GNUBatch Release 1
System Reference Manual

Table of Contents

1

Introduction
1.1 Typographical Conventions
1.2 Command Line Program Options

Overview
21 IPCusedby GNUBatch
2.2 Directory and File Structure
2.2.1 Internal Directories e
2.2.2 |Internal Programs e e
2.2.3 Batchdirectoryfiles
2.24 Helpand Messagefiles
2.2.5 Configuration files held in /usr/local/etc.
2251 GNUBatchHostsFile
22511 MultiplelPaddresses
2.2.5.2 GNUBatch Master ConfigurationFile
2253 UserMappingfile
2.2.5.4 GNUBatch Static EnvironmentFile o000
2.3 Joband Variable Modes
2.3.1 Changeofownerand group o i i i
2.3.2 |Initialisationofmodes L L L
2.4 Standard ExitCodes e
241 Lessseriousexitcodes L
242 Moreseriousexitcodes

User Administration

3.1 Privileges e e e
3.2 Loadlevels e e
3.3 Priorities e e e
3.4 Charging e
3.5 Modes e e

Job control variables

41 Dependencyonfiles. e

4.2 What'sina Variable? e

4.3 MoreaboutModes e

4.4 Examples of Dependencies Handled by Variables
441 RunningJobsinaSimple Chain

GNUBatch System Reference Manual 3

4.4.2 Running jobs in a chain with exceptionhandling 42
443 RunningJobsinParallel 42
4.4.4 The Parallel Example with an Exception Handler 44
4.45 Mutual Exclusion & Semaphores 44
446 PassingDatabetweendobs oo 46

45 Systemvariablesandlogging 48
451 Using CLOAD & LOADLEVEL 49
4.5.1.1 Running fewer batch jobs in officehours 49

45.1.2 Stopping GNUBatch gracefully 49

4.5.1.3 Starting Administration activities, when Batch work completes 49

452 Controlling peak activity 50
453 Jobloggingvia LOGJOBS e 50
454 \Variable Logging via LOGVARS 51
Jobs and related entities 53
51 Time 53
5.1.1 Scheduled run starttime 54
5.1.2 Retention 54
5.1.2.1 Auto delete afterexecutiono 54

5.1.3 Repetition L 54
5.1.3.1 Monthly RepeatIntervals 55

5.1.3.2 DaystoAvoid 56

5.1.3.3 Time adjustmentsonerror 56

5.2 Job Completion Messages e 57
5.8 Redirectionof Inputand Output 57
5.4 Arguments L e e 58
5.5 Environment & process parameters L e e e 59
5.5.1 Environment Variables 59
5.5.2 ulimitandumask 59
5.5.3 Working Directory e 59
5.5.4 Normaland Error ExitCodes e 60
555 Network Scope e 60
5.5.6 Time-out parameters for stopping runaway Jobs 61

5.6 Owners, Groupsand Modes e e 61
5.6.1 Owners and Groups o o i e 61
5.6.2 Modes e e 61

5.7 Job Identifiers - Queues, Titles and Job ID numberso 62
5.8 Priority and Command Interpreter e 63
5.9 Job control variables - Conditions and Assignments 63
5.9.1 Conditions e e e e e 63
5.9.2 Assignments e 64
5.9.21 FlagOptions 64

5.9.2.2 Assignment Operation oo 65

510 Meta-Data 66
5.11 Command Interpreters 67
5A2 QUEUES e e 69

5121 Examples e e 70

GNUBatch System Reference Manual

5.12.1.1 Naming Conventions for OverlappingSets
5.12.1.2 Naming Conventions for Sub-Queues or Hierarchies

S5A3 Holidays e

6 Internal Programs and file formats

6.1

6.2
6.3

6.4

Core Programs L e e e e
6.1.1 btsched e
6.1.1.1 Filesused e
6.1.1.2 IPC Facilitiesused
6.1.1.3 Internetportsused
6.1.2 xbnetserv e
6.1.2.1 Internetports
6.1.2.2 Diagnostics
btexec e
Message Handlers e
6.3.1 btmdisp
6.3.2 btwrite e
6.3.3 dosbtwrite L
6.3.4 Jobdump
File Formats e
6.4.1 Jusr/local/etc/gnubatch.conf
6.4.2 Jusr/local/etc/gnubatch.hosts o L L L o
6.4.2.1 Hostname
6.4.22 Aliasname. e e
6.4.23 Flags o e
6.4.2.4 Timeout e
6.4.25 Localaddress
6.4.3 Usermapfile e

7 User Programs

7.1

7.2

Syntax of batchcommands
711 Optiontypes e e e e e e e
7.1.2 Optionsyntax e
7.1.3 Configurationfiles
7.1.4 Optionpath e
7.1.5 Messagefiles e
7.1.6 Location of messagefileso
7.1.7 Pathto locate messagefiles
Submitting BatchJdobs L
7.21 gbch-randgbch-rr.
7211 Options
72111 -?or+explainoption. o oL

7.2.1.1.2 -2or+grace-timeoption.o

72118 -9or+catch-upoption oL

72114 - or+doneoption

7.21.1.5 -Aor+avoiding-daysoption

7.21.1.6 -aor+argumentoption

7.21.1.7 -Bor +assignment-not-critical optiono

70
71
71

72
72
72
73
73
74
74
74
74
74
75
75
75
76
76
76
76
77
77
77
77
78
79
79

7.21.
7.21.
7.21
7.21.
7.2.1.
7.21.
7.2.1.
7.21
7.2.1.
7.21.
7.21.
7.21.
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21
7.21

1
1
1
1
.1.15
1
1
1
1

1.8
1.9

.1.10

A1
A2
13
14

16
A7
.18
19

.1.20
1.21
.1.22
.1.23
1.24
.1.25
.1.26
1.27
.1.28
.1.29
.1.30
.1.31
.1.32
.1.33
.1.34
.1.35
.1.36
1.37
.1.38
.1.39
.1.40
1.41
.1.42
.1.43
.1.44
.1.45
.1.46
1.47
.1.48
.1.49
.1.50
.1.51
.1.52
.1.53
.1.54

GNUBatch System Reference Manual 5

-b or +assignment-critical optiono 88
-Cor+cancelledoption L 89
-cor+conditionoption Lo Lo 89
-Dor +directory option 89
-d or +delete-at-end option 90
-E or +local-environmentoption.o 90
-e or +cancel-arguments optiono L. 90
-For +exportoption oo 90
-for +flags-for-setoptiono 91
-G or +full-exportoptiono 91
-g or +set-groupoptiono 91
-H or +hold-currentoption 91
-hor+titleoption. 92
-l or +input-outputoptiono 92
-i or +interpreteroptiono 92
-J or +no-advance-time-erroroption oL oL L. 93
-j or +advance-time-error optiono 93
-K or +condition-not-critical option 93
-k or +condition-critical optiono 93
-Lor +ulimitoption. 94
-lor +loadlevoption oo 94
-Mor+modeoption 94
-m or +mail-message option 94
-Nor+normaloption 95
-nor +local-onlyoptiono 95
-O or +remote-environmentoption 95
-0 or +no-repeatoption 95
-Por+umaskoption Lo 96
-p or +priority optiono 96
-Qor+hostoption 96
-q or +job-queueoption 96
-Ror +reschedule-alloption 97
-ror+repeatoption L L 97
-S or +skip-if-held optiono 97
-sor+setoption L L L 97
-Tor+timeoption 98
-t or +delete-time optiono 98
-Uor+no-timeoption oL 98
-u or +set-owneroptiono 98
-V or +no-verbose optiono oL 99
-vor+verboseoption L L Lo 99
-W or +which-signaloption 99
-w or +write-message option 99
-Xor+exit-codeoption L 99
-X Or +no-message optiono 100
-Y or +run-time optiono 100

-y or +cancel-condition option 100

7.3

GNUBatch System Reference Manual

7.21.1.55 -Zor +cancel-iooption

7.2.1.1.56 -z or +cancel-setoption

7.2.1.1.57 +freeze-currentoption L.

7.2.1.1.58 +freeze-homeoption

7.21.2 Redirectionformat.,
7.21.21 Inputfromfile

7.21.22 Outputtofile

7.21.23 Appendtofile

7.21.24 Openforreadandwrite

7.21.25 Openforreadandappend

7.21.2.6 Inputfromprogram

7.21.27 Outputtoprogram

7.2.1.2.8 Duplicate descriptor

7.21.29 Closedescriptor

7.21.3 Repeatperiods
7214 Conditions
7215 Assignments. L
7.21.6 Modearguments

7.22 atcover e
7.2.3 gbch-xrandgbch-xmr
Managing the batch scheduler
7.3.1 gbch-start
7311 Options
73111 -?or+explainoption.

7.3.1.1.2 -l or +initial-load-level option

7.3.1.1.3 -j or +initial-job-size option

7.3.1.1.4 -v or +initial-var-size option

7.3.1.1.5 +freeze-currentoption

7.3.1.1.6 +freeze-homeoption

7.32 gbch-quit.
7.3.21 Diagnostics

7.3.3 gbch-conn
7.3.4 gbch-disconn
7.3.5 gbch-cichange
7.35.1 Options
7.3.5.1.1 -?or+explainoption.

7.35.12 -Aor+addoption

7.35.1.83 -aor+argsoption

7.3.5.1.4 -Dor+deleteoption

7.3.5.1.5 -eor+expand-argsoption.

7.3.5.1.6 -ior+set-arg0-nameoption

7.3.5.1.7 -Lor+load-leveloption

7.3.5.1.8 -Nor+niceoption

7.3.5.1.9 -nor+new-nameoption

7.3.5.1.10 -por+pathoption

7.3.5.1.11 -tor +set-arg0-title option

7.3.5.1.12 -Uor+update option

GNUBatch System Reference Manual 7

7.3.5.1.13 -uor +no-expand-args option 115

7.3.5.1.14 +freeze-currentoption oL 116

7.3.5.1.15 +freeze-homeoption oL 116

7.3.5.2 Examples 116

7.3.6 gbch-cilist 116
7.3.6.1 Options 116
7.3.6.1.1 -?or+explainoption. oL 117

7.3.6.1.2 -Qor+hostoption 117

7.3.6.1.3 +freeze-currentoptiono 117

7.3.6.1.4 +freeze-homeoptiono oL 117

7.3.7 Bthols e e e 117
7.3.71 Options e 118
73711 -?or+explainoption. o 118

7.3.71.2 -Cor+clearoption. 118

7.3.71.3 -dor+displayoption oo 118

73714 -sor+setoption oL 119

7.3.71.5 -ror+no-clearoption 119

7.3.7.1.6 +freeze-currentoptiono 119

7.3.7.1.7 +freeze-homeoption oo 119

7.3.8 gbch-hostedit 120
7.3.8.1 Options L 120
7.3.8.1.1 -ooption 120

7.3.8.1.2 -soption 120

7.3.81.3 -loption 121

7.3.82 Commands e e 121

7.4 Querying/managing batch jobs from the commandline 121
741 gbch-jchange 121
7411 Options 122
74111 -?or+explainoption. oo 122

7.41.1.2 -2or+grace-timeoption. 122

74113 -9or+catch-upoption L. 122

7.41.1.4 -Aor+avoiding-daysoption 123

74115 -aor+argumentoption 123

7.41.1.6 -Bor +assignment-not-critical option 123

7.41.1.7 -bor+assignment-criticaloption 124

74118 -Cor+cancelledoption 124

74119 -cor+conditionoption. oL 124

7.41.1.10 -Dor +directoryoption oL 125

7.41.1.11 -dor +delete-at-endoption 125

7.4.1.1.12 -E or +reset-environment option L. 125

7.4.1.1.13 -e or +cancel-argumentsoption 125

741114 -For+exportoption 126

7.41.1.15 for +flags-for-setoption 126

7.41.1.16 -Gor +full-exportoption, 126

7.41.1.17 -gor+set-groupoptiono 126

7.4.1.1.18 -Hor +hold-currentoption 127

741119 -hor+titleoption. oo oo o 127

GNUBatch System Reference Manual 8

7.4.1.1.20 -lor +input-outputoption oo 127
7.4.1.1.21 -ior+interpreteroption oL 128
7.4.1.1.22 -J or +no-advance-time-erroroption 128
7.4.1.1.23 -jor +advance-time-erroroption 128
7.4.1.1.24 -K or +condition-not-critical option 128
7.4.1.1.25 -k or +condition-critical option 129
7.41.1.26 -Lor +ulimitoption oo 129
7.41.1.27 -lor+loadlevoption 129
741128 -Mor+modeoption L o 129
7.4.1.1.29 -m or +mail-message option 130
7.41.1.30 -Nor+normaloption 130
7.41.1.31 -nor+local-onlyoption 130
7.4.1.1.32 -0 or +no-repeatoption 130
7411383 -Por+umaskoption oo 131
7.4.1.1.34 -por+priorityoptiono o 131
7.41.1.35 -qor +job-queueoptiono oo 131
7.4.1.1.36 -Ror +reschedule-alloption. 131
7.41.1.37 -ror+repeatoption Lo 131
7.4.1.1.38 -Sor +skip-if-held optiono 132
741139 -sor+setoption Lo 132
7.41.1.40 -Tor+timeoption L. 132
7.4.1.1.41 -tor +delete-timeoption 132
7.41.1.42 -Uor+no-timeoption oL 133
7.4.1.1.43 -uor+set-owneroption 133
7.4.1.1.44 -W or +which-signaloption 133
7.4.1.1.45 -w or +write-message option 133
7.41.1.46 -Xor+exit-codeoption 134
7.41.1.47 -xor +no-message option 134
7.4.1.1.48 -Y or +run-timeoption oo 134
7.4.1.1.49 -y or +cancel-conditionoption 134
7.41.1.50 -Zor+cancel-iooption oL 135
7.41.1.51 -zor+cancel-setoption L. 135
7.4.1.1.52 +freeze-currentoption L. 135
7.41.1.53 +freeze-homeoption oo oo 135
7.4.1.2 Modearguments 135
7.4.1.3 Noteonmodeandownerchanges 136
7.4.2 gbch-jdel 137
7421 Options 137
74211 -?or+explainoption. oo 137
7.4.21.2 -Cor+command-prefixoption 137
7.421.3 -Dor+directoryoption L. 138
74214 -dor+deleteoption oL 138
7.421.5 -eor+do-not-unqueueoption 138
7.4.2.1.6 -Jor+job-prefixoption L. 138
7.4.21.7 -Kor+signal-numberoption 138
7.4.21.8 -kor+do-not-delete option 139

74219 -Nor+no-forceoption 139

GNUBatch System Reference Manual 9

7.421.10 -Sor +sleep-timeoption oo 139

7.4.21.11 -uor+unqueueoption 139

742112 -Yor+forceoption oo oo 139

7.4.2.1.13 +freeze-currentoption oL 140

7.4.21.14 +freeze-homeoption oo 140

7422 Examples 140

7.4.3 gbch-jlist 140
7431 Options 141
74311 -?or+explainoption. Lo 141

7.4.3.1.2 -Bor+bypass-modesoption 141

7.4.3.1.3 -Dor+default-formatoption 141

7.431.4 -For+formatoption oL 142

7.4.3.1.5 -gor+just-groupoption 142

7.431.6 -Hor+headeroption 142

7.4.3.1.7 -Lor+local-onlyoption 142

7.4.3.1.8 -lor+no-view-jobsoption oo 142

7.43.1.9 -Nor+no-headeroption. 143

7.4.3.1.10 -nor+no-sortoption. oo 143

7.4.3.1.11 -qor +job-queueoption 143

7.4.3.1.12 -Ror +include-all-remotes option 143

7.4.3.1.13 -ror +include-exec-remotesoption L. 144

7.4.3.1.14 -Sor +short-timesoption 144

7.43.1.15 -sor+sortoptiono Lo 144

7.4.3.1.16 -T or +full-timesoption 144

7.4.3.1.17 -uor+just-useroptiono 144

7.4.3.1.18 -Vor +view-jobsoption oL 145

7.4.3.1.19 -Zor +no-null-queues optiono oL 145

7.4.3.1.20 -Zor +null-queuesoption 145

7.4.3.1.21 +freeze-currentoptiono 145

7.4.3.1.22 +freeze-home optiono 146

7432 Wildcards e 146
7.43.3 Formatcodeso 146
7.4.3.4 Examples e 148

7.4.4 gbch-jstat 149
7441 Options 149
74411 -?or+explainoption.o oL 149

7.4.41.2 -dor+default-statesoption oL 150

74413 -sor+stateoptiono oo 150

7.4.41.4 +freeze-currentoption oo 150

74415 +freeze-homeoption o oL 151

7442 Statenames 151
7443 Example 151

7.4.5 gbch-jgo, gbch-jgoadv, gbch-jadv oo 152
746 gbch-dst 152
7.5 Querying/managing variables from the commandline 153
7.5.1 gbch-vlist. 153

7511 Options e 154

GNUBatch System Reference Manual 10

75111 -?or+explainoption. oL 154
7.5.1.1.2 -Bor+bypass-modesoption 154
7.5.1.1.83 -Dor +default-formatoption 154
75114 -For+formatoption L 155
75115 -gor+just-groupoptiono oo 155
75116 -Hor+headeroption 155
7.51.1.7 -Lor+local-onlyoption 155
7.5.1.1.8 -Ror +include-remotes option 155
7.51.1.9 -uor+just-useroptiono oL 156
7.5.1.1.10 +freeze-currentoption 156
7.5.1.1.11 +freeze-homeoption 156
7.5.1.2 Formatcodes 156
7.5.2 gbch-var 157
7.5.21 Options 157
75211 -?or+explainoption. L 157
75212 -Cor+createoption 158
7.5.21.3 -cor+commentoption 158
75214 -Dor+deleteoption oL 158
7.5.21.5 -Eor+set-exportoption oL 158
75216 -Gor+set-groupoption 158
7.5.21.7 -Kor+clusteroption oo oL 159
7.5.2.1.8 -kor+no-clusteroption 159
75219 -Lor+set-localoption oL 159
7.5.2.1.10 -Mor +set-modeoption 159
7.5.2.1.11 -Nor +reset-exportoption 159
7.5.2.1.12 -0 or +reset-clusteroption 160
7.5.2.1.13 -Sor +force-stringoptiono 160
7.5.21.14 -sor+set-valueoption. 160
7.5.21.15 -Uor +set-owneroption 160
7.5.2.1.16 -u or +undefined-value option 161
7.5.21.17 -Xor+canceloption 161
7.5.2.1.18 +freeze-currentoptiono 161
7.5.2.1.19 +freeze-homeoptiono 161
7.5.22 Conditions 161
7523 Useofoptions 162
7.5.24 Noteonmodeandownerchanges 163
7.6 Interactive job and variable administration o o oo Lo 163
7.6.1 gbch-g e 163
7.6.1.1 Options 163
7.6.1.1.1 -?or+explainoption. o oo 163
7.6.1.1.2 -Aor +no-confirm-delete option 164
7.6.1.1.3 -aor+confirm-deleteoption. 164
7.6.1.1.4 -Bor +no-help-boxoption 164
7.6.1.1.5 -bor+help-boxoption oL 164
7.6.1.1.6 -Eor +no-error-boxoption. o oL 164
7.6.1.1.7 -eor+error-boxoption oL 165

7.6.1.1.8 -gor+just-groupoptiono 165

GNUBatch System Reference Manual 11

7.6.1.1.9 -Hor +keep-char-helpoption 165
7.6.1.1.10 -h or +lose-char-helpoption 165
7.6.1.1.11 -jor +jobs-screenoption 165
7.6.1.1.12 -lor +local-onlyoption 166
7.6.1.1.13 -Nor +follow-joboption 166
7.6.1.1.14 -qor +job-queueoptiono 166
7.6.1.1.15 -ror +network-wide option 166
7.6.1.1.16 -sor +keep-cursoroption 166
7.6.1.1.17 -uor+just-useroption oo 167
7.6.1.1.18 -vor +vars-screenoption 167
7.6.1.1.19 -Zor +no-null-queues option 167
7.6.1.1.20 -z or +null-queuesoptiono 167

7.6.2 gbch-xggbch-xmq. 167
7.7 FileMonitoring e 168
7.7.1 gbchfilemon 168
7741 Options . . . L 168
77111 -?or+explainoption. oL 168
7.71.1.2 -Aor+file-arrivesoption o oo 169
7.71.1.3 -aor+any-fileoption. oo 169
7.7.1.1.4 -Cor+continue-runningoption 169
7.71.1.5 -cor+script-commandoptiono L. 169
7.7.1.1.6 -Dor +directoryoption 170
7.71.1.7 -dor+daemon-processoption 170
7.7.1.1.8 -eor +include-existingoption 170
7.7.1.1.9 -G or +file-stops-growing option.o 170
7.7.1.1.10 -l or +file-stops-changingoption 170
7.7.1.1.11 -ior +ignore-existingoption L. 171
771112 -Kor +kill-alloption 171
7.7.1.1.13 -kor +kill-processesoption 171
7.7.1.1.14 -Lor +follow-links option oL 171
7.7.1.1.15 -l or +list-processesoption 172
7.7.1.1.16 -M or +file-stops-writingoptiono 172
7.7.1.1.17 -mor +run-monitoroption L. 172
7.7.1.1.18 -nor +not-daemonoptiono 172
7.7.1.1.19 -Por +poll-timeoption 173
7.7.1.1.20 -por +pattern-fileoption 173
7.7.1.1.21 -Ror +recursive option 173
7.7.1.1.22 -ror +file-deleted optiono 173
7.7.1.1.23 -Sor +halt-when-found option 174
7.7.1.1.24 -sor +specific-fileoption o000 174
7.7.1.1.25 -u or +file-stops-use option 174
7.7.1.1.26 -Xor +script-fileoption 0oL 174
7.7.1.1.27 +freeze-currentoptiono 175
7.7.1.1.28 +freeze-homeoption 175
7.71.2 Filematching 175
7713 Criteria e e 175

7.7.1.4 Pre-existingfileso 176

GNUBatch System Reference Manual 12

7.71.5 Recursivesearches L o e 177
7716 Examples 177

7.7.2 gbch-xfilemon and gbch-xmfilemon o oo o 177
7.8 Useradministration e 177
7.8.1 gbch-charge 177
7.8.2 gbch-uchange 177
7.821 Options 178
7.8.21.1 -?or+explainoption. o 178

7.8.2.1.2 -Aor+copy-defaultsoption 178

7.8.21.83 -Dor+set-defaultsoptiono oo 178

7.8.2.1.4 -dor +default-priority option 179

7.8.21.5 -Jor+job-modeoptiono 179

7.8.2.1.6 -lor+min-priorityoption oL 179

7.8.2.1.7 -Mor +max-load-leveloption 179

7.8.2.1.8 -mor+max-priority optiono 179

7.8.21.9 -Nor+no-rebuildoption 180

7.8.2.1.10 -por +privilegesoption 180

7.8.2.1.11 -Ror +rebuild-fleoption 180

7.8.2.1.12 -S or +special-load-level option 180

7.8.2.1.13 -s or +no-copy-defaults option 181

7.8.2.1.14 -T or +total-load-level option 181

7.8.2.1.15 -uor +set-usersoption oo 181

7.8.2.1.16 -Vor +var-mode optiono 181

7.8.2.1.17 -Xor +dump-passwd option 181

7.8.2.1.18 -Y or +default-passwd option 182

7.8.2.1.19 -Z or +kill-dump-passwd option 182

7.8.2.1.20 +freeze-currentoptiono 182

7.8.2.1.21 +freeze-homeoption 182

7.8.22 Usersordefault 183
7.8.2.3 Rebuilding the user controlfile 0L 183
7.8.2.4 Dumpingthe passwordfile 183
7.8.25 Privileges 183
7.8.2.6 Modearguments e 184

7.8.3 gbch-ulist 184
7.83.1 Options e 185
7.8.3.1.1 -?or+explainoption. o oL 185

7.8.3.1.2 -D or +default-formatoption 185

7.8.3.1.3 -dor +default-line option 185

7.8.3.1.4 -For+formatoptiono 185

7.8.3.1.5 -gor+group-name-sortoption 186

7.8.3.1.6 -Hor+headeroption 186

7.8.3.1.7 -Nor+no-headeroption. 186

7.8.3.1.8 -nor +numeric-user-sortoption 186

7.8.3.1.9 -Sor+no-user-linesoption 186

7.8.3.1.10 -s or +no-default-lineoption L. 187

7.8.3.1.11 -Uor +user-linesoption 187

7.8.3.1.12 -uor +user-name-sortoption 187

GNUBatch System Reference Manual 13

7.8.3.1.13 +freeze-currentoption oo 187

7.8.3.1.14 +freeze-homeoption L. 187

7.8.3.2 Formatargument 188
7.8.3.3 Privilegesformat 188
7.83.4 Modes 189

7.8.4 gbch-user 189
7.8.4.1 Options 190
7.84.1.1 -?or+explainoption. 190

7.8.4.1.2 -Bor+no-help-boxoption 190

7.8.41.3 -bor+help-boxoption oL 190

7.8.4.1.4 -dor+display-only option 191

7.8.4.1.5 -Eor+no-error-boxoption.o 191

7.8.4.1.6 -eor+error-boxoption Lo 191

7.8.4.1.7 -gor+group-name-sortoption 191

7.8.4.1.8 -Hor +keep-char-helpoption 191

7.8.41.9 -hor+lose-char-helpoption. 192

7.8.4.1.10 -ior +update-usersoption 192

7.8.4.1.11 -m or +set-default-modes option 192

7.8.4.1.12 -nor +numeric-user-sortoption 192

7.8.4.1.13 -uor +user-name-sortoption 193

7.8.4.1.14 -vor+view-usersoption Lo 193

7.8.5 gbch-xuser and gbch-xmuser 193
7.9 Web browser interface supporto 193
7.10 System file management L 194
7.10.1 gbch-btuconv L 194
7.10.1.1 Options 194
710111 -Doptiono 195

7.10.1.1.2 —eoption 195

7.101.1.3 foption 195

7.10.1.1.4 -soption 195

7.10.2 gbch-cjlist 195
7.10.2.1 Options L L 196
7.10.2.1.1 -Doption e 196

7.10.2.1.2 -eoption 196

7.10.2.1.3 foption 196

7.10.2.1.4 -soption 197

7.10.2.1.5 -uoption 197

7.10.3 gbch-cvlist L 197
7.10.3.1 Options 197
7.10.3.1.1 -Doption 197

7.10.3.1.2 —eoption 198

7.10.3.1.3 foption 198

7.10.3.1.4 -soption 198

7.10.4 gbch-ciconv e 198
7.10.4.1 Options e 199
710411 -Doption 199

710412 -eoption 199

GNUBatch System Reference Manual 14

7.10.4.1.3 foption 199

7.10.4.1.4 -soption 199

7105 gbch-ripc e 199
7.10.5.1 Options 200
7.10.5.1.1 -Aoption 200

7.105.1.2 -Doption 200

7.10.5.1.3 -doption 200

7.10.5.1.4 foption 201

710515 -noption 201

7.10.5.1.6 -ooption 201

7.10.5.1.7 -Poption 201

7.10.5.1.8 -Goption 201

7.10.5.1.9 —roption 201
7.10.5.1.10-Soptiono 202
7.10.5.1.11-xoption 202
7.10.5.1.12-Boptiono 202
7.105.1.13-Noption 202

7.105.2 Example oL 202
7.10.6 gbch-passwd 203
7.10.6.1 Options e 203
7.10.6.1.1 -uoption 203

7.10.6.1.2 -poption e e 203

7.10.6.1.3 foption 203

7.10.6.1.4 doption 204

7.10.6.1.5 -Foption 204

8 Text screen-based programs 205
8.1 gbch-q - interactive batch queue manager 205
8.1.1 User Interface SettingsonEntry oL 205
8.1.2 Generalgbch-gscreencommands 206
8.1.2.1 ContextSensitiveHelp o 207
8.1.22 MacroCommands e 207

8.1.3 TheJob Screenand Commands i 207
8.1.3.1 Viewjobscript. 210
8.1.3.2 Changetitle 210
8.1.3.3 Time Specification. 210
8.1.3.3.1 Turnonorofftimeconstraint 211

8.1.8.3.2 Editingthetime 211

8.1.3.3.3 Editing the repetitionfactor 212

8.1.3.3.4 Daystoavoid 212

8.1.3.3.5 Rescheduleoptions 212

8.1.3.4 Changepriority 212
8.1.3.,5 Changeloadlevel 213
8.1.3.6 ProgressCode 213
8.1.3.7 Forcetorun e 213
8.1.3.8 Killorcanceljob 214

8.1.3.9 Process Parameters 214

8.2

GNUBatch System Reference Manual 15

8.1.3.10 Change command interpreter oL 216
8.1.3.11 Unqueue dob 216
8.1.3.12 Set mail/write message on job completionflags 217
8.1.3.13 Settingjobarguments Lo 219
8.1.3.14 Editing the environmento oo oo 219
8.1.3.15 Editing redirections L 220
8.1.3.16 Job Assignment Editing o oo 221
8.1.3.16.1 Choosingthe Variable 222

8.1.3.16.2 Specifying the Value to be Assigned 222

8.1.3.16.3 Specifying the Assignment Operation 223

8.1.3.16.4 Settingtheflags L. 223

8.1.3.17 Setjobconditions 223
8.1.3.17.1 Choosingthe Variable 224

8.1.3.17.2 Specifying the Comparison Operator 224

8.1.3.17.3 Specifying the Value to Compare Against 224

8.1.3.18 Change Owner e 224
8.1.3.19 Change Group i 225
8.1.3.20 Mode Editing 225

8.1.4 The Variables Screenand Commands 226
8.1.41 Assignnewvalue 227
8.1.4.2 Arithmeticoperations oo 227
8.1.4.3 Changecomment i e 228
8.1.44 Createnewvariable Lo 228
8.1.45 Renamevariable 229
8.1.46 ModeEditing 229
8.1.4.7 ChangeOwner e 230
8.1.48 Changeofgroup e 230

8.1.5 Commandinterpreterlist 231
8.1.5.1 Setting Up A Command Interpreter. 232

8.1.6 Editholiday list. 232
8.1.7 Setting programoptions 233
8.1.8 Setting Display Contents 233
8.1.8.1 Display Format forthe Jobs Screen 234
8.1.8.2 Display Format for the Variables Screen 235
8.1.8.3 Editingthe Display Formats 237
gbch-user - Interactive user administrationtool 238
8.2.1 Display currentpermissions L L L L 239
8.22 Mode Edit e 239
8.2.3 Viewandeditpermissionso L e 240
8.2.3.1 Setting user priorities L 243
8.2.3.2 Setting default prioritieso 243
8.2.3.3 Settinguserloadlevels 243
8.2.3.4 Settingdefaultloadlevels, 243
8.2.3.5 Applying default settingstooneorallusers 244
8.2.3.6 Displayingcharge 244
8.2.3.7 Settingusersprivileges L 244

8.2.3.8 Setting default privileges oo 245

GNUBatch System Reference Manual 16

8.2.3.9 Settingdefaultandusermodes. 246

9 X/Motif Programs 248
9.1 gbch-xmgq - Optional Motif GUI Batch Queue Tool 248
9.1.1 Options. L 248
9.1.2 TheMainWindow e 248
9.1.3 The Menus and ShortcutButtons 251
9.1.3.1 TheOptionsMenu e 251
9.1.3.2 The Action Menu & Buttonso o oo 252
9.1.3.3 ThedobsMenu &Buttons 0oL 252
9.1.34 TheCreateMenu 253
9.1.35 TheDeleteMenu 254
9.1.3.6 The ConditionMenu o 254
9.1.3.7 TheVariable Menu 255
9.1.3.8 TheSearchMenu 255
9.1.3.9 ThedobmacroMenu 256
9.1.3.10 The VarmacroMenu o e 256
9.1.3.11 Help e e 256

9.1.4 Settingthe View Options 257
9.1.4.1 Setting the Confirmationlevel 257
9.1.4.2 Restrictingthedisplay oL oo 257
9.1.4.2.1 Restricting the display to the localhost 258

9.1.4.2.2 Restricting the display by jobqueue 258

9.1.4.2.3 Restricting the display by user & group 258

9.1.4.3 Changing the fields displayed and their format 259
9.1.4.3.1 ChangingthedJobDisplay 259

9.1.4.3.2 Changingthe Variable Display 261

9.1.44 Savingthe FormatChanges 262
9.1.45 Savingthe ViewOptions 262

9.1.5 ViewingaBatchdob. 262
9.1.6 Changing Job and Variable parameters. 263
9.2 gbch-xmr - Motif Batch Job Submission & Editing Tool 264
9.21 OptioNs. e 265
9.22 TheMain Window e 265
9.2.3 The Menus and ShortcutButtons oo 266
9.2.3.1 TheOptionsMenu 266
9.2.3.2 TheDefaultsMenu o 267
9.2.3.3 TheFileMenu &Buttons 268
9.2.3.4 ThedobsMenuandButtons 269
9.235 Help e 270

9.2.4 ChoosingaDirectory 270
9.25 CreatingaNewdJob L 270
9.2.6 Loading an Unqueued or Previously SavedJob 271
9.2.7 Setting up or Editing the Job Specification 0. 271
9.2.8 EditingthedJob Script 271
9.2.9 Selecting adifferent Text Editor oo 272

9.2.10 SubmittingJobs 272

GNUBatch System Reference Manual

9.2.11 Saving, Closing and DeletingdJobs
9.2.12 Specifying Defaults L

9.3 gbch-xmuser - Motif GUI User Administration Tool
9.3.1 Options. L e
9.3.2 TheMainWindow e e
9.3.3 TheMenusandOptions
9.3.3.1 TheOptionsMenu e

9.3.3.2 TheDefaultsMenu

9.3.3.3 TheUsersMenu. i,

9.3.3.4 TheUsermacroMenu ittt

9.3.35 TheHelpMenu

9.3.4 Selecting multiple users formenuoptions
9.3.5 Copyingdefaultstoallusers
9.3.6 Resettingausertothedefault

9.4 gbch-xmfilemon - Optional Motif GUI Interface to gbch-filemon

10 Configuration of user interfaces

10.1 Configuration files and environment variables
10.1.1 Environment Variableso
10.1.2 Configurationfiles e
10.1.3 Environment variable or keywordnames Lo

10.2 User reconfiguration L
10.2.1 Messagefiles e
10.2.2 Fileformat oL

10.2.2.1 Key definitions
10.2.2.1.1 Specialkey sequences.,
10.2.2.1.2 Helpanderrormessages« v v v v v v v v i v i
10.2.2.1.3 Optionsyntaxo
10.2.2.1.4 Alternatives L
10.2.2.1.5 Prompts
10.2.2.1.6 Numericparameters
10.221.7 Titles L
10.2.2.1.8 Enhancements and line drawing in headers
10.2.2.2 Changing message files
10.2.3 Environmentvariables.

10.3 Variation of searchorder
10.3.1 Search order for messagefileso
10.3.2 Search order for programoptions
10.3.3 Freezingoptions L

11 Extending the toolset

11.1 Message Handling e
11.1.1 Customising the system messagefile
11.1.2 Specifying a customised messagefile L.
11.1.3 Specifying alternative job completion - systemwide
11.1.4 Specifying alternative job completion programs - peruser

11.2 Command Interpreters L e

11.3 Custom Tools & Scripts e

17

272
272
273
273
273
274
274
274
275
275
276
276
276
277
277

278
279
279
280
281
281
282
284
285
286
288
289
290
291
291
291
292
294
294
295
295
296
296

GNUBatch System Reference Manual 18

11.3.1 Custom Tools e 300
11.8.2 Shell Scripts o e 300
11.4 Macros for Interactive User Programs o o 302
11.4.1 Insertingthe commands 302
11.4.2 Menu Options in the Motif Programs 303
11.4.3 Binding the keys in gbch-qand gbch-user 304
11.4.4 Example - Adding the “cancel all jobs in queue”togbch-q 304
11.5 File & Event Monitoring L e 305
11.5.1 Polling for Arrivalofa File 305

11.5.2 Continuous Polling for a constantly changing listof Files 306

Chapter 1

Introduction

GNUBatch is a fully functioned, high performance Job Scheduler and Management System which is avail-
able for a wide range of machines running a Unix Operating System. This manual provides the System
Reference Information for all of the Unix platforms on which GNUBatch may be run, covering the basic
product, shell and “curses” interfaces and the Motif Interface.

Separate manuals discuss the MS Windows Clients, the Web Browser Interface and the API.

1.1 Typographical Conventions

These manuals use various character fonts to indicate different types of information as follows:
File names and quotations within the text
Examples and user script

Generic data (where you should put a value appropriate to your own
environment)

Program names, whether for GNUBatch or standard Unix facilities

Warnings and important advice

1.2 Command Line Program Options

Almost all of the programs that make up GNUBatch can take (or require) options and arguments supplied
on the command line. As much flexibility as possible is allowed in the specification of these options and
arguments. The examples in the manual use which ever notation is clearest.

White space may be inserted into flag arguments as in

gbch-r —-c COUNT=0 -T 10:16

or it may be left out as in

19

GNUBatch System Reference Manual 20

gbch-r —-cCOUNT=0 -T10:16

Single character options may be strung together with one minus sign:

gbch-r —mwC

or separated, as in

gbch-r -m -w -C

If mutually contradictory arguments are permitted, the rightmost (or rather the most recently specified)
applies.

The ability to redefine option letters has been provided, together with the +keyword or ——keyword style
of option. Such options should be given completely surrounded by spaces or tabs to separate them from
each other and their arguments, for example

gbch-r —--condition COUNT=0 —--time 10:16

In addition, all the commands have an option -2 or +explain (or ——explain) whose function is to list
all the other options and exit.

There is a mechanism for picking up options from environment variables or so-called configuration files
called . gnubatch or .gbch/gnubatchl off the user's home directory containing the relevant keyword.

Chapter 2

Overview

GNUBatch can run on a single Unix host or several co-operating machines. The central white area of
the block diagram shows the possible components of GNUBatch on a Unix machine. The shaded area
indicates the entities, outside of that machine’s GNUBatch system boundary, which use or provide services

to it.
] Batch Job Zhell Level
Interactive Submission Management User
Management Programs
Matif GUI Carmimand
Toolz Lire Ltilties
<

Character
Toolzs

"C' Program

S Daemons
Jak
Gy LIk Mi-Biatch
Hostz
Tl
{;b
Batch Jobs

At the heart of GNUBatch is the scheduler daemon btsched. This daemon manages the batch jobs and
the job control variables, which are used for handling dependencies. There are two instances of btsched
running on a stand alone system, or three if co-operating with other GNUBatch hosts. Co-operating
GNUBatch hosts require connection via a network that provides TCP/IP services.

AP
Windowes PC
Ai-Batch Remate Xi-Batch | [] Top/p
Scheduler H Interfaces

21

GNUBatch System Reference Manual 22

btsched maintains the job and variable shared memory segments, writing them out to file when changes
are made. It forks to provide one process to monitor running processes and one to accept messages on
the message queue. It forks again to provide the third btsched to handle the network interface if this mode
of operation is used.

When an interactive queue management tool (e.g. gbch-q or gbch-xmq) process is started, it arranges with
btsched to be sent signals to advise it of changes in the job queue or variable list.

All requests, by gbch-q and other processes, are dealt with by sending a message on the message queue
and receiving replies on the same message queue.

2.1 IPC used by GNUBatch

GNUBatch uses one message queue to communicate with the scheduler process, btsched. Two shared
memory segments are used to hold records of jobs and variables. These records are periodically written
out to the files bt sched_jfile and btsched_vfile respectively in the spool directory, by default
/usr/local/var/gnubatch. A further shared memory segment is used as buffer space for passing
job details, as the size of messages which may be sent on message queues is limited on many systems.
One group of semaphores controls access to the shared memory segments, and another group is used
for network locking.

The IPC facilities can be recognised by running ipcs. The items in question are owned by gnubat ch with
a key of 0x5869Bxxx.

2.2 Directory and File Structure

The files which comprise GNUBatch are held in various directories depending upon their nature. With the
exception of global configuration files the installation can be tailored to suit local practices and standards.

+ Global configuration files are always held in the /usr/local/etc directory.
» User programs can be placed in any directory which is on the GNUBatch users’ PATH.
+ Internal programs and data are held in two or sometimes three separate directories.

» There are some other useful programs, such as gbch-ripc, gbch-cjlist etc, which are also placed in
the user path directory.

If your public program directory is /usr/1bin (some machines use /usr/local/bin) and the spool
directory is under /usr (some are under /var), then the default installation will look like this:

GNUBatch System Reference Manual 23

N
Xi-Batch
S}"Hrﬂl’ﬂ l1bin batch
config
file
iles K
Liser
Frograms
B, i
Internal Jobs
Pragrams Vanables
and help and
filas Internal
data

2.2.1 Internal Directories

GNUBatch uses three logical directories to hold the internal programs and data. These are usually
mapped onto two physical directories. A default installation would look like this:

These directories may be relocated by assignment to the three environment variables: SPROGDIR, SPHELPDIR
and SPOOLDIR. These environment variable assignments may be placed in the master configuration file,
/usr/local/etc/gnubatch.conf, to ensure consistency. The default directories are as follows:

Default location Environment variable | Function
/usr/local/var/gnubatch SPOOLDIR Jobs and other internal data.
/usr/local/libexec/gnubatch|SPROGDIR Internal programs
/usr/local/libexec/gnubatch|SPHELPDIR Global help and message files

Take care not to assign values to these environment variables arbitrarily; very strange things will happen if
one part of GNUBatch is using one set of directories and some other part is using another!

2.2.2 Internal Programs

These include the scheduler, network connection daemon, xbnetserv and the utilities used by them. They
are held in the internal programs directory. With certain exceptions it is not intended that users should ever

GNUBatch System Reference Manual 24

F-PROGDIR F=PHELFDIR F=POOLDIR
RO o,
Internal Help & Text Internal
e Database &

Programs files Batch jobs

-

E(_p\rmﬂ | batch /

invoke these programs.

The file structure of the internal programs is flat within their directory.

2.2.3 Batch directory files

The following GNUBatch internal files are held in the spool directory, which by defaultis /usr/local/var/gnubatc

File Purpose

btufileIfGNU1 User permissions
btchargesIfGNU1 |User charges (now deprecated)
cifile Specification of command interpreters
holfile Days set to be holidays
btsched_jfile Saved record of jobs
btsched_vfile Saved record of variables

btsched_reps Report file holding any messages output by btsched
pwdumpI£GNU1 Optional saved password map file (now deprecated)
SPnnnnnnnn Queued jobs

SOnnnnnnnn Standard output of pending jobs

ERnnnnnnnn Standard error of pending jobs

NTnnnnnnnn Local copy of remote job

GNUBatch System Reference Manual 25

The above files are owned by gnubatch. Unused copies of the last four kinds of files may safely be
deleted. The nnnnnnnn component of the file name is derived from the batch job number.

2.2.4 Help and Message files

GNUBatch reads all of its messages from a series of text files (Apart from the “help | cannot find the
message file” messages). The user may adjust these to tailor the command interface, help and error
messages to be suitable for the particular installation. These are system-wide message files. It is also
possible to set up customised versions for individual users or applications.

The following files are, by default, owned by gnubat ch and held in the directory, by default /usr/local/libexec/c

File Purpose

btg.help Screen layout, messages and key assignments for gbch-q
btuser.help Screen layout, messages and key assignments for gbch-user
btrest.help Messages and arguments for other user programs
btint-config |Message file for btsched, btwrite and xbnetserv
filemon.help |Message file for file monitor option, gbch-filemon.
xmbtqg.help Message file for gbch-xmq

xmbtr.help Message file for gbch-xmr

xmbtuser.help|Message file for gbch-xmuser

Please refer to the chapters on Configuration and Extending the toolset for details of how to modify these
files.

2.2.5 Configuration files held in /usr/local/etc

GNUBatch uses up to three files held in the system directory /usr/local/etc.

2.2.5.1 GNUBatch Hosts File

The file /usr/local/etc/gnubatch.hosts is used on networked installations of GNUBatch to de-
note details of the remote hosts and clients to which connection is to be made.

Each line in the file other than blank lines or comment lines (introduced with a # sign) consists of up to 4
fields. These are as follows:

1. The hostname to attach to or an internet address suchas 197.3.9. 1. For DHCP clients, this gives
the Windows user name to be recognised (case insensitive).

2. An alias name by which the remote host is to be referred to within GNUBatch. The user can give
either the host name or the alias name in commands such as gbch-conn but displays (as in gbch-q
or gbch-vlist) will always use the alias. For DHCP clients, this gives the Unix user name (if different)
corresponding to the given Windows user name.

GNUBatch System Reference Manual 26

An alias or Unix user name can be omitted by just putting a single “-” sign.

An alias must be supplied if the host name is given as an internet address.

3. Flags, which are further described below.

4. A numeric time-out value in seconds. The default if this is omitted is 1000. This is most important for
Windows clients, as it also denotes a time after which the connection becomes “stale” and must be
refreshed, possibly by re-entering the password.

The flags field is one or more of the following separated by commas.

probe Denotes that the scheduler should check that the specified host is active
before attempting a connection.

manual Denotes that no connection is attempted until the operator invokes one with
gbch-conn.

external Denotes that the named host is some external system. Currently this has

no meaning in GNUBatch.

dos (user)

For a Microsoft Windows client PC. Requests are allocated by default to
the username given.

client (user)

Is a synonym for dos (user) .

clientuser

Denotes that the first and second fields are user, not machine names, for
DHCP clients. As a special case, if the first field is default and the second
field is a user name on the Unix host, then a default user name is thereby
supplied for all unknown Windows users.

clientuser (machine)

As clientuser, but denotes that the default client machine is given, oth-
erwise a password is required.

trusted Exchange information with this Unix host about Windows client users. (This
is now deprecated.)
pwchk Demand Unix password from Windows clients in all cases.
For example:
machl9 red probe
mach20 green probe,manual
192.112.238.7 vyellow probe
wWs21 blue dos (jmc) 30
john jmc clientuser, pwchk
default guest clientuser

This provides for 4 machines, where host names are mach19, mach20, WS21 an IP address and also a

user name for DHCP clients. These are given aliases of red, green, yellow and blue.

In the first and third case any connection will be tested first before continuing.

In the green case no connection is attempted until the user types,

or

gbch—-conn green

GNUBatch System Reference Manual 27

gbch-conn mach20

The blue machine is a Microsoft Windows workstation. Requests will be assumed to come from user
jmc. Time-outs of 30 seconds apply to requests.

Next the Windows user name of john on any Windows PC is translated to a Unix user name of jmc, after
checking the password.

Finally, any unrecognised Windows user name is treated as the Unix user name of guest.

The utility program gbch-hostedit (or the GTK+ version xhostedit) may be used to create or edit this file with
appropriate checks.

Note that the mapping of UNIX names to Windows names in this file is deprecated — this is now done in
the user mapping file.

2.2.5.1.1 Multiple IP addresses

It is sometimes unclear what the local address is, i.e. the IP address corresponding to the host on which
it is running. It is important for the software to know this, as other hosts will use this to identify jobs and
variables belonging to the host. It is possible to specify this in the hosts file thus:

localaddress 193.112.238.250

The 1ocaladdress statement must be the first item (other than comments or blank lines) in the host file.
The address given can be either a host name or an IP address.

The address can also be obtained each time it is started by connecting to another host and running
getsockname () on the result. To signify this, the following format is used.

Localaddress GSN (www.google.com, 80)
The integer gives a port number to use.

The host name can be given as above, or an IP address can be used.

2.2.5.2 GNUBatch Master Configuration File

In order to work properly, the scheduler process and all the other programs must be started with the same
environment variables. For convenience, the environment may be initialised for each program by creating
a master configuration file /usr/local/etc/gnubatch.conft.

This file contains a list of environment variable assignments. Any environment variables not defined on
entry to any of the programs are initialised from this file. Any environment variables used by GNUBatch
may be included in this file, not just those shown in the example.

For example:
SPOOLDIR: /usrl/spool/batch

SPROGDIR: /usrl/spool/bin
MAILER=/usr/lib/sendmail

GNUBatch System Reference Manual 28

An environment variable declared using the equality sign = will be included in the environment of all batch
jobs that are submitted. This may not be wanted for all variables, in particular the scheduler directories
pointed to by SPOOLDIR, SPROGDIR and SPHELPDIR. To avoid jobs inheriting environment variables
from the configuration file declare them using the colon, : , instead of the equals sign, =.

Please note that the text to the right of the colon or = sign is taken literally; there is no recursive expansion
of Sname constructs except for the message file names BTQCONF, BTUSERCONFE and BTRESTCONF
(where it is limited to 10 recursive expansions).

2.2.5.3 User Mapping file
The user map file provides a mapping between external names, usually Windows user names, and UNIX
names.

The file isin /usr/local/etc/gbuser.map, and consists (apart from comments introduced by the #
character) of lines of the format

unix-user:windows-user
For example:

User mapping file

jmc: john collins

sec:sue collins
guest:default

The final entry gives a default user if a named user is not found in the file.

UNIX users not found on the host are silently ignored.

2.2.5.4 GNUBatch Static Environment File

To avoid every job having to have all the environment variables in it, thus saving space, the static environ-
ment file, /usr/local/etc/gnubatch.env, is provided. The commands that submit jobs will only
store “differences” from this file in each job. This is provided to avoid saving large amounts of environment
information with each job.

Alternative filesto /usr/local/etc/gnubatch.env can be specified by including the following line in
/usr/local/etc/gnubatch.conf:

BATCHENV:filel, file2....

These files are read in sequence and constitute the new environment.

GNUBatch System Reference Manual 29

2.3 Job and Variable Modes

Each job and variable is given a protection mode. This consists of a set of permissions dictating how
various users may, or may not, access the job or variable. The modes are like those on Unix files, pro-
viding user, group and other access. An expanded set of permissions has been devised to enable the
permissions to control separate operations.

The permissions are as follows, one set for each of user, group and others:

Permission Function

Read Job or variable may be read
Write Job or variable may be written
Reveal Job or variable is ‘visible’ to user
Read modes Modes may be displayed

Set modes Modes may be set

Give away Owner Ownership may be given away
Give away Group Group may be given away
Assume Ownership Ownership may be assumed

Assume Group Group may be assumed
Delete Job or variable may be deleted
Kill (jobs only) Job may be killed

Only the primary group of a user is considered when evaluating group access permissions.

The visibility of variables and jobs can be set to the local machine only or all networked GNUBatch ma-
chines.

2.3.1 Change of owner and group

Changes of owner and group take place in 2 stages for security.

1. The existing owner, or someone with give away permission gives the job or variable away to a
designated owner or group. This designated owner or group is noted, but the change has no effect
at this stage.

2. The designated owner or a user with that group will have to explicitly assume ownership of the job
or variable. This owner or group must also have the appropriate permission.

This 2-stage process is to prevent the security violations of unauthorised assumption of ownership, and
also to prevent jobs from being run masquerading as unauthorised users.

A user with write administration file privilege does not have to go through this procedure. Changes to
owner or group of a job or variable by such users are immediate and complete.

GNUBatch System Reference Manual 30

2.3.2 |Initialisation of modes
The modes of jobs and variables are set when they are created, however users authorised by the mode
may reset them subsequently.

In the case of jobs, the modes set by the option —M to gbch-r are used, in default of which a set of default
modes for the given user are set.

In the case of variables, the mode is set from the default modes for the given user.

A user may be permitted to reset his own default modes with the change default modes privilege as
described in a later chapter, using gbch-user. A system-wide ‘default default mode’ is given to each new
user, along with a default set of privileges.

As distributed, GNUBatch will assign the following default modes to jobs and variables:

Jobs Variables
User Group Other User Group Other
Read Yes Yes No Yes Yes No
Write Yes No No Yes No No
Reveal Yes Yes Yes Yes Yes Yes
Read Mode Yes Yes Yes Yes Yes Yes
Set Mode Yes No No Yes No No
Give away owner Yes No No Yes No No
Give away group Yes Yes No Yes Yes No
Assume owner No No No No No No
Assumegroup No No No No No No
Delete Yes No No Yes No No
Kill Yes No No N/A N/A N/A

2.4 Standard Exit Codes

The command line programs are often run from within other programs or shell scripts. To allow convenient
error diagnosis, there is a set of standard exit codes which are used by the GNUBatch programs.

2.4.1 Less serious exit codes

The less serious ones have values less than 100 and are:

GNUBatch System Reference Manual

Exit

Description of Probable Cause

N o o~ 0N

8
11
13
14
16
19
20
30
31
32
50

Return true, i.e. program ran correctly

Return false, returned only by gbch-var and gbch-jstat for test operations
which fail.

Bad arguments to program

Invalid permissions on job or variable for operation
gbch-var only - lost race competing with someone else
Could not cd to spool directory (probable set-up error)
Scheduler, i.e. btsched, not running

Unknown host: gbch-conn, gbch-rr, etc

TCP error

btsched shutting down

Unknown job: gbch-jdel or gbch-jchange
gbch-cichange name clashes with an existing command interpreter
No privilege for requested operation

File not found (actually not used anywhere)

Variable not found

User not set up, run gbch-uchange -R (deprecated)
Unknown user: gbch-charge, gbch-uchange, etc
Cannot perform operation because the job is running

Cannot create file in spool directory, disc probably full

2.4.2 More serious exit codes

The more serious exit codes are:

31

GNUBatch System Reference Manual

Exit

Description of Probable Cause

100
101
150
151
152
153
154
155
200
201
202
203
204
240
246
247
248
249
250
251
252
253
254
255

Corrupted help or configuration file

Terminal input error (in curses library)

Internal error for jobdump, file not found

Internal error for jobdump, directory not found

Internal error for jobdump, cannot create file

Internal error for jobdump, job not found

Internal error for jobdump, cannot delete job

Internal error for jobdump, cannot save options

User program received unexpected signal

Cannot create pipe, check for disc full

Cannot fork, process table probably full

Cannot access shared memory for jobs, set-up probably scrambled
Cannot access shared memory for variables, set-up probably scrambled
scheduling process btsched has failed

Cannot access working directory for job (in last stages of starting job)
Job not found (in last stages of starting job)

Unknown command interpreter (in last stages of starting job)
Could not create/open file in redirections

Something strange, probable set up error

Cannot create pipe to execute job, disc probably full

Cannot fork to execute job, process table full

Ran out of string space in job for environment variables etc.
Process ran out of memory

Cannot find help message file.

32

Chapter 3

User Administration

GNUBatch maintains a list of users which is generated from the password system (whether using the
/etc/passwd file or NIS). Hence, each user must first have a Unix account in order to have a GNUBatch
account.

User permissions are now held as a default set together with differences for specific users, so no special
action need be taken when users are added or deleted, unless they are distinguished in some way.

There are 4 (formerly 5) aspects to the GNUBatch user account:
Privileges Control access to usage and administration functions of the system. For example, the
privilege to submit jobs to the queue.

Load levels Provide a limit on the size of any one job and the total load that that user can place on
the system.

Priorities = When there are more jobs ready to run than are allowed these position the “ready” jobs
with respect to each other. Facilities exist to specify what priorities each GNUBatch
user may specify for their batch jobs.

Modes Specify the default modes that are placed on jobs and variables for the user who creates
them. Modes are described in detail in the Variables chapter and the Jobs chapter.

Charges These are now deprecated.

3.1 Privileges

In addition to the ability to access jobs and variables in the manners described by the modes, each user
has a number of privileges, as follows. The privileges may be individually set for each user using gbch-user,
and a default established for new users. The privileges are:

33

GNUBatch System Reference Manual 34

Privilege Abbr | Description

Read admin file RA User may display contents of administration file showing users, charges
and privileges.

Write admin file WA User has full write access to administration file.

Create entry CR User may create jobs and variables. This permission is granted by default.

Special Create SPC | User may update command interpreter file or adjust load levels.

Stop scheduler ST User may stop GNUBatch (i.e. run gbch-quit)

Change default|cdft |User may change his/her default modes. This permission is granted by
modes default.

Combine user and | UG If the user has this privilege, then any job or variable in the user’s primary

group permissions group will have the permissions of “owner” and “group” combined.
Combine user and | UO If the user has this privilege, then any job or variable in not in the user’s
other permissions primary group will have the permissions of “owner” and “others” combined.
Combine group | GO If the user has this privilege, then any job or variable will have the permis-
and other permis- sions of “group” and “others” combined, effectively “turning off” any differ-
sions ence between “group” and “other” permissions.

Unless otherwise stated in the above table the privileges are turned off by default. The default privileges
are those which by default are applied to new users. They may be changed by a system administrator
using gbch-user.

A system administrator is any user with all privileges enabled, especially the write administration file privi-
lege. Initially the super-user, root, and gnubatch are designated as system administrators (and it is not
possible to turn this off). A particular feature of this privilege is that changes to owner or group of jobs or
variables are immediate and complete.

To save screen space the abbreviations given in the above table are often used in GNUBatch to represent
these permissions. An example of these may be seen on the main screen of the user administration tools,
btuser, gbch-xuser and gbch-xmuser.

3.2 Load Levels

Each user has a maximum load level. This is a number given to each job which relates to the load it has
on the system. A user can be limited to the maximum size of a job with this parameter.

Each user also has a fotal load level. This limits the sum of the load levels for each job which the user may
have running.

Each user also has a special create load level, but this just serves to initialise the load level for new
command interpreters if the user is allowed to create them (i.e. he/she also has special create privilege).

GNUBatch System Reference Manual 35

3.3 Priorities

A batch job may have a priority in the range of 1 to 255. Users will usually be restricted to a smaller range
between their individual minimum and maximum priorities, but which are normally the system defaults,
initially 100 to 200. A default priority for each user may be set; again there is a system default, initially 150.

When a job is queued using gbch-, it is given the user’s default priority unless overridden with the —p
option. It is possible to set a user's minimum, maximum and default priorities to apparently useless values,
such as setting the default priority outside the range of the maximum and minimum priorities to force the
user always to set a priority.

Jobs belonging to remote machines may appear in different places on the queue than on their machines
when they initially come on line, but this situation, which is harmless, should in any case rapidly adjust
itself.

3.4 Charging

Charging is deprecated and has been removed from GNUBatch.

3.5 Modes

The modes of jobs and variables are set when they are created. Unless otherwise specified, they are set
to the default modes in force for the user who created the job or variable.

See Job and Variable Modes for an introduction to Modes. Additional information follows about jobs and
variables in the relevant sections.

A user may be permitted to reset his/her own default modes with the change default modes privilege,
using btuser. A system-wide ‘default default mode’ is given to each new user, along with a default set of
privileges.

As distributed, GNUBatch will assign default modes to users for the jobs and variables they create as
described previously on page 30.

Chapter 4

Job control variables

GNUBatch provides Job control variables for handling all types of dependencies. In this manual, when it
is not likely to be ambiguous, Job control variables are usually just referred to as variables.

There are some variables defined as standard, which are used for controlling the overall operation of
GNUBatch. Other variables may be created, modified, queried and deleted by any suitably authorised
users, via interactive and command line tools.

The specifications for batch jobs include options for interacting with variables before jobs may start, when
jobs are starting and when they finish. For example a job called update may use two variables, called
STATUS and COUNT, for dependencies with other jobs and the outside world.

36

GNUBatch System Reference Manual 37

Al-Batch The Joh Events and Status
1’ .. i
il for STATUS = go Planned =tart Time
ancd LOCH =0
Blocked from starting becauze
STATUS I=goor LOCK =0
B, L L e e T o Pt R STATUS = go and LOCK =0
Lionzh = LionZH - 1
e e R }{l_Ea‘tch S‘tar‘ts _||:|I::|
[u k]
=
|_
update
st job finizhes and Ai-Batch
otitocha P Setensar ot
If job failed
then STATUS=errar
If job finizhed normally
then STATUS=ok
| ¥

In this example the job update may not start until the variable STATUS contains the string “go” and the
variable COUNT contains an integer value less than 10. In GNUBatch terminology these tests are called
conditions. The variables can have their values set by any combination of the following:

GNUBatch running jobs which specify variable operations for starting.

GNUBatch collecting the exit status of jobs which have finished and specifying variable operations
for normal exit, error and/or abort.

Users changing the value of variables manually.
Batch jobs changing the value of variables themselves.

The file monitor program gbch-filemon setting a variable or variables to indicate the arrival or change
of afile.

Other processes unconnected with GNUBatch changing the values of variables via the API or using
the command-line tools.

GNUBatch System Reference Manual 38

Returning to our example, either one or both of the variables do not have the required values, so GNU-
Batch waits until both variables meet the conditions on job update. Once the conditions are met GNU-
Batch starts job update running.

When the job finishes, GNUBatch gets the exit status and performs any specified operations. In this case
it will increment COUNT by one (however the job finished) and set STATUS to “ok” if the job worked or
“error” if it did not. In GNUBatch all operations on variables that are specified in the options for a batch job
are called assignments.

Operations on variables are “atomic”. No other jobs, processes or users can access a variable or variables
whilst they are being tested or changed. This is best seen looking at the assignment of variables STATUS
and COUNT when job update finished. Both variables were protected from the time GNUBatch started
incrementing COUNT until it finished assigning the appropriate string to STATUS.

4.1 Dependency on files

Implementation of dependencies based on files is implemented via the File Monitoring Option, gbch-
filemon, see page 168.

It is not integrated with the main part of GNUBatch as it is necessary to “poll” (repeatedly interrogate at
fixed intervals) the relevant files and directories to monitor for changes.

Typically, btfilemon will be set up to modify a variable when the requested file event occurs.

4.2 What’s in a Variable?

Apart from having a Name and some Contents, variables also have other pieces of information associated
with them. The set of fields which make up a variable are:

GNUBatch System Reference Manual 39

Name The unique identifier by which the variable is referred to. It is an alphanumeric string
which must start with an alphabetical character. GNUBatch will make sure that there
are no duplicate or invalid names on any machine.

Value The information contained by the variable, which can be either an integer value or a
text string.

Comment A free text string which should be used to hold a brief description of the variable.

User The name of the user who owns the variable. This is set to the person who created
the variable unless it has been transferred to another user.

Group Like the user field this shows which group the variable belongs to. It is set to the
primary group of the user who created the variable, unless it has subsequently been
transferred to another.

Mode Like the modes on a Unix file, these specify who may see and modify the variable.
There are, however, far more modes than those associated with files. Refer to the
next section for “More about Modes”.

Export flag Variables may be declared as purely local to the machine or accessible by any co-
operating GNUBatch host. This is a binary flag having the value Local or Exported.
Note that two or more hosts may have variables of the same name, the name is
distinguished by the host name, thus host:name.

Cluster flag If a variable is marked “clustered” in addition to exported, then a job running on the
given host will use that local version of the variable of that name for conditions and
assignments applied to the job."

4.3 More about Modes

Access to variables is controlled by the Modes which are similar to Unix file permissions, but with greater
functionality. Permission to each access mode is granted to the owner of the variable (User), users in the
same primary group (Group) or everyone (Others).

Here is a screen, from the interactive batch queue management tool gbch-q, showing the modes for a
variable called A_STATUS.

Modes for Variable "A_STATUS'
Variable owner wally group staff
User Group Others

Read Yes Yes No
Write Yes No No
Reveal Yes Yes Yes
Display mode Yes Yes Yes
Set mode Yes No No
Assume ownership No No No
Assume group ownership No No No
Give away owner Yes No No
Give away group Yes Yes No
Delete Yes No No

The various modes give the following type of access when permission is granted:

GNUBatch System Reference Manual 40

Read The variable and its contents can be read.
Write The data, name and comment of a variable may be modified.
Reveal Variables will be completely invisible to users without reveal permis-

sion. If reveal permission is granted but not read permission then
only the name, owner and group of a variable may be seen. The
contents and comment will be hidden.

Display mode Allows these modes to be viewed.
Set mode Allows these modes to be changed.
Assume ownership Dictates to whom ownership of a variable may be transferred relative

to the current owner. Hence giving Assume ownership permission to
just the owning User has no value, since the owner can only give the
variable to themselves.

Assume group ownership Dictates to which primary group a variable may be transferred rel-
ative to the current group. Only granting this privilege to Other is
meaningful. User and Group are included to be orthogonal.

Give away owner Grants permission to transfer the ownership of a variable to another
user. The permission may be given to the owner, members of the
same primary group or anyone.

Give away group Grants permission to transfer the variable to another group. The per-
mission may be given to the owner, members of the same primary
group or anyone.

Delete Permission to delete variable from GNUBatch

4.4 Examples of Dependencies Handled by Variables

Any job can have several conditions and make several assignments, hence the possibilities for handling
dependencies are infinite. This section contains some examples to help understand the importance of
variables.

GNUBatch System Reference Manual

Initialize “ariable
PROGRESS="MNona"

"alidate"

=et PROGRESS="alidated"

Wit urndil
PROGRESS="alidated"

L J

IILIF:II::IEtE"

=it PROGRESS="Updated"

Wit il
+ PROGREZS="Ipdated"

"Report Generator”

41

GNUBatch System Reference Manual 42

4.4.1 Running Jobs in a Simple Chain

The simplest example of job dependencies is a single threaded chain of jobs, which is controlled by one
variable. Each job in the chain is required to start as soon as possible after the previous job has finished.

To prevent subsequent jobs firing off prematurely the variable, PROGRES S, must be initialised to some safe
value before the first job starts. Words like “None”, “Ready”, “standby” or the empty string, ", are good
options.

The most obvious values to use for PROGRESS are perhaps numeric, since each job could simply incre-
ment the value by one.

Using string values has the following advantages:

» By choosing meaningful names the progress through the chain of jobs can be seen by looking at the
value in PROGRESS.

» Only two jobs need their options changing if new jobs are added or existing jobs are removed from
the chain. One job will need a condition changing and the other an assignment.

4.4.2 Running jobs in a chain with exception handling

This is the same simple chain as used in the previous example but with alternative execution paths to run
an exception handler if either of the first two jobs fail. In this case there is one exception handler, but it
would be as easy to have a different handler for the Validate and Update jobs. The value of PROGRESS is
set to a different string depending on the success or failure of the job.

This is a very simple scenario. The exception handler(s) could be programmed to perform recovery actions
and resume processing of the chain at the appropriate job.

Two variables could be used in this example if it is desirable to keep the job exit status separate from the
progress through the chain. PROGRESS could always be set to indicate the last job that finished. Another
variable, for example STATUS, could be initialised to “OK” and set to “Error” by any job that failed.

4.4.3 Running Jobs in Parallel

A sequence of jobs can contain some that will be running in parallel, to be followed by one or more
subsequent jobs. Only one variable is needed to indicate when all of the parallel jobs have completed.

The variable should be initialised to the number of jobs that will be running concurrently. Each job then
decrements this variable by one on completion. When all of the jobs have finished the value of the variable
will be 0.

For example if three jobs are due to run in parallel, using the variable COUNT then initialise COUNT to the
value of 3.

The diagram shows the three jobs waiting for a variable called STATUS before starting. This is easier to
follow than using COUNT to control the job start as well.

The value of COUNT should not be used to indicate the success or failure of the jobs. If this is required
then an additional variable will be needed, as shown in the next section.

GNUBatch System Reference Manual

Initialize “ariakle
PROGRES=="Mons"

"walidate"

If job weorked Set F'HG:GHESS=""-.-"alidatE:d"
If job failed Set PROGRESS="Error"

Errar

S L

Wit Lintil
PEOGRESS="alidated"

Ilupdatell

If job wearked Set PROGRESS="Updated"
If job failed Zet PROGRE==="Error"

Errar

(S L

Wit Lintil
PROGRESS="Updated"

Wit Lintil

| PROGRESS="Error"

"FReport Generator "Exception Handler"

43

GNUBatch System Reference Manual 44

Initialization
=et COUMT=3
et STATUS="CK"
AT
Wigt urtil Wit until st ntil
STATUS="CRH" » S TATUS="0K" STATUS="CK"
Ilupda.tell "LlFIIjEtE!" "LlFIIjEtE!"
Lecremernt Lecremernt Lecrement
COUNT by COUMNT by COUNT by 1
i

Wit until COLMT=0

L.

"Report Generator”

4.4.4 The Parallel Example with an Exception Handler

Providing exception handling in a group of parallel jobs will require two variables. One variable will act as a
counter to show when all jobs are completed, as in the previous section. Another variable will be required
to show if an error occurred.

The error status variable must be initialised to a value indicating that no errors occurred. Any job which
fails should assign an error status to the variable. All jobs which finish normally must leave the variable
alone. For example here is the previous example expanded to use the variable STATUS to control whether
a Report Generator or an Exception Handler job will run after the three concurrent Update jobs.

4.4.5 Mutual Exclusion & Semaphores

It is quite common to find two or more jobs that must never be allowed to run at the same time. This could
be because they need the same piece of hardware, like a particular tape drive. Alternatively they may write
to a file or update a database which could be corrupted by being opened by more than one job.

To enforce the required Mutual Exclusion amongst such a group of jobs, a variable can be used as a
semaphore. All jobs in this group are given a condition that they may only start when the variable has a
certain value. They also have an assignment that sets the variable to some other value on starting and
returns it to the initial value on completion.

For example:

GNUBatch System Reference Manual 45

Initialization
STATUZ="Feady"

"alidate"

Set COUMT=3
Set STATUS="0R!

gt !.mtil Wiait !.mtil st !_mtil

STATUS="(3K" STATUS="(DK" STATUS="C"
¥ ¥ ¥
IILIF:":ia.tEII IILIF:":!atEII IIl_IF:ldatE"
Dec:rEEment Decre:ment Decre:ment
COUMT by 1 COUMT by 1 COUMNT by 1
If Llpdatnla Tailed If Llpdat:a Tailed If Llpdatnla tailed
Set ST.ﬂ.TLLS="eerr" Set STATU=="error" Set ST.E-.TL|S="eerr"

Waait until STATUS="0R"
and COLMT=0

Whait until STATUS="errar"
and COLMT=0

"FReport Generator” "Exception Handler"

GNUBatch System Reference Manual 46

Both Job X¥Z and ABC have the condition
that LOCK = [

Decrement I;DCI«{ [y 1

Time

Jaby KL

I
Increment LOCK by 1

¥

Two jobs XY 7 and ABC can be controlled by one locking variable, called 1.O0CK. Both jobs have the condition
that ZOCK must be greater than 0. If LOCK is initialised to 1 then either job may start when its scheduled
start time arrives. The jobs decrement L.OCK on starting and increment it on finishing, hence LOCK can
only have the values 0 and 1.

By using the decrement and increment operators in the example we support the general case for limiting
the number of concurrently running jobs to a specific value. In this case 1 enforces mutual exclusion.

If up to a given number of jobs may run at the same time then LOCK should be initialised to that number.
So for a maximum of seven jobs initialise LOCK = 7.

4.4.6 Passing Data between Jobs

The values of variables can be queried and/or assigned from within a job using the appropriate command
line programs (or functions of the API). This provides enormous flexibility to do the same things between
jobs as ordinary variables may do inside them.

For example:

A simple use for setting a Job Control Variable inside a job would be to indicate that the next one in a chain
may start before it has finished.

Other operations that can be performed include:

» Exchanging small amounts of data without using an intermediate file (or possibly the name of a file
containing large amounts of data).

» Providing mutual exclusion between jobs during critical processing rather than for the whole execu-
tion of a job.

« Interrogating variables to see how other jobs have run and are running.

GNUBatch System Reference Manual

Initialise Yariakle
FROG"Y it

Load Mew Data
[5et PHDG:"GD"j o

Froduce reports and
recycle input media.

-

fWait upntil PROG="G0"

Llse MNew Data

47

GNUBatch System Reference Manual 48

+ Initialising variables to the required values for a particular schedule of jobs.

» Modifying execution of other jobs in a particular schedule.

4.5 System variables and logging

There are seven pre-defined “System” variables known to GNUBatch. They are initially set to be owned
by gnubat chwith the default modes which may be reset if desired. These variables may not be deleted
or set to an invalid value (e.g. string for numeric variable etc.). They may be included in job conditions or
assignments provided that these do not attempt to perform an invalid operation on them.

The variables are:

CLOAD GNUBatch updates CLOAD in real time to show the total load level of all
currently-running jobs. This is a read-only variable.

LOADLEVEL Controls the maximum load of batch jobs that may be running on the sys-
tem. Jobs can only be started when CLOAD is less than LOADLEVEL and
it will not put CLOAD over the limit set by LOADLEVEL.

LOADLEVEL may only be set to a numeric value. It may be specified when
GNUBatch is started using the -1 option to gbch-start, usually to zero, to
give maximum control.

If the value is increased, then new jobs may start immediately. If the value
is reduced, then it is possible that the total load level of running jobs may
temporarily exceed it until some of them terminate, however no new jobs
will start until the level is no longer exceeded.

LOGJOBS Specifies where to send output from the job audit trail logging. If the vari-
able holds null (an empty data field) then logging is turned off.

LOGVARS Specifies where to send log output for the variable audit trail. If the variable
holds null (an empty data field) then logging is turned off.

MACHINE This is a read-only variable containing the current machine name, that can
only be referenced as a local variable.

STARTLIM This variable contains the maximum number of jobs that GNUBatch can
start at once. The initial value, upon installation of GNUBatch, is 5.

STARTWAIT This variable contains the waiting time in seconds for the next available job
to start if the previous batch set by STARTLIM has not been started for
some reason. The initial value upon installation of GNUBatch is set to be
30 seconds.

GNUBatch System Reference Manual 49

4.5.1 Using CLOAD & LOADLEVEL

LOADLEVEL and CLOAD may be used to control the batch workload and avoid conflicts with other activities
in a variety of ways.

Remember that, in addition to this, each user has a total load level restriction for all the jobs which
that user can simultaneously run, see page 34.

4.5.1.1 Running fewer batch jobs in office hours

A batch job can be set up to reduce the value of LOADLEVEL at the start of office hours, to prevent batch
jobs slowing down interactive users. Another job can run at the close of office hours to put LOADLEVEL
back up to the overnight level.

4.5.1.2 Stopping GNUBatch gracefully

To stop GNUBatch, yet allow jobs to complete, perform the following steps:
1. Set LOADLEVEL=0
2. Wait until CLOAD=0
3. Stop GNUBatch

This can be done manually or incorporated in a shell script.

It may even be set up as a batch job. However we would recommend that such a batch job has a very low
load level, such as 10, much lower than any other job, and is conditional on LOADLEVEL being equal to
10 and CLOAD being less than or equal to 10, so that to start it, all that is required is to set LOADLEVEL to
10, and it will automatically wait until other jobs have finished. At all other times, LOADLEVEL would never
be set to exactly 10, GNUBatch always being restarted with the —1 option to gbch-start.

Batch jobs which stop the scheduler must launch their script asynchronously to avoid killing themselves
with the gbch-quit command. So the actual “script” of the job would be:

/usr/sbin/batchshutdown &

and /usr/sbin/batchshutdown would contain

#! /bin/sh
sleep 10
gbch-quit -y

This would give the shutdown job time to complete, before invoking the gbch-quit command.

4.5.1.3 Starting Administration activities, when Batch work completes

Set the administration activities up as a batch job to start towards the end of the expected batch work
schedule. Specify that CLOAD=0 as a pre-condition for the administration job. If there are more than one
administration jobs to be run, set them up as a chain of jobs, with only the first one dependant on CLOAD.

GNUBatch System Reference Manual 50

4.5.2 Controlling peak activity

The variables STARTLIM and STARTWAIT were created to prevent a large number of jobs swamping a
machine or network by starting at the same instant. For example: if a user scheduled 400 network 1/O
intensive jobs to start at Midnight, it is likely that network problems would ensue.

Any process tends to use a large amount of system resources when starting up. If you observe any
resource being swamped then lower the value of STARTLIM and/or increase the number of seconds delay
specified by STARTWATT.

On high performance machines STARTLIM may be increased and/or STARTWAIT reduced. The slowest
components may well be any networked or I/O bound resources.

4.5.3 Job Logging via LOGJOBS

This variable may only be set to a string value. It should contain a file name, or a program or shell script
name starting with a “|”. However, it is vitally important to use “|” with great care so as to ensure the
scheduler process cannot be held up by the receiving process.

If a file name is given, it will be taken relative to the spool directory, by default /usr/local/var/gnubatch.
Thus a file name of joblog will be interpreted, if the spool directory hasn't been changed, as
/usr/local/var/gnubatch/joblog.

The file access modes on the file will correspond to the read/write permissions on the variable, (exe-
cute permissions will not be set) and the owner and group will correspond to that of the variable, usually
gnubatch.

If a program or shell script is given, then the PATH variable which applied when the scheduler was started
(this may be from the terminal of the user who ran gbch-start) will be used to find the program.

Lines written to the file or sent to the program will take the form

03/05/13110:22:43|13741|date|completed]| jmc|users|150[1000

Each field is separated from the previous one by a |, for ease of processing by awk etc. The fields are in
the following order (new versions will add fields on the right):
Date In the form dd/mm/yy or mm/dd/yy depending on the time zone.
Time
Job Number Prefixed with host and colon for external jobs
Job Title or if no title <unnamed job>
Status code (listed below) Prefixed by host and colon if from remote host
User
Group
Priority
Load Level

The status codes may be one of the following:

GNUBatch System Reference Manual 51

Abort Job aborted
Cancel Job cancelled
Chgrp Group changed
Chmod Mode changed
Chown Owner changed

Completed Job completed satisfactorily

Create Job created (i.e. submitted to queue)
Delete Job deleted
Error Job completed with error exit

force—-run Job forced to start, without time advance
force-start Job forced to start
Jdetails Other details of job changed

Started Job started

4.5.4 Variable Logging via LOGVARS
This variable may only be set to a string value. It should contain a file name, or a program or shell script
name starting with a “|”.

If a file name is given, it will be taken relative to the spool directory, by default /usr/local/var/gnubatch.
Thus a file name of var 1og will be interpreted as the file name /usr/local/var/gnubatch/varlog.

The file access modes on the file will correspond to the read/write permissions on the variable, (execute
permissions will not be set) and the owner and group will correspond to that of the variable.

If a program or shell script is given, then the PATH variable which applied when the scheduler was started
will be used to find the program, possibly that of the user who ran gbch-start. Lines written to the file or
sent to the program will take the form:

03/05/13109:52:43|cnt|assign|Job start|jmc|users|2011|86742|myjob
Each field is separated from the previous one by a “|”, for ease of processing by awk etc.

The fields are in the order(new versions will add fields on the right):

Date

Time

Variable Name
Status code
Event code
User

Group

Value

Job number
Job title

The status codes indicate what happened, and may be one of the following:

The event code shows the circumstance in which the variable was changed, as follows:

GNUBatch System Reference Manual

in the form dd/mm/yy or mm/dd/yy, depending on time zone.

(listed below) Prefixed by machine: if from remote host

see below.

numeric or string
If done from job
if done from job

assign Value assigned to variable
chcomment Comment changed
chgrp Group changed

chown Owner changed

create Variable created

delete Variable deleted

rename Variable renamed

manual Set via user command or operation
Job start Assigned at job start

Job completed Assigned at job completion

Job error Assigned at job error exit

Job abort Assigned at job abort

Job cancel Assigned at job cancellation

Chapter 5

Jobs and related entities

To execute a job GNUBatch invokes the specified command interpreter and “pipes” the text of the job to
the standard input of the command interpreter. The most common types of batch job are shell scripts. Any
program which will read instructions from standard input may be set up as a command interpreter for use
by GNUBatch.

The text of a job is often referred to as the job, job file or commands. To avoid confusion the use of the
word script is now being encouraged. The script for each batch job may invoke other programs, compiled
or shell script, as it would if it was run from the command line. The term job file is still used to describe the
file of an unqueued job which holds the job script.

The set of parameters held by GNUBatch governing what it should do with the job is often called the
command file. This is now being referred to as the job specification. The term command file is used to
refer to the file of an unqueued job which holds the specification.

Apart from variables, which are described in their own chapter, jobs also have relationships with two other
entities. These are:

» The command interpreter under which the job actually runs. All jobs have a specified command
interpreter.

» A queue, which provides a grouping mechanism for jobs. All jobs belong to a queue. This is not
always obvious since jobs which do not specify a queue are associated with the null queue, which
has no name.

These entities are discussed at the end of this chapter, as well as in the sub-sections which describe how
each job specifies relationships with them.

5.1 Time

Jobs can be specified without any scheduling time specifications. In this case they will run as soon as
possible, just like jobs run under the standard Unix batch command. Once such a job has run it will be
deleted from the queue.

53

GNUBatch System Reference Manual 54
If a job has a time specification it will always have a Scheduled Run Start Time and flags to indicate if the
job is to be: deleted, retained or repeated after completion.

Repeating jobs have additional options, such as a specification of any days to avoid, which do not have
any impact on the first Scheduled Run Start Time.

The intricacies of the time options are explained below:

5.1.1 Scheduled run start time

The time at which a job is scheduled to start can be specified by date and time to the nearest minute.
GNUBatch starts jobs on the minute boundary, unless they are prevented from doing so by some condition.
When a job has a time specified, it may be set up to be deleted, retained in a done state or repeated,
automatically after the first run.

The user interface programs accept and understand years specified as 4 digit numbers, hence avoiding
any problems over the year 2000.

If a job is due to run for the first time then it will always wait, if blocked by some condition, until that condition
is satisfied. Once all conditions are satisfied the job will run immediately.

When a job is blocked from repeating by some condition, there are a range of behaviours that it can follow.
The options for these behaviours are described in the sub-section on Repetition.

5.1.2 Retention

Jobs may be set up to run once at a specified start time and then be retained on the queue after execution.
Once the job has run its progress state is set to Done.

A job that is in the Done state may be set running at any time by a suitably authorised user or program.
Similarly the specification of the job may be changed. For example a new run could be scheduled and
possibly some repetition specified.

5.1.2.1 Auto delete after execution

An automatic delete time may be specified if the job has been retained, either with the “retain on comple-
tion” or one of the repeat options. The job will be deleted automatically after the specified number of hours.
The default is zero hours, which will retain the job indefinitely (this maintains backward compatibility with
earlier versions of GNUBatch).

Each time the job runs, the timeout period will restart.
5.1.3 Repetition

Jobs can be specified to automatically repeat at regular intervals after the initial run. The interval is
specified as an integer number of a particular unit of time. The available units are:

GNUBatch System Reference Manual 55

Minutes Minutes (All repeating jobs attempt to start on the minute)
Hours Hours (This is the default as distributed)

Days Days

Weeks Weeks

Monthsb Months relative to the beginning.
This specification requires two integer values: the first is the interval in
months and the second is the day of the month on which to run.

Monthse Months relative to the end of the month. This specification requires two
integer values: the first is the interval in months and the other is the day on
which to run.

Years Years in the range 1 to 99.

With the exception of Monthsb and Monthse the first scheduled repetition is calculated by adding the
repeat interval to the initial run time. The repeat specification is often represented in the format unit:number
on the command line of programs like gbch-r. For example:

Minutes:10

run every ten minutes

Weeks:2

run at the same time and day, once a fortnight

Days:5
run at the same time of every fifth day

Repeating jobs have additional options which can be set to indicate what to do if a job fails and to specify
any days to avoid. These are explained in detail later.

5.1.3.1 Monthly Repeat Intervals

For Monthsb and Monthse the first scheduled repetition will be at the same time of day as the initial
run. The month for the repetition is calculated from that of the initial run, but the actual day of the month
is specified as a separate parameter. If a day of month is not specified when the repetition is set up,
GNUBatch takes the day of the initial run as the day of month.

Monthly repeat specifications are often represented in the form unit : number:day in the command line
options of programs, like gbch-r. For example:
Monthsb:1:5

specifies that the job will be run on the 5th day of every month. The repeat specification may also include
one or more days to avoid. If this is the case and the scheduled repeat falls on one of these, the job is put
back until the same time on the first acceptable day.

GNUBatch System Reference Manual 56

The repeat option for days relative to the end of the month has to take into account the number of days in
each month. To specify how many days from the end of the month is required, the month given in the next
scheduled time is taken, for example if the month in the next scheduled time has 31 days, then to specify
the last day of each month use:

Monthse:1:31

or to specify the next to last day of the month use:

Monthse:1:30

If the next scheduled start time is in February and not a in leap year, then these should be:

Monthse:1:28

or to specify the next to last day of the month use:

Monthse:1:27
to achieve the same effect.

With “months relative to the end”, if “days to avoid” is set, then earlier days in each month are selected
until an acceptable day is found, whereas with all other repetitions the next repeat is put back.

Specifying “months relative to the end” of 5 or less, or “months relative to the beginning” of 27 or more is
probably a mistake.

Exceptionally, the web browser interface takes a number representing the day of the month in either case
with 1 representing the last day of the month with “months relative to the end”, 2 the next to last etc.

We would appreciate feedback as to which convention is preferable.

5.1.3.2 Days to Avoid

The repeat specification has options to specify one or more days of the week and holidays to be avoided
when scheduling the next run of a job. The holidays are marked in the holiday table, which is described
later in this chapter. Up to 6 days of the week can be set to be avoided.

When the next repetition of a job is calculated the scheduler will step past any days to avoid. For example
a job that runs at 3 minutes past the hour every hour, but avoiding Saturdays and Sundays will run at 23:03
on Friday night and then next at 3 minutes past midnight on Monday morning.

The days to avoid parameter does not affect the initial run time. Hence a job can be submitted to run the
first time on a Saturday, but avoid Saturday and Sunday thereafter.

Upon installation the default abbreviations for the days to avoid are: Sun, Mon, Tue, Wed, Thu, Fri, Sat
and Hday. The Hday refers to days to avoid as specified in the scheduler's Holiday file.

5.1.3.3 Time adjustments on error

The time adjustment parameter specifies whether the job's scheduled start time should be left in the past
or set to the next repetition in the event of the job failing.

GNUBatch System Reference Manual 57

Specifying that the start time is not to be advanced to the next repetition, allows errors to be corrected and
the job restarted. Select the advance time on error option, when a problem can or need not be rectified
until the next repetition is due.

5.2 Job Completion Messages

GNUBatch can send messages to the owner of a batch job, for example when it finishes or fails. These
messages can be directed to e-mail, the users terminal session if logged in, or disabled as part of each
jobs specification. The options are:

+ Discard all messages.

» Write messages to the job owner’s terminal, if they are logged in. Otherwise e-mail the messages
back to them.

+ E-mail messages to the job owner.

Do not confuse messages from the scheduler about a job with the output from the job. which is handled
differently.

The message handling can be modified on a per user or system wide basis. The same flags are used but
the scheduler can be configured to behave differently, when writing or e-mailing messages. This is not part
of the job specification and is described under the chapters on Configuration and Extensions.

5.3 Redirection of Input and Output

By default any standard output and standard error produced by a job is spooled to a temporary file, then
e-mailed back to the job owner on completion. If no standard input is specified for a job it will just hang.

The job specification includes redirection options to specify Unix files for input and output. These work in
the same way as redirections in a shell, and have a similar syntax to the popular shell programs.

A redirection can have:

* File number, the file descriptor to be used. If omitted, standard input is assumed for input, standard
output for output.

+ < indicating input, or > indicating output or >> append to output or | output to pipe, standard input
for following shell command.

» <> indicating that the following file would be opened in read/write mode, or <>> for read/write/append
mode.

« <| for input from the standard output of the following shell command.

* ¢File number indicating dup from that file number, or s— meaning close the file number first
specified.

Examples of redirections are

<Cfile

GNUBatch System Reference Manual 58

>>0utput

2>Error

2>6&1

|lp —-d laser
2|grep error >Errs

Note that in the last two cases there are further redirections involving a pipe or output file which are
interpreted by the shell. The last example causes the standard error to be passed to the standard input of

grep.

Symbols for meta-data can also be included in the path/file names used in redirections. See the section
on Meta-Data on page 66 for a list of the available data.

5.4 Arguments

Programs that are run from the command line are often given options or arguments on the command that
invokes them. For example the file list program Is may be given the options —a1 to specify that all files
should be included in a report of long format:

ls —-al

A job script may also take arguments and options. These are held in an argument list as part of the job
specification. For example a script called update, may be run from the command line with arguments like
this:

update —-C all sales

In a batch job these would be held in the argument list as separate arguments. How the arguments are
separated is up to the owner of the job. For example -C and all could be treated as separate arguments
or a single argument.

The gbch-r command

gbch-r -a '-C' -a 'all' -a 'sales' update

(none of the quotes are necessary in this instance, but help the reader to follow the difference between
gbch-r arguments and arguments to the job) will produce an argument list of:

-C
all
sales

Symbols for meta-data can also be included in arguments. See the section on Meta-Data on page 66 for
a list of the available data.

GNUBatch System Reference Manual 59

5.5 Environment & process parameters

A copy of the environment in effect when jobs are submitted is saved as part of their specification. The
job will be run using this environment. The various elements of this environment can be re-specified as
required.

Jobs submitted from an alien platform, such as a PC running Windows, will be given a default environment.
This default can be configured on the submitting machine.

5.5.1 Environment Variables

The job specification holds a list of environment variables that are set up in the job’s environment each
time it is run. At run time the scheduler first sets up any environment variables that are specified in the
/usr/local/etc/gnubatch.env file. The variables from the job specification are then added to the
environment.

Symbols for meta-data can also be included in the values of environment variables. See the section on
Meta-Data on page 66 for a list of the available data.

Note that if you have a large number of environment variables, the standard set should be placed in
/usr/local/etc/gnubatch.env. The job will contain the differences between those variables and
the variables set with the job.

5.5.2 ulimit and umask

The ulimit and umask parameters may be applied to a batch job. By default the values are taken from the
values in force when the job is submitted.

ulimit specifies the maximum file size, in blocks, that can be written by the job.

umask affects the default permissions of files created by the job. It is usually represented as an octal
number, the same as file permissions. For example if umask is 022 the write permission will be turned off
for Group and Other on any files created by the job.

5.5.3 Working Directory

By default GNUBatch assumes that a job is to be run in the same directory as it was submitted from.
This is held in the job specification and any alternative directory may be specified, either when the job is
specified or later. Take care not to specify a directory which does not exist or for which the owner of the
job has insufficient permissions.

The ~ notation for users’ home directories, such as ~ jmc is expanded.

GNUBatch System Reference Manual 60

5.5.4 Normal and Error Exit Codes

Jobs like all Unix processes will return an exit code on completion. Usually an exit code of zero indicates
the process performed its tasks successfully and exited normally. Any other exit code usually indicates an
error of some kind. Exit codes are integers in the range 0 to 255.

Not all programs follow this convention, however, so job specifications include two parameters to interpret
exit codes.

The normal exit range parameter specifies a range of exit code values that the scheduler should interpret
as a normal exit after a successful run. When specifying a normal exit range on the command line of a
program like gbch-r the parameter would look like this:

NO:0
NO:9

The first example indicates that only 0 represents a normal exit. The second indicates that the exit codes
0 to 9 are normal.

The error exit range may be set using the other parameter, which on the gbch-r command line would look
like:
E17:255

If an exit code does not fall inside either the normal exit or error exit ranges the job is considered to have
been aborted.

If an exit code falls inside both ranges, then the smaller of the two ranges will apply. For example, if the
ranges are:

NO:10

and

E1:255

an exit code of 1 to 10 will fall inside both ranges but will be treated as normal since the normal exit range
is smaller.

5.5.5 Network Scope

When two or more machines are running GNUBatch in co-operation with each other the scope of jobs
becomes relevant. There are three alternatives, which are:

Local

Specifies that the job is visible and accessible only on the machine to which it was submitted.

Export

Specifies that the job must run on the local host, but allows the job to be seen and managed from any
networked GNUBatch host.

GNUBatch System Reference Manual 61

Full Export

Enables the job to run on any co-operating GNUBatch host as well as being visible and manageable by
the remote hosts.

5.5.6 Time-out parameters for stopping runaway Jobs

There are three parameters that specify how to identify and stop a runaway job. They are:

1. The maximum elapsed time since starting that a job may run for until it is terminated by the scheduler.
This is specified as a number of seconds. The default is 0 seconds indicating that the job may run
unchecked.

2. What signal to send an over-running job in order to terminate it. The job should trap anything other
than a STGKILL and respond by tidying up and exiting cleanly. The signal is specified by number
rather than by name.

3. A grace time, again in seconds, within which the job should terminate after being sent a signal. If the
job does not terminate itself within the specified grace time the scheduler will kill it with a STGKILL.

5.6 Owners, Groups and Modes

Each job belongs to a user and a Unix group. Access to jobs is controlled by a set of permissions, called
modes, similar to those on ordinary Unix files.

5.6.1 Owners and Groups

The job specification includes the user who owns the job and the Unix group that the job belongs to. The
owner and the group are normally taken as those of the user who submitted the job. A different user
and group may be specified when the job is submitted, but only if the submitting user has write admin file
privilege.

Suitably authorised users may change the owner and group of a job when it is on the queue. An ad-
ministrator may do this in one operation. Ordinary users, may be given sufficient privilege to change the
specification. In this case the current owner has to specify who the job is to be given to and then the
recipient must accept it.

These security features prevent un-authorised transfer of jobs to and from more privileged owners and
groups such as the root user.

Only the primary groups of users are considered for evaluating access permissions to jobs.

5.6.2 Modes

Access to jobs is controlled by the Modes which are similar to Unix file permissions, but with greater
functionality. Permission to each access mode is granted to the owner of the variable (User), users in the
same primary group (Group) or everyone (Others).

GNUBatch System Reference Manual 62

Here is a screen, from the interactive batch queue management tool gbch-q, showing the modes for a job
called update.

Modes for Job “update'
Job owner wally group staff

User Group Others

Read Yes Yes No
Write Yes No No
Reveal Yes Yes Yes
Display mode Yes Yes Yes
Set mode Yes No No
Assume ownership No No No
Assume group ownership No No No
Give away owner Yes No No
Give away group Yes Yes No
Delete Yes No No
kill (jobs only) Yes No No

The various modes give the following type of access when permission is granted:

Read The job specification and script contents can be read.

Write The job specification may be modified, and read permission is conferred
automatically.

Reveal Jobs are completely hidden from users without reveal permission. If reveal
permission is granted but not write permission then only the job id number,
owner and group may be seen.

Display mode Allows these modes to be viewed.
Set mode Allows these modes to be changed.
Assume ownership Dictates to whom ownership of a job may be transferred relative to the

current owner.

Assume group ownership Dictates to which group a job may be transferred relative to the current

group.
Give away owner Grants permission to transfer the ownership of a job to another user.
Give away group Grants permission to transfer the job to another group.

Delete Permission to delete job from the queue.

Kill Allows jobs to be killed, or sent some other signal.

5.7 Job Identifiers - Queues, Titles and Job ID numbers

Each job has a unique job id number, also called the job number or jobno. This is an unsigned integer,
generated by the scheduler when the job is submitted. The job number is used whenever jobs have to be
identified unambiguously.

GNUBatch System Reference Manual 63

The job specification also includes a title, providing a more user friendly means of identifying jobs on the
queue. This title is specified and editable by users and so can not be guaranteed to be unique. It should
be used to help users recognise jobs.

As part of the title specification, a job can be associated with a queue. Each job may only belong to one
queue and a queue may hold many jobs. Queues and their uses are described later in this chapter.

5.8 Priority and Command Interpreter

Priority, load level and command interpreter are loosely related in that they indicate the importance and
impact on the system of a job.

All jobs are run under a command interpreter, which is referred to by name in the job specification. Com-
mand interpreters are separate entities which specify a default load level for jobs submitted to run under
them. See the section on command interpreters later in this chapter for more information.

The load level is held as an unsigned 16 bit integer. It specifies the relative impact that a job is likely to
have on the loading of the host machine.

Priority is specified as an integer in the range 1 to 255, and controls how likely a job is to be run ahead of
other jobs in the queue. If there were no conditions on jobs then they would all run as soon as their start
time arrived.

In reality, due to conditions set by the variable LOADLEVEL, there may be more jobs ready to start than
the system will allow. In this case jobs with the higher priority get started ahead of lower priority ones.
When the maximum number of jobs are running, those that did not get in have to wait until one or more of
the higher priority jobs finish before being started.

5.9 Job control variables - Conditions and Assignments

Dependencies between jobs, and other parts of the system, can be implemented using variables. The job
specification holds two lists of relationships between a job and the variables. One list specifies conditions
which must be true before GNUBatch will allow the job to start. The other list specifies assignments that
GNUBatch will perform on the data held in variables when a job starts, stops or fails.

5.9.1 Conditions

A condition is a simple expression that compares the value of a variable with a literal string or integer
constant. The scheduler will not start a job unless all of the conditions are satisfied, i.e. the expressions
return a value of true. Up to 10 Conditions may be specified for each job. The expression has the following
four components:

1. A variable name, which may be any variable readable by the user, including variables on remote
machines represented as machine:variable.

GNUBatch System Reference Manual 64

2. A comparator, which may be any of =, ! =, <, <=, > or >=.
Remember to enclose these sequences in quotes when using them in a shell command.
3. A constant, which can be a string or an integer (negative or positive).

4. A critical flag, which determines whether the condition should be ignored if it involves an inaccessible
remote variable.

For example,

Update_Count<1l7
BackUp_State!=Done
voyager :Update_Count>2

Where a condition refers to a variable on a remote machine, there is always the possibility that the remote
machine’s copy of the scheduler is not running or disconnected. To handle this the condition has the option
to specify whether the condition is critical or not.

If the condition is specified as critical the job has to wait until the machine is available, and the variable
satisfies the expression, before running.

Alternatively if the condition is specified as non-critical and the machine is not available, the condition will
be ignored.

5.9.2 Assignments

Up to 8 assignments may be specified for a job. Each assignment specifies what operation to perform on
a variable and under what circumstances to perform the operation. The operation is specified as a simple
programming language like assignment statement, hence the name assignment. The circumstances are
defined by a set of flags; all, one or more of which may be set.

There are two special cases of the assignment. One performs a straight assignment of the exit code with
which the job terminated, to a variable. The other does the same thing with the signal number, if the job
was terminated on a signal, either by a kill command, a signal from gbch-q etc, or a program fault.

5.9.2.1 Flag Options

There are six flags to specify when an assignment should be performed. At least one flag must be set.
They can be used in combination or all set as required. The flags are usually represented by a single letter,
as follows:

Letter Operation specified

Start, the scheduler performs the assignment when it starts the job
Normal exit, performs the assignment on normal exit

Error exit, performs the assignment on error exit

Aborted, performs assignment if job aborted (signal)

Cancellation, performs assignment if job cancelled

S BN @ T = 3 A)]

Reverse the specified assignment for everything except S.

GNUBatch System Reference Manual 65
The R flag, is only relevant one or more of the exit flags is set. It undoes whatever assignment was (or
would have been if S is not specified) performed at the start of the job, when the job finishes.

If all the flags, SNEACR, are set then the assignment is performed on start up, and reset when the job

finishes however it exited. If only the flags SNR are set then the assignment is only reversed when the job
finishes normally.

Remember that you can adjust what exit codes constitute “normal” and “error” exits, as described earlier.

5.9.2.2 Assignment Operation

Each assignment statement has five components, which are:

* A variable name, which must already exist and be writeable by the user. To access an exported
variable from a remote machine, prefix it with the machine name and a colon.

» An assignment operator, which can be as follows:
= Assign constant to variable
+= Increment value of variable by constant
—-= Decrement value of variable by constant
«= Multiply value of variable by constant
/= Divide value of variable by constant

%= Take modulus of variable (i.e. remainder when divided by the constant)

* A constant, which may be a string or numeric value. Only the = operator is valid for assignments
with strings.

A critical flag to determine whether the assignment should be ignored if the host is offline.
» Assignment flags for the start and end of jobs.

Here are some examples of assignments:

count+=1
status=error
mach2:log+=3

In the case of assignments from an exit code or signal number only the plan assignment is provided. The
keyword exitcode or signal is used in the statement instead of a constant. For example:

status=exitcode
killed_by=signal

If the R flag is set, to reverse a start assignment, the assignments performed are:

GNUBatch System Reference Manual 66

Operator Reverse implies

= (n/a) Assign zero to an integer value or an empty string to a string
value.

+= —-= decrement value by same constant used for increment.

—-= += increment value by same constant used for decrement.

*= /= divide value by same constant used for multiplication (ignoring
any remainder).

/= *= multiply value by same constant used for division.

%= (n/a) Unchanged, since this operation does not have a meaningful
complement.

Note that reverse assignment may still be applied if the job has no start assignment flag to be reversed.
The operation is still applied in the “reversed” state as above as if the start condition had applied. However
it is recommended that you avoid this.

Where an assignment operates upon a variable on a remote machine, there is a possibility that the remote
machine’s copy of the scheduler is not running or disconnected. To handle this the assignment has the
option to specify whether the operation is critical or not.

If the assignment is specified as critical the job has to wait until the machine is available, for the operation
to be performed, before running.

Alternatively if the assignment is specified as non-critical and the machine is not available, the job will be
run without performing the specified operation.

Once a job is running the critical specification has no effect. If a remote variable becomes unavailable
during execution of a job, any critical job completion assignments to that variable are ignored.

5.10 Meta-Data

There are several useful parameters from the job specification that can be substituted into arguments,
environment variables and I/O redirections. These are:

GNUBatch System Reference Manual

%S Command Interpreter name

St Job title

$U User name

%G Group name

$NO Host name where job originated

%d1 Job number, in decimal

$d2 Priority, in decimal

%d3 Load Level, in decimal

$x1 Job number, in hexadecimal
$x2 Priority, in hexadecimal

$x3 Load Level, in hexadecimal

%% To insert a single % character.
“cmd” Insert first line of output of cmd.

The substitution is performed at run time, making sure that the information is up to date.

67

For example to output a standard banner containing the Title and Job ID number, each parameter could

be set up in an environment variable. If the environment variables are:

JOBNUM=%d1
JOBNAME=5%t

then a simple piece of shell script to use them might look like this:

cat <<endbanner

Rt b b b b b b b b b I b b b b b b b b b b b b b b b i b b a b b b b b b b b b b
Output from Job: S$JOBNAME
Job ID number: $SJOBNUM

R b b A b b A b b A b b S b b b b A b R A b b S i b b A b S b b A b

endbanner

The output can be re-directed to a unique file by using the job number like this:

1>/7joblogs/ jobnum%dl

5.11 Command Interpreters

The command interpreters are separate entities which are referred to in the job specifications.

command interpreter specifies the following set of parameters:

Each

Name

Program

Arguments

Load Level

Nice

Argument 0

Expand args

GNUBatch System Reference Manual

A unique identifier which is used, both internally and by user programs, to
refer to the command interpreter.

Holds the full path name of the command interpreter program. This can
be any program, such as the Bourne shell, usually /bin/sh, or the Korn
shell, usually /bin/ksh, that will read commands from standard input.

Specifies any “predefined” arguments that are to be passed to the com-
mand interpreter when it is invoked, preceding any arguments which are
given to the job. This is very commonly set to —s for shells, which directs
the shells not to interpret the first actual argument as a file name.

Sets the default Load level to be given to all jobs running under the com-
mand interpreter. Only users with the special create privilege may override
this default for a job.

Sets the Unix nice value for processing batch jobs under this command
interpreter. The default is 24. Remember that increased priority is denoted
by a low nice value.

When getting a list of processes using a command like ps, the batch jobs
will normally have the name of the command interpreter program they are
running under. Setting the Argument 0 option causes the job title to be used
as the process name instead. This may confuse some programs, hence it
is made an option.

Arguments with $ in within the script of the job are expanded by GNUBatch,
rather than by the command interpreter. This may be desirable in cases
where the command interpreter is not a shell, or where the semantics of $
signs in arguments is different than that of the shell.

68

The same program can be used by more than one command interpreter, for example with low nice values
(and hence a high priority) and a high load level or vice versa.

Be careful about using the Expand Args flag with shells and in conjunction with arguments specified in
the job and environment variables with quotes etc in. This is because most shells identify syntax before
expanding variables. So for example if argument 1 contained a single quote and argument 2 contained My

String, then

echo $1$2s51

would print

'My String'

GNUBatch System Reference Manual 69

having identified the syntax first and decided that there are no quotes, but if the arguments were expanded
the shell would never “see” the $1 and $2 constructs and the output would be

$2

As the quotes would “protect” the $ from expansion.

5.12 AQueues

All of the jobs on a GNUBatch host run in the same physical queue. There is however a mechanism of
virtual queues, referred to simply as queues, that can be used for grouping jobs together. GNUBatch does
not impose any structure or operations on these queues. It provides mechanisms to restrict the view of
and selectively query the physical queue by virtual queue names.

This is enough, combined with the configuration and extension options of GNUBatch to provide sophisti-
cated management of queues of jobs.

Each job is associated with just one queue. If no queue is specified then the job is said to be in the null
queue. A view or query can be restricted to a set which contains one or more queues, and which may
include or exclude the null queue.

The set of queues may be one name, a list of names or a list of patterns for matching queues. It may be
advisable to use quotation marks around the queue specification when invoked from a shell command.
They may be given as a comma-separated list of alternatives, including the use of shell-style wild-cards.
For example

test

would restrict the view to just the queue test.

dev_a,testl,test?2

would select the three separately named queues: dev_a, test1 and test2.

devx,test [3-7]

select jobs in any queue whose name starts with the string “dev” and jobs in queues test3, test4,
testH, test6and test7.

The wild-card options are:
* Matches anything
? Matches one character

[a-mp] Matches one character in list or range
['n-zg] Matches one character not in list or range

GNUBatch System Reference Manual 70

5.12.1 Examples

It is important to devise a naming convention for queues that reflects the structure of the batch processing.
It is also a good idea to use the same naming conventions for job control variables related to particular
queues. The queue name could be incorporated into the variable name.

For example variables associated with jobs in queue abc could be named as follows:

abc_progress

could be used to control the progress of a chain of jobs in queue abc.

abc_count
to indicate how many times the chain has run.

The queue name abc is not very meaningful. It is best to choose names which describe the family of jobs
in each queue. A queue of jobs that handle wages could be called Payrol1. Since the word Payroll
has been used for the queue name it can be left out of individual job titles. A job originally called

Check run for Payroll

could be put in queue Payroll and titled

Payroll:Check run

Queue names can indicate more than just a simple functional grouping. By taking into account how queues
can be selected using wild card characters, much more complex groupings can be implemented.

5.12.1.1 Naming Conventions for Overlapping Sets

Queue names can reflect the business area which jobs relate to with names like: sales, lease, and
returns. Alternatively they can indicate the developmental state of jobs with names like: dev, test,
and live.

The selection mechanisms enable queues to represent jobs as belonging to overlapping groups of activity.
For example: a suite of jobs currently being developed might be in the queue dev_sales. When ready
to hand over to operations the queue name would be changed to test_sales. Once the jobs are ready
for production work they would be moved againto 1ive_sales.

Typical selections would be:

*sales

for all jobs in a queue relating to sales,

livex

forall jobs in queues for production jobs,

dev+, test*

for jobs in the development and test queues,

GNUBatch System Reference Manual 71

*sales, xlease

for all job relating to sales and leasing.

5.12.1.2 Naming Conventions for Sub-Queues or Hierarchies

Jobs may be related in a structure that resembles a family tree. This structure can be reflected in the
queue naming conventions adopted for these jobs.

For example all jobs related to customer accounts might be in a queue called cust. Within that queue the
jobs could be broken down into smaller units indicating what type of task each does, by a suffix. Jobs that
update customer records may have a suffix of _ch and those that generate reports could have _rep.

Even finer resolution could be obtained by an additional suffix, perhaps indicating what customer informa-
tion is being used: Addresses could be indicated by _addr and credit limits by _cred.

Used with meaningful job titles a list of jobs in the queue cust » might look like this:

cust_ch_addr:Fred Smith
cust_rep_mktg:MailshotList
cust_new:Bloggs Builders
cust_rm:Inactive Accounts
cust_ch_cred:Xi Software Ltd
cust_rep_addr:Scotland
cust_rep_bal:0verCreditLimit

Restricting the selection to cust_rep+ would give only:

cust_rep_mktg:MailshotList
cust_rep_addr:Scotland
cust_rep_bal:0OverCreditLimit

5.13 Holidays

Holidays are an 8th type of day to avoid for repetitions. It relates to a single table of holidays for the current,
past and present years. A system administrator can set up, and any user can view, the table of holidays
for the year using the programs gbch-q, gbch-xq and gbch-xmgq.

The repeat time for a job is calculated at the previous run time. Any changes made to the table of holidays
are not automatically taken into consideration by pending jobs. The changes only take effect after the job
is next run.

Chapter 6

Internal Programs and file formats

The following lists the internal programs and file formats used by GNUBatch. With a few exceptions these
programs should not be invoked or accessed by a user including an administrator.

The internal programs are all held in the same directory, /usr/local/libexec/gnubatch by default.
If the default directory is not used it will be pointed to by the SPROGD IR environment variable set up in the
/usr/local/etc/gnubatch.conf file.

6.1 Core Programs

6.1.1 btsched

/usr/local/libexec/gnubatch/btsched [-options]
btsched is the scheduler process for the GNUBatch batch processing system.
It is normally invoked by the system startup routines, or otherwise by gbch-start.

It may take certain options from the command line, but these are normally passed to it by gbch-start and are
not documented here as they are part of the internal interfaces of GNUBatch and are subject to change.

Information, either in respect of other machines to connect to, or pre-existing jobs and variables on the cur-
rent machine, are read respectively from the files /usr/local/etc/gnubatch.hosts and the direc-
tory /usr/local/var/gnubatch (unless changed via the master configuration file /usr/local/etc/gnubatc!

A “slave” btsched process is spawned to control running jobs, and if a networked version of GNUBatch is
being run, then an additional “slave” btsched process is spawned to monitor and process incoming network
messages.

Incoming remotely-submitted jobs and APl interfaces are handled via a separate process (also invoked by
gbch-start), xbnetserv.

72

GNUBatch System Reference Manual 73

6.1.1.1 Files used

/usr/local/etc/gnubatch.hosts Host names and descriptions
/usr/local/etc/gnubatch.conf Master configuration file
/usr/local/share/gnubatch/help/btint-config Message file

/usr/local/var/gnubatch Spool directory
/usr/local/var/gnubatch/btsched_jfile Job file
/usr/local/var/gnubatch/btsched_vfile Variables file
/usr/local/var/gnubatch/btsched_reps Error log file
/usr/local/var/gnubatch/btufile User data
/usr/local/var/gnubatch/btmm_Jjobs Job memory-mapped file
/usr/local/var/gnubatch/btmm_vars Variables memory-mapped file
/usr/local/var/gnubatch/btmm_xfer Communication buffer memory-mapped file

6.1.1.2 IPC Facilities used

An IPC message queue, with key 0x586 90000 and owned by user gnubatch is created by btsched and
used to receive messages from user processes and pass instructions to and internal messages from the
slave btsched processes to the master.

Two shared memory segments are created to hold details of jobs and variables. As the shared memory
facility provides no facilities for growth, then additional shared memory segments may be created if the job
and variable lists expand sufficiently and the original ones deallocated.

A further shared memory segment, with key 0x5869b100 is created to hold details of pending jobs before
transfer to the main shared memory segment.

The keys given to the shared memory segments startat 0x5869b002 and ascend upwards to 0x5869b064
before wrapping around.

Some versions of btsched may use memory-mapped files rather than shared memory. The files are held
in the spool directory, by default /usr/local/var/gnubatch, and have the names btmm_jobs,
btmm_vars and btmm_xfer.

A set of at least 10 semaphores, with the key 0x5869b001 is created to interlock access to the shared
memory segments, and a further set of 3 semaphores with the key 0x58690b003 is created to interlock
network processes.

The presence or absence of these IPC facilities is used by btsched and other programs to determine
whether a previous copy of itself is running. If btsched is abnormally terminated, it may be necessary to
delete these IPC facilities before btsched can be restarted.

The utility gbch-ripc may be used to delete the IPC facilities quickly.

GNUBatch System Reference Manual 74

6.1.1.3 Internet ports used
btsched accepts and sends interconnections from other machines on TCP port, passes the contents of
batch jobs on a further TCP port, and undertakes “probes” on a UDP port.

The port numbers are set up inthe /etc/services file when GNUBatch is first installed.

6.1.2 xbnetserv

/usr/local/libexec/gnubatch/xbnetserv
xbnetserv is the remote server process for the GNUBatch batch scheduler system.
It serves 3 purposes
1. It accepts jobs from other hosts submitted by gbch-rr and queues them on the same server.
2. It accepts jobs and administration requests from DOS and Windows machines.
3. It supports API operations.
It is normally invoked by the system startup routines, or otherwise by gbch-start.

It takes no arguments from the command line (and ignores any which are supplied). Information, in respect
of other machines to connect to is read from the file /usr/local/etc/gnubatch.hosts.

6.1.2.1 Internet ports

xbnetserv uses 2 ports, one to accept incoming jobs on TCP from gbch-rr and one to accept jobs on UDP
from MS Windows clients.

There are also TCP and UDP ports to accept APl requests.
The port numbers are set up inthe /etc/services file when GNUBatch is first installed.

6.1.2.2 Diagnostics

xbnetserv runs as a “daemon process” and diagnostics, apart from those detected when it is first started,
are not usually written to any terminal but to the file /usr/local/var/gnubatch/btsched_reps.

In the event of any problems this file should be examined.

6.2 btexec

/usr/local/libexec/gnubatch/btexec options

GNUBatch System Reference Manual 75

Btexec runs commands for macros under the identity of the invoking user. This is required because gbch-q
and gbch-xmq are set-user programs (to other than root) and there is an inherent security breach in many
versions of Unix in that such programs cannot divest themselves of traces of the set-user user id.

This program is only intended for internal use and is not further documented.

6.3 Message Handlers

6.3.1 btmdisp

/usr/local/libexec/gnubatch/btmdisp options

btmdisp generates messages as required by btsched in response to the mail or write completion options of
batch jobs.

By default, it uses the system basic mailer to dispose of mail options, btwrite to send messages to users’
terminals and dosbtwrite to send messages to Windows PCs.

The messages are generated by btmdisp from the system message file, which by defaultis /usr/local/share/gnu

The program to be used in each case may be overridden by assignments to the environment variables

MATILER, WRITER and DOSWRITER, most conveniently in the master configuration file /usr/local/etc/gnubatct
The program (or shell script) to be run in each case should take data on standard input and the relevant

user name as the first argument, and will run under the identity gnubatch.

These variables may also be set on a per-user basis by assignment in a . gbch/gnubatchl file located
off a user’s home directory. The user may also specify an alternative message file by assignment to the
variable SYSMESG. These programs or scripts will be run under the identity of the user, typically the owner
of the job to be run.

The interface (options etc) are internal to GNUBatch and are not documented here.

6.3.2 btwrite

/usr/local/libexec/gnubatch/btwrite user [...]

btwrite sends messages to users’ terminals in response to the —w option of gbch-r and equivalent. It is
used in preference to the write(1) command as this picks just one (and usually the wrong one!) of the
terminals at which the user may be logged in, and does not display a suitable name for the originator of
messages.

btwrite takes a list of one or more users as arguments. It sends the text on standard input to each user’s
terminal. The message is mailed to users who cannot be reached. This facility is available for use in your
own software if you wish.

GNUBatch System Reference Manual 76

6.3.3 dosbtwrite

/usr/local/libexec/gnubatch/dosbtwrite options

dosbtwrite sends messages to Windows PCs similar to btwrite does for user’s terminals in response to the
equivalents of the —w options of gbch-r and equivalents. This is only done for jobs which originated on
Windows PCs.

The Windows PC must be running btqw for this to be effectual.

If the job was submitted by a user working from a client with a DHCP-allocated IP address, a message
may be received on all clients currently logged-in with that user name.

6.3.4 Jobdump

jobdump options
jobdump is invoked by gbch-q, gbch-xq, gbch-xmq and gbch-jdel to unqueue jobs when required.

It is not intended for general use and is not documented further.

6.4 File Formats

6.4.1 /usr/local/etc/gnubatch.conf

/usr/local/etc/gnubatch.confis an optional file for reconfiguring the GNUBatch batch manage-
ment system.

This may be useful for relocating standard files and directories, such as SPOOLDIR which defaults to
/usr/local/var/gnubatch so that a different spool directory is used. However completely arbitrary
environment variable assignments may be made so as to pass the resulting environment on to various
subprocesses invoked by the scheduler.

Note that as the environment is assigned early within gbch-r, then any jobs created will have these envi-
ronment variables assigned. However there is an alternative syntax (see below) to avoid this.

The format of the file consists of two different forms of assignment.

SPOOLDIR=/usr2/spooldir Sets up the given environment variable in all programs and jobs invoked by
GNUBatch.

SPOOLDIR: /usr2/spooldir Denotes environment variables which should not be passed on to subpro-
cesses, or to jobs created by gbch-r.

Comment lines may be included, introduced by a # sign, and blank lines are ignored.
The latter environment assignment format is used by default in the installation process for GNUBatch.

Every component program of GNUBatch examines this file and resets its environment from this file as the
first step of execution.

GNUBatch System Reference Manual 77

6.4.2 /usr/local/etc/gnubatch.hosts

/usr/local/etc/gnubatch.hosts is used to inform the GNUBatch batch scheduling system, and
in particular btsched and xbnetserv, which other host machines are to be attached.

The host machines should in general be provided for in the standard file /etc/hosts.

The file consists of comment lines introduced by the # character, and of lines consisting of up to 4 fields,
of which only the first is mandatory. These fields are as follows:

6.4.2.1 Host name

This is the name of the host as given inthe /etc/hosts file.

Alternatively an internet address of the form 193.112.238.10 may be given if necessary and an alias
is provided on the next field, but this is not recommended.

6.4.2.2 Alias name

This is the name of an alias to be used in preference to the host name to refer to the machine. To be
particularly beneficial, this should be shorter than the host name.

If this field is not required, but subsequent fields are required, then the alias name may be replaced by a
single — sign.

6.4.2.3 Flags

This is a comma-separated list of markers to denote information about the connection. The currently-
supported markers are as follows:

probe

manual

trusted

Client (username)

Clientuser (machine)

dos (username)

dosuser (machine)

external

pwchk

6.4.2.4 Timeout

GNUBatch System Reference Manual 78

Indicates that a datagram should be sent, and a reply awaited, from the
host, before a full-blown connection is attempted. This is recommended
wherever possible, or it is not sure in which order machines are booted.

indicates that no connection at all is attempted. To connect to the machine
in question, then gbch-conn should be invoked.

indicates that the host is “trusted” by the current machine, which transmits
information about Windows clients and their password validations, so the
other host need not make such enquiries.

N.B. This option is now deprecated.

indicates that no connection is attempted; the current machine is acting as
a server for Windows clients. The specified username is to be considered
as the owner of any jobs submitted, and the user to whom charges should
be applied and to which privileges apply; see gbch-user.

If (username) is omitted, then the Windows user is assumed, which
should correspond to a user name on the host system.

Indicates that the whole entry identifies a “roaming user” who might be
using one of several Windows clients, possibly with IP addresses assigned
via DHCP. The host name in this case is replaced by the Windows user
name, and the alias gives the Unix user name if different.

If (machine) is specified, then a password is demanded at the Windows
client if the client’s IP address does not match that of machine.

Is a synonymfor client (username) kept for historical reasons.

Is asynonymfor clientuser (machine) kept for historical reasons.

Is a synonym for c1ient (no username) kept for future extensions.

Always demand the user’s Unix password (or a version of the password
specific to GNUBatch as set using gbch-passwd) when first starting up.

This gives a timeout value in seconds after which the interface is to be considered closed following a
connection or alternatively to await a connection after a probe request.

A default of 1000 seconds applies if none is specified.

In the case of Windows clients, the “login” is considered to be dropped after this time, and the user may
be asked for a password again.

GNUBatch System Reference Manual 79

6.4.2.5 Local address

On some machines, the “local” host address may be different from that obtained by looking at the result of
gethostname(3). To specify a different address for “this” machine, a line of the form:

localaddress 193.112.238.112
may be specified, but this must precede all other host names in the file.

An alternative method of getting the local address is to connect to some other server and obtain the local
address by using the getsockname call to find the address.

To do this use the keyword GSN thus

localaddress GSN (www.google.com, 80)

In this example the local address is found by attempting to connect to www . google. com on port 80 (the
http port) and applying getsockname to the resulting connection.

6.4.3 User map file

The user map file provides a mapping between external names, usually Windows user names, and UNIX
names.

The file isin /usr/local/etc/gbuser.map, and consists (apart from comments introduced by the #
character) of lines of the format

unix-user:windows—-user
For example:

User mapping file

jmc:john collins

sec:sue collins
guest:default

The final entry gives a default user if a named user is not found in the file.
UNIX users not found on the host are silently ignored.

The User Mapping file is used to convert Windows user names to UNIX user names for the Windows
clients, or for the API functions.

Chapter 7

User Programs

Users have a wide variety of Unix programs which may be used to submit batch jobs, and manage schedul-
ing. This includes a set of standard command line and interactive programs, plus optional Motif GUI
applications.

The following are the user programs available, listed by function, including some intended only for set-up
and installation. Some of the descriptions which follow are merged together to save repetition.

More detailed descriptions of the interactive interfaces to gbch-q, gbch-user, gbch-xq, gbch-xr, gbch-xuser,
gbch-xmq, gbch-xmr and gbch-xmuser follow in the next two chapters, the descriptions here concentrating
on the command line options to these programs.

7.1 Syntax of batch commands

All of the options referred to in the descriptions of the shell-level programs for GNUBatch below may be
supplied in a configuration file (g.v.), or in an environment variable whose name is the same as the calling
program, except that it is in upper case, with hyphens converted to underscores, thus for exampl