
Dim User’s Manual June 6, 2011

Dim User’s Manual

Jean-Paul Chaput
Jean-Paul.Chaput@lip6.fr

June 2011

Contents

1 Introduction. 1

1.1 Getting Dim . 1

2 Dim . 1

2.1 Goals of Dim . 1

2.2 Configuring Dim . 2

3 yumport . 4

4 tl2rpm . 7

5 yumsync . 8

1 Introduction

The Dim package provides three tools: Dim, yumport and yumsync. yumsync and
Dim are independant but yumport depends on Dim.

Thoses tools are mainly aimed at system administrators with a background in rpm/yum
based distributions and rpm building.

Dim and yumport must be run on machine with the same architecture as the distri-
bution. That is 32 bits for i386 and 64 bits for x86_64.

1.1 Getting Dim

Source and binary of dim rpm packages can be downloadeds from here:

source dim-1.0.7-1.slsoc6.src.rpm

binary dim-1.0.7-1.slsoc6.noarch.rpm

2 Dim

2.1 Goals of Dim

Starting from a medium size computer network, it is often useful to set up a local mir-
ror of the distribution, so not to overload the bandwidth towards the outside of the

LIP6/SoC 1

http://ftp.lip6.fr/pub/linux/distributions/slsoc/soc/SRPMS/dim-1.0.7-1.slsoc6.src.rpm
http://ftp.lip6.fr/pub/linux/distributions/slsoc/soc/i386/RPMS/dim-1.0.7-1.slsoc6.noarch.rpm

Dim User’s Manual June 6, 2011

network and not saturate the public servers. Besides having a complete local copy can
come in handy. When setting up the local mirror, the straighforward approach is to
do a complete copy. Which means at least two repositories: the base distribution, then
the security updates. As the repository holding the security updates contains all the
previous outdated version of a package, it can grow big over time. Another aspect is
that by keeping the repositories separated you have a "two step" install mode: first step
install the base (outdated) distribution, then the updates are applieds. It is now less
true because the installer (from SL6) automatically perform the update.

The second mirror approach is to merge the base distribution and it’s updates and
keep only the latest version of a package. The result is a distribution behaving like a
rolling one, but only with the official updates.

This is mainly what Dim does: merge repositories and prune outdated packages. In
addition, it embbeds createrepo, repoview, and can add GPG signature to packages
that are lacking it.

2.2 Configuring Dim

Configuration is stored in /etc/yum/dim.conf. The file is in python format, allow-
ing any legal python construct. The file consist in a series of call to the addRepository()
method, which basically tells the repository into which we merge packages and from
which repositories.

configuration.addRepository

(repoid ="sl-local"

, optionHelp ="Applies on SL 6 distribution repository."

, comps ="repodata/comps-sl6-%(basearch)s.xml"

, rpmSubdir ="Packages"

, updateRepos=["sl-security"]

)

configuration.addRepository

(repoid ="sl-source-local"

, optionHelp ="Applies on SL 6 source distribution repository."

, updateRepos=["sl-source"]

)

configuration.addRepository

(repoid ="my-addons"

, optionHelp ="Applies on <My Addons> repository."

, updateRepos=[]

)

configuration.addRepository

(repoid ="my-addons-source"

, optionHelp ="Applies on <My Addons> source repository."

, updateRepos=[]

)

LIP6/SoC 2

Dim User’s Manual June 6, 2011

addRepository() parameters

repoid The target repository id (into which we merge).

updateRepos The list of repositories id from which to get the updates.

comps A comps file for createrepo and repoview (optional).
The %(basearch)s may be used to be architecture indepen-
dant.

rpmSubDir By default, Dim copies rpm in the same relative location as in
the source repositories. But sometimes we need to insert an
extra path, like in the base distribution.

optionHelp The help message that will be displayed by Dim when help is
requested

On the machine hosting the distribution and on which dim is run, there must be
two sets of repositories.

1. The normal repositories, used for the host maintenance.

2. The repositories used by Dim to update the distribution.

Those two different sets must not be mixeds. To achieve the separation, Dim changes
the root of the filesystem hierarchy from which yum operates. The Dim repositories are
located in /home/dim/yum.root/etc/yum.repos.d/. For the same reason, to tune
yum behavior when it’s used by Dim, modify /home/dim/etc/yum.conf.

Using Dim

The Dim command line:

dim [--repoview] [--addsign] [--clean-cache] [--check-update] \\

<repoid1> [repoid2 ...]

The default behavior of Dim is to merge the update and call createrepo on the
selecteds repositories.

Dim parameters

repoid Specifies on which repository to run. This is the
repoid given in the configuration file.

--repoview Run repoview (not run by default).

--check-updates Reports for avalaible updates. Do not merge them.

--addsign Look for packages missing a signature and try to
add one. This option disable the updating.

--clean-cache Clear all cached yum data (equivalent to yum clean

all).

LIP6/SoC 3

Dim User’s Manual June 6, 2011

Note 1: Dim will only look for update of package that are already present in the
target repository. That is, if completly new packages appears in the source repository,
they will not be added. You have to if manually the first time.

Note 2: Deprecated packages are not erased. They are moved into a backup di-
rectory, /home/dim/backup/<repoid>/ so if something goes wrong they can be re-
stored. This directory should be cleaned from time to time.

Other Uses

Another application is to create local repository that merge vendors rpm. You could for
instance create a vendor repository that merges the contents of Adobe and VirtualBox.

3 yumport

yumport is an utility to ease the task of porting packages from sibling distributions
like FEDORA or third party repositories like ATrpms. yumport is aimed at simplicity,
it do not uses chrooted environment or sophisticated scheduled rebuilds and report
systems.

yumport is able to recursively pull/install dependencies needed to build a given
package. yumport is to perform the more tedious task of porting, but il will not correct
the code for you or adjust dependency name changes. Nevertheless, many FEDORA

packages rebuild without problems under SL 6 and it’s for those that yumport has
been created.

Using yumport

The yumport command line:

yumport --package=<package1> [--package=<package2> ...]

yumport parameters

--package The name of the package to be rebuild. Can be used multiple
times.

If everything goes according to plan, the following cycle will be executed:

1. The source file is pulled from the source repository.

2. The sources are unpacked in the rpmbuild directory trees.

3. The dependency are looked upon. Either they are avalaible, and are installed, or
they must be compiled from source. In the later case insert them in the head of
the rebuild list and continue.

4. All dependencies are installed, the package is built.

LIP6/SoC 4

Dim User’s Manual June 6, 2011

5. Source (if needed) and binary packages are moved into the target repository.

6. Dim is called to update source & target repository.

Some important files and directories for yumport:

• /etc/yum/yumport.conf : the configuration file.

• /home/dim/SRPMS.cache : the directory holdind the original source files (down-
loaded from the source repositories).

• /home/dim/rpmbuild : the root directory of the rpmbuild process.

• /home/dim/rpmmacros : an on the fly generated file to configure rpmbuild.

• /home/dim/yum.root/etc/yum.repos.d/ : the alternate yum directory where
yumport get it’s repositories (shared with Dim).

Configuring yumport

First part: Repository Configuration.

def guessFedoraDistTag (release):

m = re.match(r".*\.fc(?P<fcversion>\d+)\..*",release)

if m: return "fc%s" % (m.group("fcversion"))

m = re.match(r".*\.(?P<disttag>[^.]+)$",release) # $

if m: return m.group("disttag")

return release

def guessPatchedDistTag (release):

return "slsoc6"

configuration.addSourceRepo ("my-addons-source",guessFedoraDistTag)

configuration.addSourceRepo ("fedora-14-source",guessFedoraDistTag)

configuration.setTargetRpmsRepo ("my-addons" ,"RPMS")

configuration.setTargetSrpmsRepo ("my-addons-source")

yumport configuration

addSourceRepo Add a source repository (by id). The second param-
eter must be a fonction indicating how to transform
the %dist tag (see below).

setTargetRpmsRepo The target binary repository, where the rebuild pack-
ages are to be put. The second parameter gives a
subdirectory inside the repository.

setTargetSrpmRepo The target source repository.

In order to keep track of the original source of a package, we customize the %dist
tag thanks to the guessFedoraDistTag() function. The convention implemented
here is to add up the target distribution tag (slsoc6) with the source one (say: fc14),
the result being .slsoc6.fc14. You may implement any convention you like.

LIP6/SoC 5

Dim User’s Manual June 6, 2011

Second part: Dependency Resolution.

def binaryToSource (binary):

def rePerlSepar (mo):

if mo.group(0) == ’(’: return "-"

elif mo.group(0) == ’)’: return ""

elif mo.group(0) == "::": return "-"

return ""

matched = True

source = binary

if binary.startswith("libXvMCW"): source = binary

elif binary.startswith("qt-webkit"): source = "qtwebkit"

elif binary == "timidity++-patches": source = "fluid-soundfont"

elif binary == "soundfont-utils": source = "gt"

elif binary == "gnu.regexp": source = "gnu-regexp"

elif binary == "msv-msv": source = "msv"

elif binary == "msv-xsdlib": source = "msv"

elif binary == "jakarta-commons-configuration": source = "apache-commons-configuration"

elif binary == "jaxp": source = "xml-commons-apis"

elif binary == "xfce4-doc": source = "xfce-utils"

elif binary.startswith("libgoom2"): source = "goom2k4"

elif binary.startswith("bitstream-vera"): source = "bitstream-vera-fonts"

elif binary.startswith("netbeans-platform"): source = "netbeans-platform"

elif binary.startswith("perl("):

print source

source = re.sub(r"\(|\)|::",rePerlSepar,source)

else:

matched = False

return (source,matched)

Put the lookup fonction in place.

configuration.setBinaryToSourceHook(binaryToSource)

While a package is not yet in the yum or rpm database, we cannot guess what it
provides. The binaryToSource function is a work around for this problem. It behave
like a lookup table, returning the right source package name for a give dependency.
Most of the time, the name of the dependency match the name of the source package,
but when it’s not the case, we put an explicit translation. The function shown above
has been successfuly tested to recompile mplayer and vlc from ATrpms.

Third part: tricky packages.

configuration.addExtraInfos("lash" ,requires=["libuuid-devel"])

configuration.addExtraInfos("lirc" ,builds =[[] ,["--define", "kmdl_userland 1"]])

configuration.addExtraInfos("sdcc" ,builds =[["--define", "__strip /bin/true"]])

configuration.allowUpgrades(["libvpx", "libvpx-devel"])

LIP6/SoC 6

Dim User’s Manual June 6, 2011

addExtraInfos() parameters

--requires A supplemental dependency which is missing in the spec

file.

--builds A list of list. Allows to perform multiple builds with dif-
ferents macro arguments. For instance lirc will be built
twice: the first tile without any arguments (hence the [])
and the second time with a -define "kmdl_userlan 1"

arguments.

By default, yumport never override a package already present in the local repos-
itories, but sometimes we have to allow an upgrade (this should be considered very
carefully). allowUpgrages() takes a list of package that are alloweds to upgrade
distributions ones.

4 tl2rpm

Automatic portage of CTAN packages. This script is mostly a PYTHON rewrite of tl2rpm.c
from Jindrich NOVY. The main difference from the original program are:

• Package-oriented approach. Instead of generating all specs files from a complete
TEX Live database (texlive.tlpdb), translate <package>.tlpobj.

• Fetch archive files from CTAN if needed.

• Rebuild the rpm package.

Configuration files of tl2rpm. They resides under /etc/yum/tl2rpm/.

File Function

changelog The changelog section to be inserted in every rpm

(same for all).

cls.list When looking inside .tex or .cls file for depen-
dency, we cannot known the kind of required file.
This list contains all the dependencies that are .cls,
otherwise they are considered to be .sty.

pkg-CTAN.list The almost whole list of components in the CTAN

archive. You may feed it to tl2rpm with the
--packages option to rebuild the whole archive
(took almost two hours on my computer).

pkg-SOURCES.map In some rare case, the name of the rpm package do
not match the one of the CTAN component. The cor-
respondances are given here (rpm name first, CTAN

component second).

req-blacklist.map Some dependency must not be took into account.
They are listed in this file.

tl2rpm.conf The main configuration file.

LIP6/SoC 7

http://jnovy.fedorapeople.org/texlive/tl2rpm.c
http://jnovy.fedorapeople.org/

Dim User’s Manual June 6, 2011

The tl2rpm command line:

tlrpm [--quiet] [--nocache] [--all-packages] \\

[--max-fails=<number>][--report<report_file] \\

[--packages=<package_list>] [package1 package2 ...]

yumsync parameters

--quiet Terse display. One line per package.

--no-cache Ignore already downloaded archives in
rpmbuild/SOURCES.

--max-fails=<> The number of packages allowed to fail before we stop the
run.

--packages=<> A file containing a list of packages to rebuild. One package
per line, comment start by "#".

--all-packages Rebuild the whole CTAN archive.

--keep-cache Keep previously cached datas. The default is to erase every-
thing from a previous run. This is may not be convenient
when updating big set of packages.

--report=<> Write a report about what has been done in this file.

Note on package names: When giving a package name to tl2rpm, remove the texlive-
prefix. Saves some typing...

5 yumsync

Yumsync allows you to keep a computer striclty synchronized on a predefined set of
packages. It is different from the distribution- synchronization mode of yum.
The yum mode ensure that versions of installed packages are keep in sync with the
distribution repository, performing downgrade if necessary. It do not modify the set
of installed packages (apart from the obsolete mechanism). The task of yumsync is to
keep in sync the set of package itself.

Using yumsync

First, a schematic description as how yumsyncwork to help you interpret the displayed
outpout. To avoid running on stalled cached yum datas, the cache is systematically
cleared (equivalent to yum clean all, so every time you run yumsync, you will see
the download of the repositories metadatas. Then, yumsync performs a first depen-
dency solve run, using an empty rpm database to compute the exact set of packages
to be installeds. And finally, it runs a second dependency solve on the system rpm

database to align the installed package set on the requested one.
The yumsync command line:

LIP6/SoC 8

Dim User’s Manual June 6, 2011

yumsync [--conf=<configuration>] [--profile=<profileid>] \\

[--nogpgcheck] [--sync]

yumsync parameters

--conf Uses an alternate configuration file

--profile Force the profile on which to synchronize. If not specified
try to match the host name against the host patterns of each
profiles

--sync Perform the actual synchronization. By default the script is
in dry run mode

--nogpgcheck Disable GPG checking

--keep-cache Keep previously cached datas. The default is to erase every-
thing from a previous run. This is may not be convenient
when updating big set of packages.

Before performing the first synchronization you are strongly urged to run in dry
mode and thorougly checks what packages are to be removed or installeds.

As the aim of yumsync is to synchronize each computer of a network, the configu-
ration file has to be distributed over the network. To achieve this you may uses --conf
to point on a configuration file located on a networked file system or the system config-
uration could be synchronized with rdist.

Defining Profiles — The Configuration File yumsync.conf

The configuration file is in python format, allowing for any python construct to be used.
The configuration file define a list of profiles, each profile supplies a list of hostname
patterns, a list of enabled repositories and a list of groups/packages to synchronize
with.

configuration.addProfile (profileid = "lepka"

, hosts = ["lepka"

, ".*\.soc.lip6.fr"]

, repoids = ["sl", "epel"]

, packages = ["@base"

, "@core"

, "zsh"

]

)

Any number of profile can be defined. Host pattern may be overlaping, in this
case, the first to match is used. A complete example of configuration file is given in
subsection 5.

LIP6/SoC 9

Dim User’s Manual June 6, 2011

addProfile() parameters

profileid An unique identifier for the profile

hosts A python list of regular expressions that will be matched
against the host name

repoids A python list of repository to be enableds while synchronis-
ing

packages A python list of groups and/or single packages. Names
should be kept from the comps file, like in kickstart.

A full dependency check is performed on the set of requested groups/packages
using the yum depsolve mechanism. So you only have to put in the list the top
level groups or individual package. A good starting point is the %package section
of anaconda-ks.cfg file left after any installation.

Example of yumsync.conf

-*- Python -*-

#

The configuration file of yumsync.

It’s a Python file (*not* a module).

#

Packages names/group names as in yum command line (pattern) format.

sl6Desktop = ["@additional-devel", "@base", "@core", "@debugging", "@basic-desktop"

, "@desktop-debugging", "@desktop-platform", "@desktop-platform-devel"

, "@development", "@directory-client", "@eclipse", "@emacs", "@fonts"

, "@french-support", "@general-desktop", "@graphical-admin-tools"

, "@graphics", "@input-methods", "@internet-applications"

, "@internet-browser", "@java-platform", "@legacy-x", "@misc-sl"

, "@network-file-system-client", "@office-suite", "@performance"

, "@perl-runtime", "@print-client", "@remote-desktop-clients"

, "@scalable-file-systems", "@server-platform", "@server-platform-devel"

, "@tex", "@technical-writing", "@virtualization"

, "@virtualization-client", "@virtualization-platform", "@web-server"

, "@console-internet", "@x11"

End of groups.

, "elrepo-release", "epel-release", "adobe-release-i386", "atrpms-repo"

, "sl-release-notes", "zsh", "xfig", "graphviz", "ImageMagick"

, "inkscape", "latex2html", "thunderbird", "createrepo", "urlview"

, "rsh", "procmail", "fetchmail", "mutt", "rdesktop", "tigervnc"

, "tigervnc-server", "gconf-editor", "vim-X11", "python-docs", "qt-doc"

, "libXpm-devel", "libXmu-devel", "libXp-devel", "openmotif-devel"

, "rdist", "screen", "lm_sensors", "yum-plugin-versionlock"

End of individual packages.

]

configuration.addProfile (profileid = "lepka"

, hosts = ["lepka", "shadock"]

, repoids = ["sl", "elrepo", "epel"]

, packages = sl6Desktop + \

["a2ps" # From <r:epel>

, "repoview" # From <r:epel>

, "fuse-sshfs" # From <r:epel>

, "mod_python" # From <r:epel>

, "trac" # From <r:epel>

]

LIP6/SoC 10

Dim User’s Manual June 6, 2011

)

configuration.addProfile (profileid = "sl6-64"

, hosts = ["sl6-64"]

, repoids = ["sl", "elrepo", "epel"]

, packages = sl6Desktop + \

["a2ps" # From <r:epel>

, "repoview" # From <r:epel>

, "fuse-sshfs" # From <r:epel>

, "mod_python" # From <r:epel>

]

)

LIP6/SoC 11

	Introduction
	Getting Dim

	Dim
	Goals of Dim
	Configuring Dim

	yumport
	tl2rpm
	yumsync

