--dry-run”, ...)

parser.add_option("-n", "--noisy", ...)

(This is even easier to do if you've defined your o@ptionParser subclass with some standard options.)

On the assumption that this is usually a mistadgtparse raises an exceptiorOptionConflictError)
by default when this happens. Since this is an easily-fixed programming error, you shouldn't try to catch this
exception—fix your mistake and get on with life.

Sometimes, you want newer options to deliberately replace the option strings used by older options. You can
achieve this by calling:

parser.set_conflict_handler("resolve")

which instructsoptparse to resolve option conflicts intelligently.

Here’s how it works: every time you add an optimptparse checks for conflicts with previously-added op-
tions. If it finds any, it invokes the conflict-handling mechanism you specify either t@ft@nParser
constructor:

parser = OptionParser(..., conflict_handler="resolve")

268 Chapter 6. Generic Operating System Services

or viatheset _conflict _handler() method.
The default conflict-handling mechanismeisor

Here’s an example: first, define @ptionParser set to resolve conflicts intelligently:

parser = OptionParser(conflict_handler="resolve")

Now add all of our options:

parser.add_option("-n", "--dry-run®, ..., help="original dry-run option")

parser.add_option("-n", "--noisy", ..., help="be noisy")

At this point, optparse detects that a previously-added option is already usingrhaption string. Since
conflict ~ _handler == "resolve" , it resolves the situation by removing from the earlier option’s list

of option strings. Nows-dry-run is the only way for the user to activate that option. If the user asks for help, the
help message will reflect that, e.g.:

options:
--dry-run original dry-run option

-n, --noisy be noisy

Note that it's possible to whittle away the option strings for a previously-added option until there are none left,
and the user has no way of invoking that option from the command-line. In thatastparse removes that
option completely, so it doesn’t show up in help text or anywhere else. E.g. if we carry on with our existing
OptionParser

parser.add_option("--dry-run”, ..., help="new dry-run option")

At this point, the firstn/--dry-run option is no longer accessible, eptparse removes it. If the user asks for
help, they’ll get something like this:

options:

-n, --noisy be noisy
--dry-run new dry-run option

6.20.4 Callback Options

If optparse ’s built-in actions and types just don't fit the bill for you, but it's not worth extendopgparse

to define your own actions or types, you'll probably need to define a callback option. Defining callback options is
quite easy; the tricky part is writing a good callback (the function that is called whigarse encounters the
option on the command line).

Defining a callback option

As always, you can define a callback option either by directly instantiatin@gi®n class, or by using the
add _option() method of yourOptionParser object. The only option attribute you must specifycal-
back the function to call:

6.20. optparse — Powerful parser for command line options. 269

parser.add_option("-c", callback=my_callback)

Note that you supply a function object here—so you must have already defined a fumgtioallback()

when you define the callback option. In this simple caggparse knows nothing about the arguments tioe

option expects to take. Usually, this means that the option doesn’t take any arguments — the mere presence of
on the command-line is all it needs to know. In some circumstances, though, you might want your callback to
consume an arbitrary number of command-line arguments. This is where writing callbacks gets tricky; it's covered
later in this document.

There are several other option attributes that you can supply when you define an option attribute:

type
has its usual meaning: as with the “store” or “append” actions, it instiyafigarse to consume one
argument that must be convertibletygne Rather than storing the value(s) anywhere, thoogitparse
converts it taypeand passes it to your callback function.

nargs
also has its usual meaning: if it is supplied andrgs > 1 ’, optparse will consumenargsarguments,
each of which must be convertible tiype It then passes a tuple of converted values to your callback.

callback_args
a tuple of extra positional arguments to pass to the callback.

callback_kwargs
a dictionary of extra keyword arguments to pass to the callback.

How callbacks are called
All callbacks are called as follows:

func(option, opt, value, parser, *args, **kwargs)

where

option
is theOption instance that’s calling the callback.

opt
is the option string seen on the command-line that's triggering the callback. (If an abbreviated long option
was usedoptwill be the full, canonical option string—for example, if the user putso on the command-
line as an abbreviation forfoobar, thenopt will be --foobar.)
value
is the argument to this option seen on the command-tipégparse will only expect an argument ifype
is set; the type ofaluewill be the type implied by the option’s type (see 6.20.3, “Option types”typie
for this option isNone (no argument expected), thegaluewill be None. If ‘nargs > 1 ’, valuewill be
a tuple of values of the appropriate type.
parser

is theOptionParser instance driving the whole thing, mainly useful because you can access some other
interesting data through it, as instance attributes:

parser.rargs
the current remaining argument list, i.e. wipt (andvalue if any) removed, and only the arguments
following them still there. Feel free to modifyarser.rargs , €.¢g. by consuming more arguments.

270 Chapter 6. Generic Operating System Services

parser.largs
the current set of leftover arguments, i.e. arguments that have been processed but have not been
consumed as options (or arguments to options). Feel free to mualifer.largs e.g. by adding
more arguments to it.

parser.values
the object where option values are by default stored. This is useful because it lets callbacks use the
same mechanism as the resoptparse for storing option values; you don’t need to mess around
with globals or closures. You can also access the value(s) of any options already encountered on the
command-line.

args
is a tuple of arbitrary positional arguments supplied viadhkback _args option attribute.

kwargs
is a dictionary of arbitrary keyword arguments suppliedoadback _kwargs

Sinceargs andkwargsare optional (they are only passed if you supg&fiback args and/orcallback_kwargs
when you define your callback option), the minimal callback function is:

def my_callback (option, opt, value, parser):
pass

Error handling

The callback function should raig@ptionValueError if there are any problems with the option or its argu-
ment(s). optparse catches this and terminates the program, printing the error message you supply to stderr.
Your message should be clear, concise, accurate, and mention the option at fault. Otherwise, the user will have a
hard time figuring out what he did wrong.

Examples

Here's an example of a callback option that takes no arguments, and simply records that the option was seen:

def record_foo_seen (option, opt, value, parser):
parser.saw_foo = 1

parser.add_option("--foo", action="callback", callback=record_foo_seen)

Of course, you could do that with the “stafteue” action. Here's a slightly more interesting example: record the
fact that-a is seen, but blow up if it comes aftey in the command-line.

def check_order (option, opt, value, parser):
if parser.values.b:
raise OptionValueError("can’t use -a after -b")
parser.values.a = 1

parser.add_option("-a", action="callback", callback=check_order)

parser.add_option("-b", action="store_true", dest="b")

If you want to reuse this callback for several similar options (set a flag, but blow-bphids already been seen),
it needs a bit of work: the error message and the flag that it sets must be generalized.

6.20. optparse — Powerful parser for command line options. 271

def check_order (option, opt, value, parser):
if parser.values.b:
raise OptionValueError("can't use %s after -b" % opt)
setattr(parser.values, option.dest, 1)

parser.add_option("-a", action="callback", callback=check_order, dest="a’)
parser.add_option("-b", action="store_true", dest="b")
parser.add_option("-c", action="callback", callback=check_order, dest='c’)

Of course, you could put any condition in there—you're not limited to checking the values of already-defined
options. For example, if you have options that should not be called when the moon is full, all you have to do is
this:

def check_moon (option, opt, value, parser):
if is_full_moon():
raise OptionValueError("%s option invalid when moon full" % opt)
setattr(parser.values, option.dest, 1)
parser.add_option("--foo",
action="callback”, callback=check_moon, dest="foo")

(The definition ofis _full _moon() is left as an exercise for the reader.)
Fixed arguments

Things get slightly more interesting when you define callback options that take a fixed number of arguments.
Specifying that a callback option takes arguments is similar to defining a “store” or “append” option: if you define
type then the option takes one argument that must be convertible to that type; if you furthemdefigehen the

option takes that many arguments.

Here’s an example that just emulates the standard “store” action:

def store_value (option, opt, value, parser):
setattr(parser.values, option.dest, value)

parser.add_option("--foo",
action="callback", callback=store_value,
type="int", nargs=3, dest="foo")

Note thatoptparse takes care of consuming 3 arguments and converting them to integers for you; all you have
to do is store them. (Or whatever: obviously you don't need a callback for this example. Use your imagination!)

Variable arguments

Things get hairy when you want an option to take a variable number of arguments. For this case, you have to
write a callbackpptparse doesn'’t provide any built-in capabilities for it. You have to deal with the full-blown
syntax for conventional Mix command-line parsing. (Previousbptparse took care of this for you, but | got

it wrong. It was fixed at the cost of making this kind of callback more complex.) In particular, callbacks have to
worry about bare- and- arguments; the convention is:

e bare--, if not the argument to some option, causes command-line processing to halt anitsttlis lost.

e bare- similarly causes command-line processing to halt, but itelf is kept.
e either-- or - can be option arguments.
If you want an option that takes a variable number of arguments, there are several subtle, tricky issues to worry

about. The exact implementation you choose will be based on which trade-offs you're willing to make for your
application (which is whyptparse doesn’t support this sort of thing directly).

272 Chapter 6. Generic Operating System Services

Nevertheless, here’s a stab at a callback for an option with variable arguments:

def varargs (option, opt, value, parser):
assert value is None

done = 0

value =]

rargs = parser.rargs
while rargs:

arg = rargs[0]

Stop if we hit an arg like "--foo", "-a", "-fx", "--file=f",
etc. Note that this also stops on "-3" or "-3.0", so if
your option takes numeric values, you will need to handle

this.

if ((arg[:2] == "--" and len(arg) > 2) or
(arg[:1] == "-" and len(arg) > 1 and arg[1] = "-")):
break

else:

value.append(arg)
del rargs[0]

setattr(parser.values, option.dest, value)

parser.add_option("-c", "--callback",
action="callback", callback=varargs)

The main weakness with this particular implementation is that negative numbers in the arguments fellowing
will be interpreted as further options, rather than as arguments Eixing this is left as an exercise for the reader.

6.20.5 Extending optparse
Since the two major controlling factors in howptparse interprets command-line options are the action and
type of each option, the most likely direction of extension is to add new actions and new types.

Also, the examples section includes several demonstrations of exteoplipgrse in different ways: e.g. a
case-insensitive option parser, or two kinds of option parsers that implement “required options”.

Adding new types

To add new types, you need to define your own subclaspipiarse ’'s Option class. This class has a couple
of attributes that defineptparse s types:TYPESandTYPE_CHECKER

TYPESis a tuple of type names; in your subclass, simply define a new TgRESthat builds on the standard
one.

TYPE_CHECKERS a dictionary mapping type names to type-checking functions. A type-checking function has
the following signature:

def check_foo (option : Option, opt : string, value : string)
-> foo

You can name it whatever you like, and make it return any type you like. The value returned by a type-checking
function will wind up in theOptionValues instance returned b@ptionParser.parse _args() ,orbe
passed to callbacks as thalueparameter.

Your type-checking function should rais®ptionValueError if it encounters any problems.
OptionValueError takes a single string argument, which is passed as-@ptionParser s error()

6.20. optparse — Powerful parser for command line options. 273

method, which in turn prepends the program name and the string “error:” and prints everything to stderr before
terminating the process.

Here’s a silly example that demonstrates adding a “complex” option type to parse Python-style complex numbers
on the command line. (This is even sillier than it used to be, becapparse 1.3 adds built-in support for
complex numbers [purely for completeness], but never mind.)

First, the necessary imports:

from copy import copy
from optparse import Option, OptionValueError

You need to define your type-checker first, since it’s referred to later (if YRE_CHECKERIass attribute of
your Option subclass):

def check_complex (option, opt, value):
try:
return complex(value)
except ValueError:
raise OptionValueError(
"option %s: invalid complex value: %r" % (opt, value))

Finally, theOption subclass:

class MyOption (Option):
TYPES = Option.TYPES + ("complex",)
TYPE_CHECKER = copy(Option.TYPE_CHECKER)
TYPE_CHECKER["complex"] = check_complex

(If we didn’t make acopy() of Option.TYPE _CHECKERwe would end up modifying theYPE_CHECKER
attribute ofoptparse ’s Option class. This being Python, nothing stops you from doing that except good manners
and common sense.)

That’s it! Now you can write a script that uses the new option type just like any ofttparse -based script,
except you have to instruct yo@ptionParser to useMyOption instead ofOption :

parser = OptionParser(option_class=MyOption)
parser.add_option("-c", action="store", type="complex", dest="c")

Alternately, you can build your own option list and pass iDptionParser ; if you don’t useadd _option()
in the above way, you don't need to t@ptionParser which option class to use:

option_list = [MyOption("-c", action="store", type="complex", dest="c")]
parser = OptionParser(option_list=option_list)

Adding new actions

Adding new actions is a bit trickier, because you have to understandgtpsirse has a couple of classifications
for actions:

“store” actions
actions that result ioptparse storing a value to an attribute of the OptionValues instance; these options
require adestattribute to be supplied to the Option constructor

274 Chapter 6. Generic Operating System Services

“typed” actions
actions that take a value from the command line and expect it to be of a certain type; or rather, a string that
can be converted to a certain type. These options requygeeattribute to the Option constructor.

Some default “store” actions astore store_const append andcount The default “typed” actions argtore
append andcallback

When you add an action, you need to decide if it's a “store” action, a “typed”, neither, or both. Three class
attributes ofOption (or yourOption subclass) control this:

ACTIONS
All actions must be listed as strings in ACTIONS.

STOREACTIONS
“store” actions are additionally listed here.

TYPED.ACTIONS
“typed” actions are additionally listed here.

In order to actually implement your new action, you must overfgéion ’stake _action() method and add
a case that recognizes your action.

For example, let's add an “extend” action. This is similar to the standard “append” action, but instead of taking
a single value from the command-line and appending it to an existing list, “extend” will take multiple values in a
single comma-delimited string, and extend an existing list with them. That-isd@fmesis an “extend” option of

type string, the command line:

--names=foo,bar --names blah --names ding,dong

would result in a list:

[*foo", "bar", "blah", "ding", "dong"]

Again we define a subclass Ofption :

class MyOption (Option):

ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend"))
def take_action (self, action, dest, opt, value, values, parser):
if action == "extend":
Ivalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)
else:
Option.take_action(
self, action, dest, opt, value, values, parser)

Features of note:
¢ “extend” both expects a value on the command-line and stores that value somewhere, so it goes in both
STOREACTIONSandTYPED ACTIONS

e MyOption.take _action() implements just this one new action, and passes control back to
Option.take _action() for the standardptparse actions.

e valuesis an instance of th&alues class, which provides the very usekrsure _value() method.
ensure _value() is essentiallygetattr() with a safety valve; it is called as:

6.20. optparse — Powerful parser for command line options. 275

values.ensure_value(attr, value)

If the attr attribute ofvaluesdoesn’t exist or ifNone, thenensure _value() first sets it tovalug and then
returnsvalue This is very handy for actions like “extend”, “append”, and “count”, all of which accumulate data
in a variable and expect that variable to be of a certain type (a list for the first two, an integer for the latter). Using
ensure _value() means that scripts using your action don’t have to worry about setting a default value for the
option destinations in question; they can just leave the defatlbas andensure _value() will take care of
getting it right when it's needed.

Other reasons to extend optparse

Adding new types and new actions are the big, obvious reasons why you might want toaptigmce . | can
think of at least two other areas to play with.

First, the simple oneOptionParser tries to be helpful by callingys.exit() when appropriate, i.e. when

there’s an error on the command-line or when the user requests help. In the former case, the traditional course of
letting the script crash with a traceback is unacceptable; it will make users think there’s a bug in your script when
they make a command-line error. In the latter case, there’s generally not much point in carrying on after printing
a help message.

If this behaviour bothers you, it shouldn’t be too hard to “fix” it. You'll have to

1. subclass OptionParser and override the error() method

2. subclass Option and override the ta&etion() method—you’ll need to provide your own handling of the
“help” action that doesn't call sys.exit()

The second, much more complex, possibility is to override the command-line syntax implemeaptpdrge

In this case, you'd leave the whole machinery of option actions and types alone, but rewrite the code that pro-
cessesys.argv . You'll need to subclas®ptionParser in any case; depending on how radical a rewrite

you want, you'll probably need to override one or alldrse _args() , _process _long _opt() , and
_process _short _opts()

Both of these are left as an exercise for the reader. | have not tried to implement either myself, since I'm quite
happy withoptparse ’s default behaviour (naturally).

Happy hacking, and don't forget: Use the Source, Luke.

Examples

Here are a few examples of extending tpgparse module.

First, let's change the option-parsing to be case-insensitive:
from optparse import Option, OptionParser, _match_abbrev

This case-insensitive option parser relies on having a
case-insensitive dictionary type available. Here's one
for Python 2.2. Note that a *real* case-insensitive
dictionary type would also have to implement _ new_ (),
update(), and setdefault() -- but that's not the point

of this exercise.

HOHHHHH

class caseless_dict (dict):
def _ setitem__ (self, key, value):
dict.__setitem__(self, key.lower(), value)

def _ getitem__ (self, key):

276 Chapter 6. Generic Operating System Services

return dict.__getitem__ (self, key.lower())

def get (self, key, default=None):
return dict.get(self, key.lower())

def has_key (self, key):
return dict.has_key(self, key.lower())

class CaselessOptionParser (OptionParser):

def _create_option_list (self):
self.option_list =]
self._short_opt = caseless_dict()
self._long_opt = caseless_dict()
self._long_opts = []
self.defaults = {}

def _match_long_opt (self, opt):
return _match_abbrev(opt.lower(), self._long_opt.keys())

if _name__ =="_ main__"
from optik.errors import OptionConflictError

test 1: no options to start with
parser = CaselessOptionParser()
try:
parser.add_option("-H", dest="blah")
except OptionConflictError:
print "ok: got OptionConflictError for -H"
else:
print "not ok: no conflict between -h and -H"

parser.add_option("-f", "--file", dest="file")

#print ‘parser.get_option("-f")*

#print ‘parser.get_option("-F")*

#print ‘parser.get_option("--file")*

#print ‘parser.get_option("--fllIE")*

(options, args) = parser.parse_args(["--FiLe", "foo"])
assert options.file == "foo", options.file

print "ok: case insensitive long options work"

(options, args) = parser.parse_args(["-F", "bar"])

assert options.file == "bar", options.file
print "ok: case insensitive short options work"

And two ways of implementing “required options” witiptparse

Version 1. Add a method t@ptionParser which applications must call after parsing arguments:

_l.py

Version 2: ExtendOption and add aequired attribute; extendptionParser to ensure that required
options are present after parsing:

_2.py

6.20. optparse — Powerful parser for command line options. 277

6.21 tempfile — Generate temporary files and directories

This module generates temporary files and directories. It works on all supported platforms.

In version 2.3 of Python, this module was overhauled for enhanced security. It now provides three new functions,
NamedTemporaryFile() , mkstemp() , andmkdtemp() , which should eliminate all remaining need to use

the insecurenktemp() function. Temporary file names created by this module no longer contain the process ID;
instead a string of six random characters is used.

Also, all the user-callable functions now take additional arguments which allow direct control over the location and
name of temporary files. It is no longer necessary to use the glefvgidirandtemplatevariables. To maintain
backward compatibility, the argument order is somewhat odd; it is recommended to use keyword arguments for
clarity.

The module defines the following user-callable functions:

TemporaryFile ([mode:’w+b’] [bufsize:-]] [suffix] [prefix] [dir])
Return a file (or file-like) object that can be used as a temporary storage area. The file is created using
mkstemp. It will be destroyed as soon as it is closed (including an implicit close when the object is
garbage collected). UnderNix, the directory entry for the file is removed immediately after the file is
created. Other platforms do not support this; your code should not rely on a temporary file created using
this function having or not having a visible name in the file system.

Themodeparameter defaults taw+b’ so that the file created can be read and written without being closed.
Binary mode is used so that it behaves consistently on all platforms without regard for the data that is stored.
bufsizedefaults to-1 , meaning that the operating system default is used.

Thedir, prefixandsuffixparameters are passedéstemp() .

NamedTemporaryFile ([mode:’w+b’] [bufsize:-]] [suffix] [prefix] [dir])
This function operates exactly dgmporaryFile() does, except that the file is guaranteed to have a
visible name in the file system (onNux, the directory entry is not unlinked). That name can be retrieved
from the name member of the file object. Whether the name can be used to open the file a second time,
while the named temporary file is still open, varies across platforms (it can be so usedxnititannot
on Windows NT or later). New in version 2.3.

mkstemp ([suffix] [prefix] [dir] [text:FaIse])
Creates a temporary file in the most secure manner possible. There are no race conditions in the file's
creation, assuming that the platform properly implementsGhEXCL flag for os.open() . The file is
readable and writable only by the creating user ID. If the platform uses permission bits to indicate whether
a file is executable, the file is executable by no one. The file descriptor is not inherited by child processes.

Unlike TemporaryFile() , the user oimkstemp() is responsible for deleting the temporary file when
done with it.

If suffixis specified, the file name will end with that suffix, otherwise there will be no sufflksstemp()
does not put a dot between the file name and the suffix; if you need one, put it at the begirsuffgcof

If prefixis specified, the file name will begin with that prefix; otherwise, a default prefix is used.
If dir is specified, the file will be created in that directory; otherwise, a default directory is used.

If textis specified, it indicates whether to open the file in binary mode (the default) or text mode. On some
platforms, this makes no difference.

mkstemp() returns a tuple containing an OS-level handle to an open file (as would be returned by
os.open()) and the absolute pathname of that file, in that order. New in version 2.3.

mkdtemp ([suffix] [prefix] [dir])
Creates a temporary directory in the most secure manner possible. There are no race conditions in the
directory’s creation. The directory is readable, writable, and searchable only by the creating user ID.

The user ofmkdtemp() is responsible for deleting the temporary directory and its contents when done
with it.

Theprefix suffix anddir arguments are the same asfigkstemp() .

mkdtemp() returns the absolute pathname of the new directory. New in version 2.3.

278 Chapter 6. Generic Operating System Services

mktemp([suffix] [prefix] [dir])
Deprecated since release 2.8Isemkstemp() instead.

Return an absolute pathname of a file that did not exist at the time the call is madprefikesuffix and
dir arguments are the same asfiokstemp() .

Warning: Use of this function may introduce a security hole in your program. By the time you get around
to doing anything with the file name it returns, someone else may have beaten you to the punch.

The module uses two global variables that tell it how to construct a temporary name. They are initialized at the
first call to any of the functions above. The caller may change them, but this is discouraged; use the appropriate
function arguments, instead.

tempdir
When set to a value other th&one, this variable defines the default value for ttie argument to all the
functions defined in this module.

If tempdiris unset oNone at any call to any of the above functions, Python searches a standard list of
directories and setempdirto the first one which the calling user can create files in. The list is:

1.The directory named by the TMPDIR environment variable.

2.The directory named by the TEMP environment variable.

3.The directory named by the TMP environment variable.

4.A platform-specific location:
¢On Macintosh, theTemporary Items’ folder.
+¢On RiscOS, the directory named by the Wimp$ScrapDir environment variable.
¢On Windows, the directorie€!\TEMP’, C:\TMP’, ‘\TEMP’, and \TMP’, in that order.
+On all other platforms, the directoriesmp’, ‘ ivar/tmp’, and ‘/usr/tmp’, in that order.

5.As a last resort, the current working directory.

gettempdir ()

Return the directory currently selected to create temporary files itempdiris not None, this simply
returns its contents; otherwise, the search described above is performed, and the result returned.

template
Deprecated since release 2.Qsegettempprefix() instead.

When set to a value other th&tone, this variable defines the prefix of the final component of the filenames
returned bymktemp() . A string of six random letters and digits is appended to the prefix to make the
filename unique. On Windows, the default prefix’ig; on all other systems it istip’.

Older versions of this module used to require tlemplate be set tdNone after a call toos.fork() ;
this has not been necessary since version 1.5.2.

gettempprefix ()
Return the filename prefix used to create temporary files. This does not contain the directory component.
Using this function is preferred over reading teenplatevariable directly. New in version 1.5.2.

6.22 errno — Standard errno system symbols

This module makes available standamino system symbols. The value of each symbol is the corresponding
integer value. The names and descriptions are borrowed fiaum/include/errno.h’, which should be pretty all-
inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For
instancegrrno.errorcode[errno.EPERM] maps toEPERM’.

To translate a numeric error code to an error messagaausterror()

Of the following list, symbols that are not used on the current platform are not defined by the module. The specific
list of defined symbols is available agrno.errorcode.keys() . Symbols available can include:

6.22. errno — Standard errno system symbols 279

EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/O error

ENXIO
No such device or address

E2BIG
Arg list too long

ENOEXEC
Exec format error

EBADF
Bad file number

ECHILD
No child processes

EAGAIN

Try again
ENOMEM

Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE

280

Chapter 6.

Generic Operating System Services

Too many open files

ENOTTY
Not a typewriter

ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
lllegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

6.22. errno — Standard errno system symbols

281

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO

282

Chapter 6.

Generic Operating System Services

Protocol error

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
Jib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
lllegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

6.22. errno — Standard errno system symbols

283

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM

284 Chapter 6.

Generic Operating System Services

Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

6.23 glob — UNIx style pathname pattern expansion

The glob module finds all the pathnames matching a specified pattern according to the rules used by the
UNiIx shell. No tilde expansion is done, btit ?, and character ranges expressed Wjthwill be correctly

matched. This is done by using the.listdir() andfnmatch.fnmatch() functions in concert, and not
by actually invoking a subshell. (For tilde and shell variable expansionpsigath.expanduser() and
os.path.expandvars() J)

glob (pathnamég
Returns a possibly-empty list of path names that maiathname which must be a string containing a
path specification.pathnamecan be either absolute (likéusr/src/Python-1.5/Makefile’) or relative (like
‘..I..[Tools/*/*.gif"), and can contain shell-style wildcards.

For example, consider a directory containing only the following filegif’, ‘ 2.txt’, and ‘card.gif'. glob() will
produce the following results. Notice how any leading components of the path are preserved.

>>> import glob

>>> glob.glob(’./[0-9].*")
[./1.gif", "./2.txt]

>>> glob.glob(*.qgif")

[1.gif", ’'card.gif’]
>>> glob.glob(’?.gif’)
[1.gif]

See Also:

Modulefnmatch (section 6.24):
Shell-style filename (not path) expansion

6.24 fnmatch — UNIX filename pattern matching

This module provides support forNUx shell-style wildcards, which areot the same as regular expressions
(which are documented in the module). The special characters used in shell-style wildcards are:

Pattern | Meaning
* matches everything
? matches any single character
[sed matches any character seq
[' sed | matches any character notseq

Note that the filename separatdfi (on UNIX) is not special to this module. See modygb for pathname
expansiondlob usesnmatch() to match pathname segments). Similarly, filenames starting with a period are
not special for this module, and are matched by*ttend? patterns.

6.23. glob — UNix style pathname pattern expansion 285

fnmatch (filename, pattern
Test whether thélenamestring matches thpatternstring, returning true or false. If the operating system is
case-insensitive, then both parameters will be normalized to all lower- or upper-case before the comparison
is performed. If you require a case-sensitive comparison regardless of whether that's standard for your
operating system, ugamatchcase() instead.

fnmatchcase (filename, pattern
Test whethefilenamematchegattern returning true or false; the comparison is case-sensitive.

filter (names, pattem
Return the subset of the list omesthat matchpattern It is the same apn for n in names if
fnmatch(n, pattern)] , but implemented more efficiently. New in version 2.2.

See Also:

Moduleglob (section 6.23):
UNIX shell-style path expansion.

6.25 shutil — High-level file operations

The shutil module offers a number of high-level operations on files and collections of files. In particular,
functions are provided which support file copying and removal.

Caveat: On MacOS, the resource fork and other metadata are not used. For file copies, this means that resources
will be lost and file type and creator codes will not be correct.

copyfile ('src, ds)
Copy the contents of the file namecdt to a file namedist If dstexists, it will be replaced, otherwise it
will be created. Special files such as character or block devices and pipes cannot not be copied with this
function. srcanddstare path names given as strings.

copyfileobj (fsrc, fds[, Iength])
Copy the contents of the file-like objefsirc to the file-like objectfdst The integelength if given, is the
buffer size. In particular, a negativengthvalue means to copy the data without looping over the source
data in chunks; by default the data is read in chunks to avoid uncontrolled memory consumption.

copymode (src, ds)
Copy the permission bits frosrcto dst The file contents, owner, and group are unaffecseclanddstare
path names given as strings.

copystat (src, ds)
Copy the permission bits, last access time, and last modification timedroto dst The file contents,
owner, and group are unaffectexfc anddstare path names given as strings.

copy (src, ds}
Copy the filesrc to the file or directorydst If dstis a directory, a file with the same basenamestags
created (or overwritten) in the directory specified. Permission bits are cogiednddstare path names
given as strings.

copy?2 (src, ds)
Similar tocopy() , but last access time and last modification time are copied as well. This is similar to the
UNIX commandcp -p.

copytree (src, ds[, symlinks])
Recursively copy an entire directory tree rootedtat The destination directory, named dgt must not
already exist; it will be created. Individual files are copied usingy2() . If symlinksis true, symbolic
links in the source tree are represented as symbolic links in the new tree; if false or omitted, the contents of
the linked files are copied to the new tree. If exception(s) occur, an Error is raised with a list of reasons.

The source code for this should be considered an example rather than a tool. Changed in version 2.3: Error
is raised if any exceptions occur during copying, rather than printing a message.

rmtree (pati‘[, ignor&errors[, onerror]])
Delete an entire directory tree.igfnore_errorsis true, errors resulting from failed removals will be ignored;

286 Chapter 6. Generic Operating System Services

if false or omitted, such errors are handled by calling a handler specifieddyor or, if that is omitted,
they raise an exception.

If onerror is provided, it must be a callable that accepts three paramdiamstion path andexcinfa
The first parameterfunction is the function which raised the exception; it will los.remove() or
os.rmdir() . The second parametgath will be the path name passedftmction The third parameter,
excinfq will be the exception information return gys.exc _info() . Exceptions raised bgnerror
will not be caught.

move(src, ds)
Recursively move a file or directory to another location.
If the destination is on our current filesystem, then simply use rename. Otherwise, copy src to the dst and
then remove src.

New in version 2.3.

exceptionError
This exception collects exceptions that raised during a mult-file operatiorcdpgtree , the exception
argument is a list of 3-tuplesicnamedstnameexceptio.

New in version 2.3.

6.25.1 Example

This example is the implementation of thepytree() function, described above, with the docstring omitted.
It demonstrates many of the other functions provided by this module.

def copytree(src, dst, symlinks=0):
names = os.listdir(src)
0s.mkdir(dst)
for name in names:
srcname = os.path.join(src, name)
dstname = os.path.join(dst, name)

try:

if symlinks and os.path.islink(srcname):
linkto = os.readlink(srcname)
os.symlink(linkto, dstname)
elif os.path.isdir(srcname):
copytree(srcname, dstname, symlinks)
else:
copy2(srcname, dstname)
except (IOError, os.error), why:
print "Can’'t copy %s to %s: %s" % (‘srcname’, ‘dstname’, str(why))

6.26 locale — Internationalization services

Thelocale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows programmers to deal with certain cultural issues in an application, without requiring the programmer to
know all the specifics of each country where the software is executed.

Thelocale module is implemented on top of thdocale module, which in turn uses an ANSI C locale
implementation if available.

Thelocale module defines the following exception and functions:

exceptionError
Exception raised whesetlocale() fails.

setlocale (categor)[, Iocale])
If localeis specified, it may be a string, a tuple of the fofdanguage code encoding, or None. If

6.26. locale — Internationalization services 287

it is a tuple, it is converted to a string using the locale aliasing engintac#fie is given and notNone,
setlocale() modifies the locale setting for tteategory The available categories are listed in the data
description below. The value is the name of a locale. An empty string specifies the user’s default settings.
If the modification of the locale fails, the exceptigrror is raised. If successful, the new locale setting is
returned.

If localeis omitted orNone, the current setting fozategoryis returned.

setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL,)

This sets the locale for all categories to the user’s default setting (typically specified in the LANG environ-
ment variable). If the locale is not changed thereafter, using multithreading should not cause problems.

Changed in version 2.0: Added support for tuple values ofdbale parameter.

localeconv ()

Returns the database of of the local conventions as a dictionary. This dictionary has the following strings as
keys:

nl _langinfo

getdefaultlocale

Key Category Meaning
LC_NUMERIC | 'decimal _point’ Decimal point character.

‘grouping’ Sequence of numbers specifying which relative posi-
tions the'thousands _sep’ is expected. If the
sequence is terminated witBHARMAX no further
grouping is performed. If the sequence terminates with
a0, the last group size is repeatedly used.

‘thousands _sep’ Character used between groups.

LC_MONETARY ’int _curr _symbol’ International currency symbol.

‘currency _symbol’ Local currency symbol.

'mon _decimal _point’
'mon _thousands _sep
'mon _grouping’

Decimal point used for monetary values.

Group separator used for monetary values.
Equivalent to'grouping’ , used for monetary val-
ues.

'positive _sign’ Symbol used to annotate a positive monetary value.

'negative _sign’ Symbol used to annotate a nnegative monetary value.

frac _digits’ Number of fractional digits used in local formatting of
monetary values.

'int _frac _digits’ Number of fractional digits used in international for-

matting of monetary values.
The possible values fop _sign _posn’ and’'n _sign _posn’ are given below.

Value | Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.
LC_MAX]| Nothing is specified in this locale.

(‘option)

Return some locale-specific information as a string. This function is not available on all systems, and the set
of possible options might also vary across platforms. The possible argument values are numbers, for which
symbolic constants are available in the locale module.

([envvars])
Tries to determine the default locale settings and returns them as a tuple of thé llorguage code
encoding .

According to POSIX, a program which has not calleetlocale(LC
portable’C’ locale. Callingsetlocale(LC _ALL, ")

_ALL, ") runs using the
lets it use the default locale as defined by

288

Chapter 6. Generic Operating System Services

the LANG variable. Since we do not want to interfere with the current locale setting we thus emulate the
behavior in the way described above.

To maintain compatibility with other platforms, not only the LANG variable is tested, but a list of variables
given as envvars parameter. The first found to be defined will be usedvarsdefaults to the search
path used in GNU gettext; it must always contain the variable naislG. The GNU gettext search path
containsSLANGUAGE’, 'LC _ALL’ ,’LC _CTYPE’, and’'LANG’ , in that order.

Except for the codéC’ , the language code corresponds to RFC 17186guage codandencodingmay
be None if their values cannot be determined. New in version 2.0.

getlocale ([categor)ﬂ)
Returns the current setting for the given locale category as sequence conlangogge codeencoding
categorymay be one of theC_* values exceptC_ALL. It defaults toLC_CTYPE

Except for the codéC’ , the language code corresponds to RFC 17é6guage codendencodingmay
beNone if their values cannot be determined. New in version 2.0.

getpreferredencoding ([do,setlocale])
Return the encoding used for text data, according to user preferences. User preferences are expressed
differently on different systems, and might not be available programmatically on some systems, so this
function only returns a guess.

On some systems, it is necessary to invekdocale to obtain the user preferences, so this function is
not thread-safe. If invoking setlocale is not necessary or deslcedetlocaleshould be set tEalse .

New in version 2.3.

normalize (localenamég
Returns a normalized locale code for the given locale name. The returned locale code is formatted for use
with setlocale() . If normalization fails, the original name is returned unchanged.

If the given encoding is not known, the function defaults to the default encoding for the locale code just like
setlocale() . New in version 2.0.

resetlocale ([categor)ﬂ)
Sets the locale forategoryto the default setting.

The default setting is determined by calliggtdefaultlocale() . categorydefaults td_C_ALL. New
in version 2.0.

strcoll (stringl, string2
Compares two strings according to the curre@ COLLATEsetting. As any other compare function,
returns a negative, or a positive value 0odepending on whethetringlcollates before or aftestring2or
is equal to it.

strxfrm (' string)
Transforms a string to one that can be used for the built-in funaiiop() , and still returns locale-aware
results. This function can be used when the same string is compared repeatedly, e.g. when collating a
sequence of strings.

format (format, va[, grouping])
Formats a numberal according to the curreitC_NUMERIGCsetting. The format follows the conventions
of the%operator. For floating point values, the decimal point is modified if appropriaggolipingis true,
also takes the grouping into account.

str (floaf)
Formats a floating point number using the same format as the built-in furattipnfloat) , but takes the
decimal point into account.

atof (string)
Converts a string to a floating point number, following th&@ NUMERIGsettings.

atoi (string)
Converts a string to an integer, following th€_NUMERICconventions.

LC_CTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions
of modulestring dealing with case change their behaviour.

6.26. locale — Internationalization services 289

LC_COLLATE

Locale category for sorting strings. The functistecoll() andstrxfrm() of thelocale module
are affected.

LC_TIME
Locale category for the formatting of time. The functiime.strftime() follows these conventions.

LC_MONETARY
Locale category for formatting of monetary values. The available options are available from the
localeconv() function.

LC_MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware
messages. Messages displayed by the operating system, like those retussesdrbyror() might be
affected by this category.

LC_NUMERIC
Locale category for formatting numbers. The functifmsnat() ,atoi() ,atof() andstr() ofthe
locale module are affected by that category. All other numeric formatting operations are not affected.

LC_ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for
all categories is attempted. If that fails for any category, no category is changed at all. When the locale is
retrieved using this flag, a string indicating the setting for all categories is returned. This string can be later
used to restore the settings.

CHARMAX
This is a symbolic constant used for different values returnelddsleconv()

Thenl _langinfo function accepts one of the following keys. Most descriptions are taken from the correspond-
ing description in the GNU C library.

CODESET
Return a string with the name of the character encoding used in the selected locale.

D_T_FMT
Return a string that can be used as a format string for strftime(3) to represent time and date in a locale-
specific way.

D_FMT
Return a string that can be used as a format string for strftime(3) to represent a date in a locale-specific way.

T_FMT
Return a string that can be used as a format string for strftime(3) to represent a time in a locale-specific way.

T_FMT_AMPM
The return value can be used as a format string for ‘strftime’ to represent time in the am/pm format.

DAY_1 ... DAY _7
Return name of the n-th day of the weeWarning: This follows the US convention dDAY_1 being
Sunday, not the international convention (ISO 8601) that Monday is the first day of the week.

ABDAY1 .. ABDAY _7
Return abbreviated name of the n-th day of the week.

MON1 ... MON _12
Return name of the n-th month.

ABMON1 ... ABMON _12
Return abbreviated name of the n-th month.

RADIXCHAR
Return radix character (decimal dot, decimal comma, etc.)

THOUSEP
Return separator character for thousands (groups of three digits).

YESEXPR

290 Chapter 6. Generic Operating System Services

Return a regular expression that can be used with the regex function to recognize a positive response to a
yes/no questionWarning: The expression is in the syntax suitable for thgex() function from the C
library, which might differ from the syntax usediia .

NOEXPR
Return a regular expression that can be used with the regex(3) function to recognize a negative response to
a yes/no question.

CRNCYSTR
Return the currency symbol, preceded by "-” if the symbol should appear before the value, "+” if the symbol

"y

should appear after the value, or ".” if the symbol should replace the radix character.

ERA
The return value represents the era used in the current locale.

Most locales do not define this value. An example of a locale which does define this value is the Japanese
one. In Japan, the traditional representation of dates includes the name of the era corresponding to the
then-emperor’s reign.

Normally it should not be necessary to use this value directly. Specifying thedifier in their format
strings causes thstrftime function to use this information. The format of the returned string is not
specified, and therefore you should not assume knowledge of it on different systems.

ERA_YEAR
The return value gives the year in the relevant era of the locale.

ERA_D_T_FMT
This return value can be used as a format stringstdtime to represent dates and times in a locale-
specific era-based way.

ERA_D_FMT
This return value can be used as a format stringsfdtime to represent time in a locale-specific era-
based way.

ALT_DIGITS
The return value is a representation of up to 100 values used to represent the values 0 to 99.

Example:

>>> import locale

>>> |oc = locale.setlocale(locale.LC_ALL) # get current locale

>>> |ocale.setlocale(locale.LC_ALL, ’'de’) # use German locale

>>> |ocale.strcoll('f\xe4n’, 'foo’) # compare a string containing an umlaut
>>> |ocale.setlocale(locale.LC_ALL, ") # use user's preferred locale

>>> |ocale.setlocale(locale.LC_ALL, 'C’) # use default (C) locale

>>> |ocale.setlocale(locale.LC_ALL, loc) # restore saved locale

6.26.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top
of that, some implementation are broken in such a way that frequent locale changes may cause core dumps. This
makes the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is t@&lbcale, no matter what the user’s preferred locale is. The
program must explicitly say that it wants the user’s preferred locale settings by cadlilogale(LC ~ _ALL,

H)
It is generally a bad idea to calktlocale() in some library routine, since as a side effect it affects the entire

program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run
before the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected
by the locale (such astring.lower() , or certain formats used witime.strftime()), you will have to

6.26. locale — Internationalization services 291

find a way to do it without using the standard library routine. Even better is convincing yourself that using locale
settings is okay. Only as a last resort should you document that your module is not compatible withlnoalé
settings.

The case conversion functions in tlséring module are affected by the locale settings. When a call

to the setlocale() function changes thd.C_CTYPE settings, the variablestring.lowercase ,
string.uppercase and string.letters are recalculated. Note that this code that uses these vari-
able throughfrom ... import ../, e.g.from string import letters , Is not affected by subsequent
setlocale() calls.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module:atof() ,atoi() ,format() ,str()

6.26.2 For extension writers and programs that embed Python

Extension modules should never csditlocale() , except to find out what the current locale is. But since the
return value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or
not the locale isC).

When Python is embedded in an application, if the application sets the locale to something specific before ini-
tializing Python, that is generally okay, and Python will use whatever locale isxs=pthat theLC_NUMERIC
locale should always be'.

Thesetlocale() function in thelocale module gives the Python programmer the impression that you can
manipulate thé. C_NUMERIQocale setting, but this not the case at the C level: C code will always find that the
LC_NUMERICocale setting isC. This is because too much would break when the decimal point character is
set to something else than a period (e.g. the Python parser would break). Caveat: threads that run without holding
Python’s global interpreter lock may occasionally find that the numeric locale setting differs; this is because the
only portable way to implement this feature is to set the numeric locale settings to what the user requests, extract
the relevant characteristics, and then restore@aumeric locale.

When Python code uses tlaeale module to change the locale, this also affects the embedding application. If
the embedding application doesn’t want this to happen, it should removédbale extension module (which
does all the work) from the table of built-in modules in therifig.c’ file, and make sure that thdocale module

is not accessible as a shared library.

6.26.3 Access to message catalogs

The locale module exposes the C library’s gettext interface on systems that provide this interface. It consists of the
functionsgettext() , dgettext() , dcgettext() ,textdomain() , andbindtextdomain() . These

are similar to the same functions in thyettext module, but use the C library’s binary format for message
catalogs, and the C library’s search algorithms for locating message catalogs.

Python applications should normally find no need to invoke these functions, and shogjdtiessée instead.

A known exception to this rule are applications that link use additional C libraries which internally invoke
gettext() or cdgettext() . For these applications, it may be necessary to bind the text domain, so that
the libraries can properly locate their message catalogs.

6.27 gettext — Multilingual internationalization services

The gettext module provides internationalization (I18N) and localization (L10N) services for your Python
modules and applications. It supports both the Gh#tktext message catalog API and a higher level, class-
based API that may be more appropriate for Python files. The interface described below allows you to write
your module and application messages in one natural language, and provide a catalog of translated messages for
running under different natural languages.

Some hints on localizing your Python modules and applications are also given.

292 Chapter 6. Generic Operating System Services

6.27.1 GNU gettext API

The gettext module defines the following API, which is very similar to the GNgettext API. If you use

this APl you will affect the translation of your entire application globally. Often this is what you want if your
application is monolingual, with the choice of language dependent on the locale of your user. If you are localizing
a Python module, or if your application needs to switch languages on the fly, you probably want to use the class-
based API instead.

bindtextdomain (domair{, Iocaledir])
Bind thedomainto the locale directoryocaledir. More concretelygettext will look for binary ‘.mo’
files for the given domain using the path (omit): ‘localedir/languagél. C_MESSAGES/domainmo’,
wherelanguageds searched for in the environment variables LANGUAGE, IACL, LC _MESSAGES,
and LANG respectively.

If localediris omitted orNone, then the current binding fatomainis returnec®

textdomain ([domain])
Change or query the current global domainddimainis None, then the current global domain is returned,
otherwise the global domain is setdomain which is returned.

gettext (messagge
Return the localized translation ofessagebased on the current global domain, language, and locale direc-
tory. This function is usually aliased asin the local namespace (see examples below).

dgettext (domain, message
Like gettext() , but look the message up in the specifilain

ngettext (singular, plural,
Like gettext() , but consider plural forms. If a translation is found, apply the plural formulg tnd
return the resulting message (some languages have more than two plural forms). If no translation is found,
returnsingularif nis 1; returnplural otherwise.

The Plural formula is taken from the catalog header. It is a C or Python expression that has a free variable
n; the expression evaluates to the index of the plural in the catalog. See the GNU gettext documentation for
the precise syntax to be used in .po files, and the formulas for a variety of languages.

New in version 2.3.

dngettext (domain, singular, plural,
Like ngettext() , but look the message up in the specifikmain

New in version 2.3.

Note that GNUgettextalso defines dcgettext() method, but this was deemed not useful and so it is currently
unimplemented.

Here’s an example of typical usage for this API:

import gettext

gettext.bindtextdomain(’'myapplication’, '/path/to/my/language/directory’)
gettext.textdomain(’'myapplication’)

_ = gettext.gettext

...

print _('This is a translatable string.”)

6.27.2 Class-based API

The class-based API of tlgettext module gives you more flexibility and greater convenience than the GNU
gettext API. It is the recommended way of localizing your Python applications and modydétext defines
a “translations” class which implements the parsing of GNuab' format files, and has methods for returning

2The default locale directory is system dependent; for example, on RedHat Linusuitristare/locale’, but on Solaris it is /us/lib/locale’.
Thegettext module does not try to support these system dependent defaults; instead its defgslpiiefix /share/locale’. For this
reason, it is always best to caliindtextdomain() with an explicit absolute path at the start of your application.

6.27. gettext — Multilingual internationalization services 293

either standard 8-bit strings or Unicode strings. Translations instances can also install themselves in the built-in
namespace as the functiof) .

find (domair{, Iocaledil{, IanguageE, all]]])
This function implements the standarcho’ file search algorithm. It takes domain identical to what
textdomain() takes. Optionalocalediris as inbindtextdomain() Optionallanguagess a list of
strings, where each string is a language code.

If localedir is not given, then the default system locale directory is dsédanguagess not given, then

the following environment variables are searched: LANGUAGE, BCL, LC _MESSAGES, and LANG.

The first one returning a non-empty value is used forlmguagesvariable. The environment variables
should contain a colon separated list of languages, which will be split on the colon to produce the expected
list of language code strings.

find() then expands and normalizes the languages, and then iterates through them, searching for an
existing file built of these components:

‘localedir/languagél. C_MESSAGES/domainmo’

The first such file name that exists is returnedibg() . If no such file is found, theiNone is returned.
If all is given, it returns a list of all file names, in the order in which they appear in the languages list or the
environment variables.

translation (domair{, Iocaledir[, IanguageE, clas&,[fallback]]]])
Return aTranslations instance based on tlimmain localedir, andlanguageswhich are first passed
tofind() to get a list of the associatedvio’ file paths. Instances with identicalmo’ file names are
cached. The actual class instantiated is eithass_ if provided, otherwiseGNUTranslations . The
class’s constructor must take a single file object argument.

If multiple files are found, later files are used as fallbacks for earlier ones. To allow setting the fallback,
copy.copy is used to clone each translation object from the cache; the actual instance data is still shared
with the cache.

If no “*.mo’ file is found, this function raisekDError if fallbackis false (which is the default), and returns
aNullTranslations instance iffallbackis true.

install (domair{, Iocaledir{, unicodé])
This installs the function_ in Python’s builtin namespace, baseddmmain andlocaledirwhich are passed
to the functiortranslation() . Theunicodéflag is passed to the resulting translation objaotsall
method.

As seen below, you usually mark the strings in your application that are candidates for translation, by
wrapping them in a call to the() function, like this:

print _('This string will be translated.’)

For convenience, you want thg) function to be installed in Python’s builtin namespace, so it is easily
accessible in all modules of your application.

The NullTranslations class

Translation classes are what actually implement the translation of original source file message strings to trans-
lated message strings. The base class used by all translation clabsdd ranslations ; this provides

the basic interface you can use to write your own specialized translation classes. Here are the methods of
NullTranslations

__init __([fo])
Takes an optional file objedp, which is ignored by the base class. Initializes “protected” instance vari-
ables_info and _charsetwhich are set by derived classes, as well_#allback which is set through
add _fallback . Itthen callsself. _parse(fp) if fpis notNone.

_parse (fp)
No-op'd in the base class, this method takes file obfjgcand reads the data from the file, initializing its

3See the footnote fdsindtextdomain() above.

294 Chapter 6. Generic Operating System Services

message catalog. If you have an unsupported message catalog file format, you should override this method
to parse your format.

NullTranslations (‘add_fallback)
fallback Addfallback as the fallback object for the current translation object. A translation object should
consult the fallback if it cannot provide a translation for a given message.

gettext (messagge
If a fallback has been set, forwagkttext to the fallback. Otherwise, return the translated message.
Overridden in derived classes.

ugettext (message
If a fallback has been set, forwargjettext to the fallback. Otherwise, return the translated message as
a Unicode string. Overridden in derived classes.

ngettext (singular, plural,
If a fallback has been set, forwardjettext to the fallback. Otherwise, return the translated message.
Overridden in derived classes.

New in version 2.3.

ungettext (' singular, plural,
If a fallback has been set, forwanthgettext to the fallback. Otherwise, return the translated message as
a Unicode string. Overridden in derived classes.

New in version 2.3.

info ()
Return the “protected”info variable.

charset ()
Return the “protected”’charset variable.

install ~ ([unicode])
If the unicodeflag is false, this method instakkelf.gettext() into the built-in namespace, binding it
to ‘. If unicodeis true, it bindsself.ugettext() instead. By defaultinicodeis false.

Note that this is only one way, albeit the most convenient way, to make fh@ction available to your
application. Because it affects the entire application globally, and specifically the built-in namespace, lo-
calized modules should never install Instead, they should use this code to makavailable to their
module:

import gettext
t = gettext.translation('mymodule’, ...)
_ = t.gettext

This puts_ only in the module’s global namespace and so only affects calls within this module.

The GNUTranslations class

The gettext module provides one additional class derived fromullTranslations
GNUTranslations . This class overridesparse() to enable reading GNUgettext format “mo’ files
in both big-endian and little-endian format. It also coerces both message ids and message strings to Unicode.

GNUTranslations parses optional meta-data out of the translation catalog. It is convention withg@NU

text to include meta-data as the translation for the empty string. This meta-data is in RFC 82Restyle

value pairs, and should contain throject-1d-Version key. If the keyContent-Type is found, then
thecharset property is used to initialize the “protectedtharset instance variable, defaulting téone if

not found. If the charset encoding is specified, then all message ids and message strings read from the catalog
are converted to Unicode using this encoding. Thettext() method always returns a Unicode, while the
gettext() returns an encoded 8-bit string. For the message id arguments of both methods, either Unicode
strings or 8-bit strings containing only US-ASCII characters are acceptable. Note that the Unicode version of the
methods (i.e.ugettext() andungettext()) are the recommended interface to use for internationalized
Python programs.

6.27. gettext — Multilingual internationalization services 295

The entire set of key/value pairs are placed into a dictionary and set as the “proteictied” instance variable.

If the “.mo’ file’'s magic number is invalid, or if other problems occur while reading the file, instantiating a
GNUTranslations class can raisEError

The following methods are overridden from the base class implementation:

gettext (message
Look up themessagad in the catalog and return the corresponding message string, as an 8-bit string
encoded with the catalog’s charset encoding, if known. If there is no entry in the catalog feessagéd,
and a fallback has been set, the look up is forwarded to the fallbgekiaxt() method. Otherwise, the
messagé is returned.

ugettext (message
Look up themessagéd in the catalog and return the corresponding message string, as a Unicode string. If
there is no entry in the catalog for theessagéd, and a fallback has been set, the look up is forwarded to
the fallback’sugettext() method. Otherwise, thmessagéd is returned.

ngettext (singular, plural,
Do a plural-forms lookup of a messa