Python/C API Reference Manual
Release 1.6

Guido van Rossum
Fred L. Drake, Jr., editor

September 18, 2000

BeOpen PythonlLabs
E-mail: python-docs@python.org

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160
Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) access-
ing and otherwise using this software in source or binary form and its associated documentation
(“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby
grants Licensee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform
and/or display publicly, prepare derivative works, distribute, and otherwise use the Software alone
or in any derivative version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAM-
PLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESEN-
TATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD
PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFT-
WARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of
the State of California, excluding conflict of law provisions. Nothing in this License Agree-
ment shall be deemed to create any relationship of agency, partnership, or joint venture be-
tween BeOpen and Licensee. This License Agreement does not grant permission to use BeOpen
trademarks or trade names in a trademark sense to endorse or promote products or services
of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that
web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

CNRI OPEN SOURCE LICENSE AGREEMENT

Python 1.6 is made available subject to the terms and conditions in CNRI’s License Agreement. This
Agreement together with Python 1.6 may be located on the Internet using the following unique, persistent
identifier (known as a handle): 1895.22/1012. This Agreement may also be obtained from a proxy server
on the Internet using the following URL: http://hdl.handle.net/1895.22/1012.

CWI PERMISSIONS STATEMENT AND DISCLAIMER

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights
reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Stichting Mathematisch Centrum or CWI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSO-
EVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF

CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

This manual documents the API used by C and C++ programmers who want to write extension modules
or embed Python. It is a companion to Extending and Embedding the Python Interpreter, which describes
the general principles of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. I hope that it is nevertheless useful. I
will continue to work on it, and release new versions from time to time, independent from Python source
code releases.

CONTENTS

1 Introduction 1
1.1 Imclude Files o o o e 1
1.2 Objects, Types and Reference Counts 2
1.3 Exceptions e 5
1.4 Embedding Python e 7
2 The Very High Level Layer 9
3 Reference Counting 11
4 Exception Handling 13
4.1 Standard Exceptions 15
4.2 Deprecation of String Exceptions L o 16
5 Utilities 17
51 OS Utilities . . . o o o v e 17
5.2 Process Control L e 17
5.3 Importing Modules L e 17
6 Abstract Objects Layer 21
6.1 Object Protocol o 21
6.2 Number Protocol e 23
6.3 Sequence Protocol e 24
6.4 Mapping Protocol 25
7 Concrete Objects Layer 27
7.1 Fundamental Objects e 27
7.2 Sequence Objects e 27
7.3 Mapping Objects e e e 37
7.4 Numeric Objects e 38
7.5 Other Objects o e 41
8 Initialization, Finalization, and Threads 45
8.1 Thread State and the Global Interpreter Lock 48
9 Memory Management 53
9.1 OVerview e e e 53
9.2 Memory Interface 54
9.3 Examples e e e e 54
10 Defining New Object Types 57
10.1 Common Object Structureso o 57
10.2 Mapping Object Structures 57
10.3 Number Object Structures 57

10.4 Sequence Object Structures e
10.5 Buffer Object Structures

Index

CHAPTER
ONE

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python
interpreter at a variety of levels. The API is equally usable from C++, but for brevity it is generally
referred to as the Python/C API. There are two fundamentally different reasons for using the Python/C
API. The first reason is to write extension modules for specific purposes; these are C modules that extend
the Python interpreter. This is probably the most common use. The second reason is to use Python as
a component in a larger application; this technique is generally referred to as embedding Python in an
application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach
works well. There are several tools that automate the process to some extent. While people have
embedded Python in other applications since its early existence, the process of embedding Python is less
straightforward that writing an extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover,
most applications that embed Python will need to provide a custom extension as well, so it’s probably
a good idea to become familiar with writing an extension before attempting to embed Python in a real
application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by
the following line:

#include "Python.h"

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, and
<stdlib.h> (if available).

All user visible names defined by Python.h (except those defined by the included standard headers)
have one of the prefixes ‘Py’ or ‘_Py’. Names beginning with ‘_Py’ are for internal use by the Python
implementation and should not be used by extension writers. Structure member names do not have a
reserved prefix.

Important: user code should never define names that begin with ‘Py’ or ‘_Py’. This confuses the reader,
and jeopardizes the portability of the user code to future Python versions, which may define additional
names beginning with one of these prefixes.

The header files are typically installed with Python. On UNIX, these are located in the di-
rectories ‘$prefix/include/pythonversion/’ and ‘$exec_prefix/include/pythonversion/’, where $prefix and
$exec_prefix are defined by the corresponding parameters to Python’s configure script and wversion
is sys.version[:3]. On Windows, the headers are installed in ‘$prefix/include’, where $prefix is the
installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes.
Do not place the parent directories on the search path and then use ‘#include <pythonl.5/Python.h>’;

this will break on multi-platform builds since the platform independent headers under $prefix include
the platform specific headers from $exec_prefix.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyObjectx*.
This type is a pointer to an opaque data type representing an arbitrary Python object. Since all Python
object types are treated the same way by the Python language in most situations (e.g., assignments,
scope rules, and argument passing), it is only fitting that they should be represented by a single C type.
Almost all Python objects live on the heap: you never declare an automatic or static variable of type
PyObject, only pointer variables of type PyObject* can be declared. The sole exception are the type
objects; since these must never be deallocated, they are typically static PyTypeObject objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines
what kind of object it is (e.g., an integer, a list, or a user-defined function; there are many more as
explained in the Python Reference Manual). For each of the well-known types there is a macro to check
whether an object is of that type; for instance, ‘PyList_Check(a)’ is true if (and only if) the object
pointed to by a is a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited)
memory size; it counts how many different places there are that have a reference to an object. Such a
place could be another object, or a global (or static) C variable, or a local variable in some C function.
When an object’s reference count becomes zero, the object is deallocated. If it contains references to
other objects, their reference count is decremented. Those other objects may be deallocated in turn, if
this decrement makes their reference count become zero, and so on. (There’s an obvious problem with
objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py _INCREF ()
to increment an object’s reference count by one, and Py_DECREF() to decrement it by one. The
Py_DECREF () macro is considerably more complex than the incref one, since it must check whether
the reference count becomes zero and then cause the object’s deallocator to be called. The deallocator
is a function pointer contained in the object’s type structure. The type-specific deallocator takes care of
decrementing the reference counts for other objects contained in the object if this is a compound object
type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance
that the reference count can overflow; at least as many bits are used to hold the reference count as there
are distinct memory locations in virtual memory (assuming sizeof (long) >= sizeof (char*)). Thus,
the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer
to an object. In theory, the object’s reference count goes up by one when the variable is made to point
to it and it goes down by one when the variable goes out of scope. However, these two cancel each other
out, so at the end the reference count hasn’t changed. The only real reason to use the reference count
is to prevent the object from being deallocated as long as our variable is pointing to it. If we know that
there is at least one other reference to the object that lives at least as long as our variable, there is no
need to increment the reference count temporarily. An important situation where this arises is in objects
that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without
incrementing its reference count. Some other operation might conceivably remove the object from the
list, decrementing its reference count and possible deallocating it. The real danger is that innocent-
looking operations may invoke arbitrary Python code which could do this; there is a code path which
allows control to flow back to the user from a Py_DECREF(), so almost any operation is potentially
dangerous.

A safe approach is to always use the generic operations (functions whose name begins with ‘PyObject_,

2 Chapter 1. Introduction

)

‘PyNumber_’, ‘PySequence_’ or ‘PyMapping_’). These operations always increment the reference count
of the object they return. This leaves the caller with the responsibility to call Py_DECREF () when they
are done with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership
of references. Note that we talk of owning references, never of owning objects; objects are always shared!
When a function owns a reference, it has to dispose of it properly — either by passing ownership on
(usually to its caller) or by calling Py_DECREF () or Py_XDECREF (). When a function passes ownership of
a reference on to its caller, the caller is said to receive a new reference. When no ownership is transferred,
the caller is said to borrow the reference. Nothing needs to be done for a borrowed reference.

Conversely, when calling a function passes it a reference to an object, there are two possibilities: the
function steals a reference to the object, or it does not. Few functions steal references; the two notable
exceptions are PyList_SetItem() and PyTuple_SetItem(), which steal a reference to the item (but
not to the tuple or list into which the item is put!). These functions were designed to steal a reference
because of a common idiom for populating a tuple or list with newly created objects; for example, the
code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the
moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_SetItem(t, 0, PyInt_FromLong(1L));
PyTuple_SetItem(t, 1, PyInt_FromLong(2L));
PyTuple_SetItem(t, 2, PyString FromString("three"));

Incidentally, PyTuple_SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only
use PyTuple_SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New() and PyList_SetItem(). Such
code can also use PySequence_SetItem(); this illustrates the difference between the two (the extra
Py_DECREF() calls):

PyObject *1, *x;

1 = PyList_New(3);

x = PyInt_FromLong(1iL);
PySequence_SetItem(l, O, x); Py_DECREF(x);
x = PyInt_FromLong(2L);
PySequence_SetItem(1l, 1, x); Py_DECREF(x);
x = PyString_FromString("three");
PySequence_SetItem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice,
you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue(), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of
the error checking):

PyObject *t, *1;

t
1

Py_BuildValue("(iis)", 1, 2, "three");
Py_BuildValue("[iis]", 1, 2, "three");

1.2. Objects, Types and Reference Counts 3

It is much more common to use PyObject_SetItem() and friends with items whose references you are
only borrowing, like arguments that were passed in to the function you are writing. In that case, their
behaviour regarding reference counts is much saner, since you don’t have to increment a reference count
so you can give a reference away (“have it be stolen”). For example, this function sets all items of a list
(actually, any mutable sequence) to a given item:

int set_all(PyObject *target, PyObject *item)

{
int i, n;
n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
if (PyObject_SetItem(target, i, item) < 0)
return -1;
}
return O;
}

The situation is slightly different for function return values. While passing a reference to most functions
does not change your ownership responsibilities for that reference, many functions that return a referece
to an object give you ownership of the reference. The reason is simple: in many cases, the returned
object is created on the fly, and the reference you get is the only reference to the object. Therefore, the
generic functions that return object references, like PyObject_GetItem() and PySequence_GetItem(),
always return a new reference (i.e., the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which func-
tion you call only — the plumage (i.e., the type of the type of the object passed as an argument to the func-
tion) doesn’t enter into it! Thus, if you extract an item from a list using PyList_GetItem(), you don’t
own the reference — but if you obtain the same item from the same list using PySequence_GetItem()
(which happens to take exactly the same arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of
integers; once using PyList_GetItem(), and once using PySequence_GetItem().

long sum_list(PyObject *1list)

{
int i, n;
long total = 0O;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, i); /* Can’t fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total;
}

4 Chapter 1. Introduction

long sum_sequence (PyObject *sequence)

{
int i, n;
long total = O;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF (item); /* Discard reference ownership */
}
return total;
}
1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types
such as int, long, double and char*. A few structure types are used to describe static tables used to
list the functions exported by a module or the data attributes of a new object type, and another is used
to describe the value of a complex number. These will be discussed together with the functions that use
them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; un-
handled exceptions are automatically propagated to the caller, then to the caller’s caller, and so on,
until they reach the top-level interpreter, where they are reported to the user accompanied by a stack
traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C
API can raise exceptions, unless an explicit claim is made otherwise in a function’s documentation. In
general, when a function encounters an error, it sets an exception, discards any object references that it
owns, and returns an error indicator — usually NULL or -1. A few functions return a Boolean true/false
result, with false indicating an error. Very few functions return no explicit error indicator or have an
ambiguous return value, and require explicit testing for errors with PyErr_Occurred().

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an
unthreaded application). A thread can be in one of two states: an exception has occurred, or not.
The function PyErr_0Occurred() can be used to check for this: it returns a borrowed reference to the
exception type object when an exception has occurred, and NULL otherwise. There are a number of
functions to set the exception state: PyErr_SetString() is the most common (though not the most
general) function to set the exception state, and PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the
corresponding exception value, and the traceback. These have the same meanings as the Python
objects sys.exc_type, sys.exc_value, and sys.exc_traceback; however, they are not the same: the
Python objects represent the last exception being handled by a Python try ... except statement, while
the C level exception state only exists while an exception is being passed on between C functions until it
reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_type
and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from

1.3. Exceptions 5

Python code is to call the function sys.exc_info(), which returns the per-thread exception state for
Python code. Also, the semantics of both ways to access the exception state have changed so that a
function which catches an exception will save and restore its thread’s exception state so as to preserve
the exception state of its caller. This prevents common bugs in exception handling code caused by an
innocent-looking function overwriting the exception being handled; it also reduces the often unwanted
lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether
the called function raised an exception, and if so, pass the exception state on to its caller. It should
discard any object references that it owns, and return an error indicator, but it should not set another
exception — that would overwrite the exception that was just raised, and lose important information
about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example
above. It so happens that that example doesn’t need to clean up any owned references when it detects
an error. The following example function shows some error cleanup. First, to remind you why you like
Python, we show the equivalent Python code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
return item + 1

Here is the corresponding C code, in all its glory:

6 Chapter 1. Introduction

int incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py_XDECREF x*/
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */
item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError)) goto error;
/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(OL) ;
if (item == NULL) goto error;
}
const_one = PyInt_FromLong(1iL);
if (const_one == NULL) goto error;
incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL) goto error;
if (PyObject_SetItem(dict, key, incremented_item) < 0) goto error;
rv = 0; /* Success */
/* Continue with cleanup code */
error:
/* Cleanup code, shared by success and failure path */
/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF (item) ;
Py_XDECREF (const_one) ;
Py_XDECREF (incremented_item) ;
return rv; /* -1 for error, O for success */
}

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches() and PyErr_Clear() to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the ‘X’ in the name; Py_DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold
owned references are initialized to NULL for this to work; likewise, the proposed return value is initialized
to -1 (failure) and only set to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter
have to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most
functionality of the interpreter can only be used after the interpreter has been initialized.

The basic initialization function is Py_Initialize(). This initializes the table of loaded modules, and
creates the fundamental modules __builtin main__ and sys. It also initializes the module search
path (sys.path).

Py_Initialize() does not set the “script argument list” (sys.argv). If this variable is needed by
Python code that will be executed later, it must be set explicitly with a call to PySys_SetArgv(argc,
argv) subsequent to the call to Py_Initialize().

1.4. Embedding Python 7

On most systems (in particular, on UNIX and Windows, although the details are slightly different),
Py_Initialize() calculates the module search path based upon its best guess for the location of the
standard Python interpreter executable, assuming that the Python library is found in a fixed location
relative to the Python interpreter executable. In particular, it looks for a directory named ‘lib/python1.5’
(replacing ‘1.5’ with the current interpreter version) relative to the parent directory where the executable
named ‘python’ is found on the shell command search path (the environment variable $PATH).

For instance, if the Python executable is found in ‘/usr/local/bin/python’, it will assume that the libraries
are in ‘/usr/local/lib/pythonl.5’. (In fact, this particular path is also the “fallback” location, used when no
executable file named ‘python’ is found along $PATH.) The user can override this behavior by setting the
environment variable $PYTHONHOME, or insert additional directories in front of the standard path by
setting SPYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize(). Note that SPYTHONHOME still overrides this and $PYTHONPATH is still inserted
in front of the standard path. An application that requires total control has to provide its own imple-
mentation of Py_GetPath(), Py_GetPrefix (), Py_GetExecPrefix (), and Py_GetProgramFullPath()
(all defined in ‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over
(make another call to Py_Initialize()) or the application is simply done with its use of Python and
wants to free all memory allocated by Python. This can be accomplished by calling Py_Finalize().
The function Py_IsInitialized() returns true if Python is currently in the initialized state. More
information about these functions is given in a later chapter.

8 Chapter 1. Introduction

CHAPTER
TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they
will not let you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start
symbols are Py_eval_input, Py_file_input, and Py_single_input. These are described following
the functions which accept them as parameters.

int PyRun_AnyFile(FILE *fp, char *filename)
If fp refers to a file associated with an interactive device (console or terminal input or UNIX
pseudo-terminal), return the value of PyRun_InteractiveLoop(), otherwise return the result of
PyRun_SimpleFile(). If filename is NULL, this function uses "??77" as the filename.

int PyRun_SimpleString(char *command)
Executes the Python source code from command in the __main__ module. If __main__ does not
already exist, it is created. Returns O on success or -1 if an exception was raised. If there was an
error, there is no way to get the exception information.

int PyRun_SimpleFile(FILE *fp, char *filename)
Similar to PyRun_SimpleString(), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file.

int PyRun_InteractiveOne(FILE *fp, char *filename)
int PyRun_InteractiveLoop(FILE *fp, char *filename)

struct _node* PyParser_SimpleParseString(char *str, int start)
Parse Python source code from str using the start token start. The result can be used to create a
code object which can be evaluated efficiently. This is useful if a code fragment must be evaluated
many times.

struct _nodex PyParser_SimpleParseFile(FILE *fp, char *filename, int start)
Similar to PyParser_SimpleParseString(), but the Python source code is read from fp instead
of an in-memory string. filename should be the name of the file.

PyObject* PyRun_String(char *str, int start, PyObject *globals, PyObject *locals)
Execute Python source code from str in the context specified by the dictionaries globals and locals.
The parameter start specifies the start token that should be used to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject* PyRun_File(FILE *fp, char *filename, int start, PyObject *globals, PyObject *locals)
Similar to PyRun_String(), but the Python source code is read from fp instead of an in-memory
string. filename should be the name of the file.

PyObject* Py_CompileString(char *str, char *filename, int start)
Parse and compile the Python source code in str, returning the resulting code object. The start
token is given by start; this can be used to constrain the code which can be compiled and should
be Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename
is used to construct the code object and may appear in tracebacks or SyntaxError exception
messages. This returns NULL if the code cannot be parsed or compiled.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with
Py_CompileString().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other
source; for use with Py_CompileString(). This is the symbol to use when compiling arbitrarily
long Python source code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with
Py_CompileString(). This is the symbol used for the interactive interpreter loop.

10 Chapter 2. The Very High Level Layer

CHAPTER
THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void

void

void

void

Py_INCREF (PyObject *0)
Increment the reference count for object o. The object must not be NULL; if you aren’t sure that
it isn’t NULL, use Py_XINCREF().

Py_XINCREF (PyObject *o)
Increment the reference count for object o. The object may be NULL, in which case the macro has
no effect.

Py_DECREF (PyObject *0)

Decrement the reference count for object 0. The object must not be NULL; if you aren’t sure that it
isn’t NULL, use Py_XDECREF (). If the reference count reaches zero, the object’s type’s deallocation
function (which must not be NULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a
class instance with a __del__ () method is deallocated). While exceptions in such code are not
propagated, the executed code has free access to all Python global variables. This means that any
object that is reachable from a global variable should be in a consistent state before Py _DECREF ()
is invoked. For example, code to delete an object from a list should copy a reference to the deleted
object in a temporary variable, update the list data structure, and then call Py_DECREF () for the
temporary variable.

Py_XDECREF (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has
no effect; otherwise the effect is the same as for Py_DECREF (), and the same warning applies.

The following functions or macros are only for use within the interpreter core: _Py_Dealloc(),
_Py_ForgetReference(), _Py_NewReference(), as well as the global variable _Py_RefTotal.

11

12

CHAPTER
FOUR

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important
to understand some of the basics of Python exception handling. It works somewhat like the UNIX errno
variable: there is a global indicator (per thread) of the last error that occurred. Most functions don’t
clear this on success, but will set it to indicate the cause of the error on failure. Most functions also
return an error indicator, usually NULL if they are supposed to return a pointer, or -1 if they return
an integer (exception: the PyArg Parsex () functions return 1 for success and 0 for failure). When a
function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it.

The error indicator consists of three Python objects corresponding to the Python wvariables
Sys.exc_type, sys.exc_value and sys.exc_traceback. API functions exist to interact with the
error indicator in various ways. There is a separate error indicator for each thread.

void PyErr_Print()
Print a standard traceback to sys.stderr and clear the error indicator. Call this function only
when the error indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr_Occurred()
Test whether the error indicator is set. If set, return the exception type (the first argument to the
last call to one of the PyErr_Set*() functions or to PyErr_Restore()). If not set, return NULL.
You do not own a reference to the return value, so you do not need to Py_DECREF() it. Note:
Do not compare the return value to a specific exception; use PyErr_ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of
a class, in the case of a class exception, or it may the a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Equivalent to ‘PyErr_GivenExceptionMatches (PyErr_Occurred(), exzc)’. This should only be
called when an exception is actually set; a memory access violation will occur if no exception has
been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if the given exception matches the exception in exc. If exc is a class object, this also
returns true when given is an instance of a subclass. If exc is a tuple, all exceptions in the tuple
(and recursively in subtuples) are searched for a match. If given is NULL, a memory access violation
will occur.

void PyErr_NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned by PyErr_Fetch() below can be “unnormalized”,
meaning that *exc is a class object but *wval is not an instance of the same class. This function can
be used to instantiate the class in that case. If the values are already normalized, nothing happens.
The delayed normalization is implemented to improve performance.

void PyErr_Clear()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator
is not set, set all three variables to NULL. If it is set, it will be cleared and you own a reference

13

to each object retrieved. The value and traceback object may be NULL even when the type object
is not. Note: This function is normally only used by code that needs to handle exceptions or by
code that needs to save and restore the error indicator temporarily.

void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)

Set the error indicator from the three objects. If the error indicator is already set, it is cleared
first. If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL
value or traceback. The exception type should be a string or class; if it is a class, the value should
be an instance of that class. Do not pass an invalid exception type or value. (Violating these rules
will cause subtle problems later.) This call takes away a reference to each object, i.e. you must
own a reference to each object before the call and after the call you no longer own these references.
(If you don’t understand this, don’t use this function. I warned you.) Note: This function is
normally only used by code that needs to save and restore the error indicator temporarily.

void PyErr_SetString(PyObject *type, char *message)
This is the most common way to set the error indicator. The first argument specifies the exception
type; it is normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not
increment its reference count. The second argument is an error message; it is converted to a string
object.

void PyErr_SetObject (PyObject *type, PyObject *value)
This function is similar to PyErr_SetString() but lets you specify an arbitrary Python object for
the “value” of the exception. You need not increment its reference count.

PyObject* PyErr_Format (PyObject *exception, const char *format, ...)
This function sets the error indicator using a printf-style format string. The first argument specifies
the exception type and the second argument specifies the format string for the exception. Any
subsequent arguments are converted to output by the C library’s vsprintf () function. The buffer
used internally by PyErr_Format () is 500 bytes long. The caller is responsible for guaranteeing
that the formatted output does not overflow the buffer.

void PyErr_SetNone (PyObject *type)
This is a shorthand for ‘PyErr_SetObject (type, Py_None)’.

int PyErr_BadArgument ()
This is a shorthand for ‘PyErr_SetString(PyExc_TypeError, message)’, where message indi-
cates that a built-in operation was invoked with an illegal argument. It is mostly for internal
use.

PyObject* PyErr_NoMemory ()
This is a shorthand for ‘PyErr_SetNone (PyExc_MemoryError)’; it returns NULL so an object allo-
cation function can write ‘return PyErr_NoMemory();’ when it runs out of memory.

PyObject* PyErr_SetFromErrno(PyObject *type)

This is a convenience function to raise an exception when a C library function has returned an error
and set the C variable errno. It constructs a tuple object whose first item is the integer errno
value and whose second item is the corresponding error message (gotten from strerror()), and
then calls ‘PyErr_Set0bject (type, object)’. On UNIX, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_CheckSignals (), and if that set the error indicator,
leaves it set to that. The function always returns NULL, so a wrapper function around a system call
can write ‘return PyErr_SetFromErrno();’ when the system call returns an error.

void PyErr_BadInternalCall()
This is a shorthand for ‘PyErr_SetString(PyExc_TypeError, message)’, where message indi-
cates that an internal operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.

int PyErr_CheckSignals()
This function interacts with Python’s signal handling. It checks whether a signal has been sent
to the processes and if so, invokes the corresponding signal handler. If the signal module is
supported, this can invoke a signal handler written in Python. In all cases, the default effect for
SIGINT is to raise the KeyboardInterrupt exception. If an exception is raised the error indicator
is set and the function returns 1; otherwise the function returns 0. The error indicator may or may

14 Chapter 4. Exception Handling

not be cleared if it was previously set.

void PyErr_SetInterrupt()

This function is obsolete.

It simulates the effect of a SIGINT signal arriving — the next time
PyErr_CheckSignals() is called, KeyboardInterrupt will be raised. It may be called without
holding the interpreter lock.

PyObject* PyErr_NewException(char *name, PyObject *base, PyObject *dict)

4.1 Standard Exceptions

This utility function creates and returns a new exception object. The name argument must be the
name of the new exception, a C string of the form module.class. The base and dict arguments
are normally NULL. Normally, this creates a class object derived from the root for all exceptions,
the built-in name Exception (accessible in C as PyExc_Exception). In this case the __module__
attribute of the new class is set to the first part (up to the last dot) of the name argument, and the
class name is set to the last part (after the last dot). The base argument can be used to specify an
alternate base class. The dict argument can be used to specify a dictionary of class variables and

All standard Python exceptions are available as global variables whose names are ‘PyExc_’ followed by
the Python exception name. These have the type PyObject*; they are all class objects. For completeness,
here are all the variables:

Note:

C Name

Python Name

Notes

PyExc_Exception
PyExc_StandardError
PyExc_ArithmeticError
PyExc_LookupError
PyExc_AssertionError
PyExc_AttributeError
PyExc_EOFError
PyExc_EnvironmentError
PyExc_FloatingPointError
PyExc_IOError
PyExc_ImportError
PyExc_IndexError
PyExc_KeyError
PyExc_KeyboardInterrupt
PyExc_MemoryError
PyExc_NameError
PyExc_NotImplementedError
PyExc_0OSError
PyExc_OverflowError
PyExc_RuntimeError
PyExc_SyntaxError
PyExc_SystemError
PyExc_SystemExit
PyExc_TypeError
PyExc_ValueError
PyExc_ZeroDivisionError

Exception
StandardError
ArithmeticError
LookupError
AssertionError
AttributeError
EOFError
EnvironmentError
FloatingPointError
I0Error
ImportError
IndexError
KeyError
KeyboardInterrupt
MemoryError
NameError
NotImplementedError
OSError
OverflowError
RuntimeError
SyntaxError
SystemError
SystemExit
TypeError
ValueError
ZeroDivisionError

(1)

P,
— — —

(1) This is a base class for other standard exceptions. If the -X interpreter option is used, these will be

tuples containing the string exceptions which would have otherwise been subclasses.

4.1. Standard Exceptions

15

4.2 Deprecation of String Exceptions

The -X command-line option will be removed in Python 1.6. All exceptions built into Python or provided
in the standard library will be classes derived from Exception.

String exceptions will still be supported in the interpreter to allow existing code to run unmodified, but
this will also change in a future release.

16 Chapter 4. Exception Handling

CHAPTER
FIVE

Utilities

The functions in this chapter perform various utility tasks, such as parsing function arguments and
constructing Python values from C values.

5.1

OS Utilities

int Py_FdIsInteractive(FILE *fp, char *filename)

long

5.2

void

void

Return true (nonzero) if the standard I/0 file fp with name filename is deemed interactive. This is
the case for files for which ‘isatty(fileno(fp))’ is true. If the global flag Py_InteractiveFlag
is true, this function also returns true if the name pointer is NULL or if the name is equal to one of
the strings "<stdin>" or "?777".

Py0S_GetLastModificationTime (char *filename)
Return the time of last modification of the file filename. The result is encoded in the same way as
the timestamp returned by the standard C library function time().

Process Control

Py_FatalError (char *message)

Print a fatal error message and kill the process. No cleanup is performed. This function should
only be invoked when a condition is detected that would make it dangerous to continue using the
Python interpreter; e.g., when the object administration appears to be corrupted. On UNIX, the
standard C library function abort () is called which will attempt to produce a ‘core’ file.

Py_Exit (int status)
Exit the current process. This calls Py_Finalize() and then calls the standard C library function
exit (status).

int Py_AtExit(void (*func) ())

5.3

Register a cleanup function to be called by Py_Finalize(). The cleanup function will be called
with no arguments and should return no value. At most 32 cleanup functions can be registered.
When the registration is successful, Py_AtExit () returns O; on failure, it returns -1. The cleanup
function registered last is called first. Each cleanup function will be called at most once. Since
Python’s internal finallization will have completed before the cleanup function, no Python APIs
should be called by func.

Importing Modules

PyObject* PyImport_ImportModule(char *name)

This is a simplified interface to PyImport_ImportModuleEx () below, leaving the globals and locals
arguments set to NULL. When the name argument contains a dot (i.e., when it specifies a sub-
module of a package), the fromlist argument is set to the list [’*’] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case.

17

(Unfortunately, this has an additional side effect when name in fact specifies a subpackage instead
of a submodule: the submodules specified in the package’s __all__ variable are loaded.) Return
a new reference to the imported module, or NULL with an exception set on failure (the module may
still be created in this case — examine sys.modules to find out).

PyObject* PyImport_ImportModuleEx(char *name, PyObject *globals, PyObject *locals, PyObject *fromlist)
Import a module. This is best described by referring to the built-in Python function
—_import__(), as the standard __import__() function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an
exception set on failure (the module may still be created in this case). Like for __import__(),
the return value when a submodule of a package was requested is normally the top-level package,
unless a non-empty fromlist was given.

PyObject* PyImport_Import(PyObject *name)
This is a higher-level interface that calls the current “import hook function”. It invokes the
__import__() function from the __builtins__ of the current globals. This means that the
import is done using whatever import hooks are installed in the current environment, e.g. by
rexec or ihooks.

PyObject* PyImport_ReloadModule(PyObject *m)
Reload a module. This is best described by referring to the built-in Python function reload(), as
the standard reload () function calls this function directly. Return a new reference to the reloaded
module, or NULL with an exception set on failure (the module still exists in this case).

PyObject* PyImport_AddModule(char *name)
Return the module object corresponding to a module name. The name argument may be of
the form package.module). First check the modules dictionary if there’s one there, and if not,
create a new one and insert in in the modules dictionary. Warning: this function does not load
or import the module; if the module wasn’t already loaded, you will get an empty module object.
Use PyImport_ImportModule() or one of its variants to import a module. Return NULL with an
exception set on failure.

PyObject* PyImport_ExecCodeModule (char *name, PyObject *co)
Given a module name (possibly of the form package.module) and a code object read from a Python
bytecode file or obtained from the built-in function compile(), load the module. Return a new
reference to the module object, or NULL with an exception set if an error occurred (the module may
still be created in this case). (This function would reload the module if it was already imported.)

long PyImport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. ‘.pyc’ and ‘.pyo’ files). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport_GetModuleDict()
Return the dictionary used for the module administration (a.k.a. sys.modules). Note that this is
a per-interpreter variable.

void _PyImport_Init()
Initialize the import mechanism. For internal use only.

void PyImport_Cleanup()
Empty the module table. For internal use only.

void _PyImport_Fini()
Finalize the import mechanism. For internal use only.

PyObject* _PyImport_FindExtension(char *, char *)
For internal use only.

PyObject* _PyImport_FixupExtension(char *, char *)
For internal use only.

int PyImport_ImportFrozenModule (char *)
Load a frozen module. Return 1 for success, O if the module is not found, and -1 with an ex-
ception set if the initialization failed. To access the imported module on a successful load, use
PyImport_ImportModule(). (Note the misnomer — this function would reload the module if it

18 Chapter 5. Utilities

was already imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the freeze
utility (see ‘Tools/freeze/’ in the Python source distribution). Its definition is:

struct _frozen {
char *name;
unsigned char *code;
int size;

};

struct _frozen* PyImport_FrozenModules
This pointer is initialized to point to an array of struct _frozen records, terminated by one
whose members are all NULL or zero. When a frozen module is imported, it is searched in this
table. Third-party code could play tricks with this to provide a dynamically created collection of
frozen modules.

5.3. Importing Modules 19

20

CHAPTER
SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes
of object types (e.g. all numerical types, or all sequence types). When used on object types for which
they do not apply, they will raise a Python exception.

6.1 Object Protocol

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain
printing options. The only option currently supported is Py_PRINT_RAW; if given, the str() of the
object is written instead of the repr ().

int PyObject_HasAttrString(PyObject *o, char *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python
expression ‘hasattr(o, attr_name)’. This function always succeeds.

PyObject* PyObject_GetAttrString(PyObject *o, char *attr_name)
Retrieve an attribute named attr_name from object o. Returns the attribute value on success, or
NULL on failure. This is the equivalent of the Python expression ‘o. attr_name’.

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python
expression ‘hasattr(o, attr_name)’. This function always succeeds.

PyObject* PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Retrieve an attribute named attr_name from object o. Returns the attribute value on success, or
NULL on failure. This is the equivalent of the Python expression ‘0. attr_name’.

int PyObject_SetAttrString(PyObject *o, char *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Returns -1 on failure.
This is the equivalent of the Python statement ‘o. attr_name = v’.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Set the value of the attribute named attr_name, for object o, to the value v. Returns -1 on failure.

This is the equivalent of the Python statement ‘0. attr_name = v’.

int PyObject_DelAttrString(PyObject *o, char *attr_name)
Delete attribute named attr_name, for object o. Returns -1 on failure. This is the equivalent of
the Python statement: ‘del o.attr_name’.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns -1 on failure. This is the equivalent of
the Python statement ‘del o.attr_name’.

int PyObject_Cmp(PyObject *ol1, PyObject *02, int *result)
Compare the values of 0! and 02 using a routine provided by o1, if one exists, otherwise with a
routine provided by 02. The result of the comparison is returned in result. Returns -1 on failure.
This is the equivalent of the Python statement ‘result = cmp(ol, 02)’.

21

int PyObject_Compare(PyObject *o1, PyObject *02)
Compare the values of o1 and 02 using a routine provided by o1, if one exists, otherwise with
a routine provided by 02. Returns the result of the comparison on success. On error, the value
returned is undefined; use PyErr_Occurred() to detect an error. This is equivalent to the Python
expression ‘cmp(ol, 02)’.

PyObject* PyObject_Repr (PyObject *o0)
Compute a string representation of object 0. Returns the string representation on success, NULL on
failure. This is the equivalent of the Python expression ‘repr(o)’. Called by the repr() built-in
function and by reverse quotes.

PyObject* PyObject_Str(PyObject *0)
Compute a string representation of object o. Returns the string representation on success, NULL
on failure. This is the equivalent of the Python expression ‘str(o)’. Called by the str() built-in
function and by the print statement.

int PyCallable_Check (PyObject *0)
Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise. This
function always succeeds.

PyObject* PyObject_CallObject (PyObject *callable_object, PyObject *args)
Call a callable Python object callable_object, with arguments given by the tuple args. If no
arguments are needed, then args may be NULL. Returns the result of the call on success, or NULL
on failure. This is the equivalent of the Python expression ‘apply(o, args)’.

PyObject* PyObject_CallFunction(PyObject *callable_object, char *format, ...)
Call a callable Python object callable_object, with a variable number of C arguments. The C
arguments are described using a Py_BuildValue() style format string. The format may be NULL,
indicating that no arguments are provided. Returns the result of the call on success, or NULL on
failure. This is the equivalent of the Python expression ‘apply(o, args)’.

PyObject* PyObject_CallMethod(PyObject *o, char *m, char *format, ...)
Call the method named m of object o with a variable number of C arguments. The C arguments
are described by a Py_BuildValue() format string. The format may be NULL, indicating that no
arguments are provided. Returns the result of the call on success, or NULL on failure. This is the
equivalent of the Python expression ‘o.method Cargs)’. Note that special method names, such as
__—add__ (), __getitem__ (), and so on are not supported. The specific abstract-object routines
for these must be used.

int PyObject_Hash(PyObject *o)
Compute and return the hash value of an object 0. On failure, return -1. This is the equivalent
of the Python expression ‘hash(o)’.

int PyObject_IsTrue(PyObject *o)
Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the Python
expression ‘not not o’. This function always succeeds.

PyObject* PyObject_Type (PyObject *0)
On success, returns a type object corresponding to the object type of object o. On failure, returns
NULL. This is equivalent to the Python expression ‘type(0)’.

int PyObject_Length(PyObject *o)
Return the length of object o. If the object o provides both sequence and mapping protocols,
the sequence length is returned. On error, -1 is returned. This is the equivalent to the Python
expression ‘len(o)’.

PyObject* PyObject_GetItem(PyObject *o, PyObject *key)
Return element of o corresponding to the object key or NULL on failure. This is the equivalent of
the Python expression ‘o [key]’.

int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *v)
Map the object key to the value v. Returns -1 on failure. This is the equivalent of the Python

)

statement ‘o [key] = v’

int PyObject_DelIltem(PyObject *o, PyObject *key)

22 Chapter 6. Abstract Objects Layer

Delete the mapping for key from o. Returns -1 on failure. This is the equivalent of the Python
statement ‘del ol[key]’.

6.2 Number Protocol

int PyNumber_Check (PyObject *o)
Returns 1 if the object o provides numeric protocols, and false otherwise. This function always
succeeds.

PyObject* PyNumber_Add(PyObject *o1, PyObject *02)
Returns the result of adding o and 02, or NULL on failure. This is the equivalent of the Python
expression ‘ol + 02’.

PyObject* PyNumber_Subtract(PyObject *o1, PyObject *02)
Returns the result of subtracting 02 from o1, or NULL on failure. This is the equivalent of the
Python expression ‘0l - 02’.

PyObject* PyNumber Multiply(PyObject *o1, PyObject *02)
Returns the result of multiplying of and 02, or NULL on failure. This is the equivalent of the
Python expression ‘0l * 02’.

PyObject* PyNumber_Divide(PyObject *o1, PyObject *02)
Returns the result of dividing o1 by 02, or NULL on failure. This is the equivalent of the Python
expression ‘ol / 02’.

PyObject* PyNumber_ Remainder (PyObject *01, PyObject *02)
Returns the remainder of dividing o! by 02, or NULL on failure. This is the equivalent of the
Python expression ‘o1 % 02’.

PyObject* PyNumber_ Divmod(PyObject *o1, PyObject *02)
See the built-in function divmod (). Returns NULL on failure. This is the equivalent of the Python
expression ‘divmod (o1, 02)’.

PyObject* PyNumber_ Power (PyObject *o1, PyObject *02, PyObject *03)
See the built-in function pow(). Returns NULL on failure. This is the equivalent of the Python
expression ‘pow(ol, 02, 083)’, where 03 is optional. If 03 is to be ignored, pass Py_None in its
place (passing NULL for 03 would cause an illegal memory access).

PyObject* PyNumber_ Negative(PyObject *0)
Returns the negation of o on success, or NULL on failure. This is the equivalent of the Python
expression ‘-o’.

PyObject* PyNumber_ Positive(PyObject *o)
Returns o on success, or NULL on failure. This is the equivalent of the Python expression ‘+o’.

PyObject* PyNumber_Absolute(PyObject *o0)
Returns the absolute value of o, or NULL on failure. This is the equivalent of the Python expression
‘abs(0)’.

PyObject* PyNumber_Invert(PyObject *o)
Returns the bitwise negation of o on success, or NULL on failure. This is the equivalent of the

(~

Python expression ‘~o

PyObject* PyNumber_ Lshift(PyObject *o1, PyObject *02)
Returns the result of left shifting o1 by 02 on success, or NULL on failure. This is the equivalent
of the Python expression ‘01 << 02’.

PyObject* PyNumber_ Rshift(PyObject *o1, PyObject *02)
Returns the result of right shifting of by 02 on success, or NULL on failure. This is the equivalent
of the Python expression ‘01 >> 02’.

PyObject* PyNumber_ And(PyObject *o1, PyObject *02)
Returns the result of “anding” 02 and 02 on success and NULL on failure. This is the equivalent of
the Python expression ‘0! and 02’.

6.2. Number Protocol 23

PyObject* PyNumber_ Xor (PyObject *ol, PyObject *02)
Returns the bitwise exclusive or of 01 by 02 on success, or NULL on failure. This is the equivalent
of the Python expression ‘o1 ~ 02’.

PyObject* PyNumber_Or (PyObject *o1, PyObject *02)
Returns the result of of and 02 on success, or NULL on failure. This is the equivalent of the Python
expression ‘ol or o02’.

PyObject* PyNumber_ Coerce(PyObject **p1, PyObject **p2)
This function takes the addresses of two variables of type PyObject*. If the objects pointed to by
*pl and *p2 have the same type, increment their reference count and return 0 (success). If the
objects can be converted to a common numeric type, replace *p1 and *p2 by their converted value
(with 'new’ reference counts), and return 0. If no conversion is possible, or if some other error oc-
curs, return -1 (failure) and don’t increment the reference counts. The call PyNumber_Coerce (&o1,
&02) is equivalent to the Python statement ‘01, 02 = coerce(ol, 02)’.

PyObject* PyNumber_Int(PyObject *o)
Returns the o converted to an integer object on success, or NULL on failure. This is the equivalent
of the Python expression ‘int (0)’.

PyObject* PyNumber_Long(PyObject *0)
Returns the o converted to a long integer object on success, or NULL on failure. This is the equivalent
of the Python expression ‘long(o)’.

PyObject* PyNumber_Float (PyObject *0)
Returns the o converted to a float object on success, or NULL on failure. This is the equivalent of
the Python expression ‘float (0)’.

6.3 Sequence Protocol

int PySequence_Check(PyObject *0)
Return 1 if the object provides sequence protocol, and 0 otherwise. This function always succeeds.

int PySequence_Length(PyObject *0)
Returns the number of objects in sequence o on success, and -1 on failure. For objects that do not
provide sequence protocol, this is equivalent to the Python expression ‘len(o0)’.

PyObject* PySequence_Concat (PyObject *o1, PyObject *02)
Return the concatenation of of and 02 on success, and NULL on failure. This is the equivalent of
the Python expression ‘01 + 02’.

PyObject* PySequence_Repeat (PyObject *o, int count)
Return the result of repeating sequence object o count times, or NULL on failure. This is the
equivalent of the Python expression ‘o * count’.

PyObject* PySequence_GetItem(PyObject *o, int i)
Return the ith element of o, or NULL on failure. This is the equivalent of the Python expression
‘o[d]".

PyObject* PySequence_GetSlice(PyObject *o, int il, int i2)
Return the slice of sequence object o between i1 and i2, or NULL on failure. This is the equivalent
of the Python expression ‘o [if :i2]".

int PySequence_SetItem(PyObject *o, int i, PyObject *v)
Assign object v to the ith element of 0. Returns -1 on failure. This is the equivalent of the Python

)

statement ‘o[i] = v’

int PySequence_DelItem(PyObject *o, int i)
Delete the ith element of object v. Returns -1 on failure. This is the equivalent of the Python
statement ‘del ol[:]’.

int PySequence_SetSlice(PyObject *o, int il, int i2, PyObject *v)

Assign the sequence object v to the slice in sequence object o from i1 to 2. This is the equivalent
of the Python statement ‘o[if :i2] = v’

24 Chapter 6. Abstract Objects Layer

int PySequence_DelSlice(PyObject *o, int il, int i2)
Delete the slice in sequence object o from il to i2. Returns -1 on failure. This is the equivalent
of the Python statement ‘del o[if::2]’.

PyObject* PySequence_Tuple(PyObject *o)
Returns the o as a tuple on success, and NULL on failure. This is equivalent to the Python expression
‘tuple(o)’.

int PySequence_Count (PyObject *o, PyObject *value)
Return the number of occurrences of value in o, that is, return the number of keys for which o [key]
== ypalue. On failure, return -1. This is equivalent to the Python expression ‘o.count (value)’.

int PySequence_Contains (PyObject *o, PyObject *value)
Determine if o contains value. If an item in o is equal to value, return 1, otherwise return 0. On
error, return -1. This is equivalent to the Python expression ‘value in o’.

int PySequence_Index(PyObject *o, PyObject *value)
Return the first index ¢ for which o[i] == walue. On error, return -1. This is equivalent to the
Python expression ‘o.index (value)’.

6.4 Mapping Protocol

int PyMapping_Check(PyObject *0)
Return 1 if the object provides mapping protocol, and 0 otherwise. This function always succeeds.

int PyMapping_Length(PyObject *o0)
Returns the number of keys in object o on success, and -1 on failure. For objects that do not
provide mapping protocol, this is equivalent to the Python expression ‘len(o0)’.

int PyMapping DelIltemString(PyObject *o, char *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to
the Python statement ‘del ol[keyl’.

int PyMapping DelItem(PyObject *o, PyObject *key)
Remove the mapping for object key from the object o. Return -1 on failure. This is equivalent to
the Python statement ‘del ol[key]’.

int PyMapping_HasKeyString(PyObject *o, char *key)
On success, return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to
the Python expression ‘o.has_key(key)’. This function always succeeds.

int PyMapping_ HasKey(PyObject *o, PyObject *key)
Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the Python
expression ‘o.has_key(key)’. This function always succeeds.

PyObject* PyMapping_ Keys(PyObject *o0)
On success, return a list of the keys in object 0. On failure, return NULL. This is equivalent to the
Python expression ‘o.keys()’.

PyObject* PyMapping_ Values(PyObject *o)
On success, return a list of the values in object 0. On failure, return NULL. This is equivalent to
the Python expression ‘o.values()’.

PyObject* PyMapping_Items(PyObject *0)
On success, return a list of the items in object o, where each item is a tuple containing a key-value
pair. On failure, return NULL. This is equivalent to the Python expression ‘0.items()’.

PyObject* PyMapping_ GetItemString(PyObject *o, char *key)
Return element of o corresponding to the object key or NULL on failure. This is the equivalent of
the Python expression ‘o [key]’.

int PyMapping_SetItemString(PyObject *o, char *key, PyObject *v)
Map the object key to the value v in object 0. Returns -1 on failure. This is the equivalent of the
Python statement ‘o [key]l = v’.

6.4. Mapping Protocol 25

26

CHAPTER
SEVEN

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the
wrong type is not a good idea; if you receive an object from a Python program and you are not sure
that it has the right type, you must perform a type check first; for example. to check that an object
is a dictionary, use PyDict_Check(). The chapter is structured like the “family tree” of Python object

types.

7.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType_Type
This is the type object for type objects; it is the same object as types.TypeType in the Python
layer.

int PyType_Check(PyObject *0)
Returns true is the object o is a type object.

int PyType_HasFeature (PyObject *o, int feature)
Returns true if the type object o sets the feature feature. Type features are denoted by single
bit flags. The only defined feature flag is Py_TPFLAGS_HAVE_GETCHARBUFFER, described in section
10.5.

7.1.2 The None Object

Note that the PyTypeObject for None is not directly exposed in the Python/C API. Since None is a
singleton, testing for object identity (using ‘=="in C) is sufficient. There is no PyNone_Check() function
for the same reason.

PyObject* Py_None
The Python None object, denoting lack of value. This object has no methods.

7.2 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with
the specific kinds of sequence objects that are intrinsic to the Python language.

27

7.2.1 String Objects

PyStringObject
This subtype of PyObject represents a Python string object.

PyTypeObject PyString_Type
This instance of PyTypeObject represents the Python string type; it is the same object as
types.TypeType in the Python layer..

int PyString_Check (PyObject *0)
Returns true if the object o is a string object.

PyObject* PyString FromString(const char *v)
Returns a new string object with the value v on success, and NULL on failure.

PyObject* PyString FromStringAndSize(const char *v, int len)
Returns a new string object with the value v and length len on success, and NULL on failure. If v
is NULL, the contents of the string are uninitialized.

int PyString Size(PyObject *string)
Returns the length of the string in string object string.

int PyString GET_SIZE(PyObject *string)
Macro form of PyString GetSize() but without error checking.

char* PyString AsString(PyObject *string)
Returns a null-terminated representation of the contents of string. The pointer refers to the internal
buffer of string, not a copy. The data must not be modified in any way. It must not be de-allocated.

char* PyString AS_STRING(PyObject *string)
Macro form of PyString AsString() but without error checking.

void PyString_ Concat (PyObject **string, PyObject *newpart)
Creates a new string object in *string containing the contents of mewpart appended to string; the
caller will own the new reference. The reference to the old value of string will be stolen. If the new
string cannot be created, the old reference to string will still be discarded and the value of *string
will be set to NULL; the appropriate exception will be set.

void PyString ConcatAndDel (PyObject **string, PyObject *newpart)
Creates a new string object in *string containing the contents of newpart appended to string. This
version decrements the reference count of newpart.

int _PyString Resize(PyObject **string, int newsize)
A way to resize a string object even though it is “immutable”. Only use this to build up a brand
new string object; don’t use this if the string may already be known in other parts of the code.

PyObject* PyString Format (PyObject *format, PyObject *args)
Returns a new string object from format and args. Analogous to format % args. The args argu-
ment must be a tuple.

void PyString InternInPlace(PyObject **string)

Intern the argument *string in place. The argument must be the address of a pointer variable
pointing to a Python string object. If there is an existing interned string that is the same as *string,
it sets *string to it (decrementing the reference count of the old string object and incrementing
the reference count of the interned string object), otherwise it leaves *string alone and interns it
(incrementing its reference count). (Clarification: even though there is a lot of talk about reference
counts, think of this function as reference-count-neutral; you own the object after the call if and
only if you owned it before the call.)

PyObject* PyString InternFromString(const char *v)
A combination of PyString FromString() and PyString InternInPlace(), returning either a
new string object that has been interned, or a new (“owned”) reference to an earlier interned string
object with the same value.

28 Chapter 7. Concrete Objects Layer

7.2.2 Unicode Objects

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UNICODE
This type represents a 16-bit unsigned storage type which is used by Python internally as basis
for holding Unicode ordinals. On platforms where wchar_t is available and also has 16-bits,
Py_UNICODE is a typedef alias for wchar_t to enhance native platform compatibility. On all other
platforms, Py_UNICODE is a typedef alias for unsigned short.

PyUnicodeObject
This subtype of PyObject represents a Python Unicode object.

PyTypeObject PyUnicode_Type
This instance of PyTypeObject represents the Python Unicode type.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only
data of Unicode objects:

int PyUnicode_Check(PyObject *0)
Returns true if the object o is a Unicode object.

int PyUnicode_GET_SIZE(PyObject *o)
Returns the size of the object. o has to be a PyUnicodeObject (not checked).

int PyUnicode_ GET_DATA_SIZE(PyObject *o)
Returns the size of the object’s internal buffer in bytes. o has to be a PyUnicodeObject (not
checked).

int PyUnicode_AS_UNICODE(PyObject *o)
Returns a pointer to the internal Py _UNICODE buffer of the object. o has to be a PyUnicodeOb-
ject (not checked).

int PyUnicode_AS_DATA(PyObject *0)
Returns a (const char *) pointer to the internal buffer of the object. o has to be a PyUnicodeObject
(not checked).

Unicode provides many different character properties. The most often needed ones are available through
these macros which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE(Py_UNICODE ch)
Returns 1/0 depending on whether ch is a whitespace character.

int Py_UNICODE_ISLOWER(Py_UNICODE ch)
Returns 1/0 depending on whether ch is a lowercase character.

int Py_UNICODE_ISUPPER(Py_UNICODE ch)
Returns 1/0 depending on whether ch is a uppercase character.

int Py_UNICODE_ISTITLE(Py_UNICODE ch)
Returns 1/0 depending on whether ch is a titlecase character.

int Py_UNICODE_ISLINEBREAK(Py_UNICODE ch)
Returns 1/0 depending on whether ch is a linebreak character.

int Py_UNICODE_ISDECIMAL(Py_UNICODE ch)
Returns 1/0 depending on whether ch is a decimal character.

int Py_UNICODE_ISDIGIT(Py_UNICODE ch)
Returns 1/0 depending on whether ch is a digit character.

int Py_UNICODE_ISNUMERIC(Py_UNICODE ch)
Returns 1/0 depending on whether ch is a numeric character.

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE_TOLOWER(Py_UNICODE ch)
Returns the character ch converted to lower case.

7.2. Sequence Objects 29

Py_UNICODE Py_UNICODE_TOUPPER(Py_UNICODE ch)
Returns the character ch converted to upper case.

Py_UNICODE Py_UNICODE_TOTITLE(Py_ UNICODE ch)
Returns the character ch converted to title case.

int Py_UNICODE_TODECIMAL (Py_UNICODE ch)
Returns the character ch converted to a decimal positive integer. Returns -1 in case this is not
possible. Does not raise exceptions.

int Py_UNICODE_TODIGIT(Py_UNICODE ch)
Returns the character ch converted to a single digit integer. Returns -1 in case this is not possible.
Does not raise exceptions.

double Py _UNICODE_TONUMERIC(Py_UNICODE ch)
Returns the character ch converted to a (positive) double. Returns -1.0 in case this is not possible.
Does not raise exceptions.

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_FromUnicode(const Py_UNICODE *u, int size)
Create a Unicode Object from the Py _UNICODE buffer u of the given size. u may be NULL which
causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The
buffer is copied into the new object.

Py_UNICODE * PyUnicode_AsUnicode(PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py_UNICODE buffer.

int PyUnicode_GetSize (PyObject *unicode)
Return the length of the Unicode object.

PyObject* PyUnicode_FromObject (PyObject *obj)
Coerce obj to an Unicode object and return a reference with incremented refcount.

Coercion is done in the following way:

1.Unicode objects are passed back as-is with incremented refcount.

2.String and other char buffer compatible objects are decoded under the assumptions that they
contain UTF-8 data. Decoding is done in ”strict” mode.

3.All other objects raise an exception.

The API returns NULL in case of an error. The caller is responsible for decref’ing the returned
objects.

If the platform supports wchar_t and provides a header file wchar.h, Python can interface directly to this
type using the following functions. Support is optimized if Python’s own Py_UNICODE type is identical
to the system’s wchar_t.

PyObject* PyUnicode_FromWideChar (const wchar_t *w, int size)
Create a Unicode Object from the whcar_t buffer w of the given size. Returns NULL on failure.

int PyUnicode_AsWideChar (PyUnicodeObject *unicode, wchar_t *w, int size)
Copies the Unicode Object contents into the whcar_t buffer w. At most size whcar_t characters
are copied. Returns the number of whcar_t characters copied or -1 in case of an error.

Builtin Codecs
Python provides a set of builtin codecs which are written in C for speed. All of these codecs are directly
usable via the following functions.

Many of the following APIs take two arguments encoding and errors. These parameters encoding and
errors have the same semantics as the ones of the builtin unicode() Unicode object constructor.

Setting encoding to NULL causes the default encoding to be used which is UTF-8.

Error handling is set by errors which may also be set to NULL meaning to use the default handling
defined for the codec. Default error handling for all builtin codecs is “strict” (ValueErrors are raised).

30 Chapter 7. Concrete Objects Layer

The codecs all use a similar interface. Only deviation from the following generic ones are documented
for simplicity.

These are the generic codec APIs:

PyObject* PyUnicode_Decode(const char *s, int size, const char *encoding, const char *errors)
Create a Unicode object by decoding size bytes of the encoded string s. encoding and errors have
the same meaning as the parameters of the same name in the unicode() builtin function. The codec
to be used is looked up using the Python codec registry. Returns NULL in case an exception was
raised by the codec.

PyObject* PyUnicode_Encode(const Py_UNICODE *s, int size, const char *encoding, const char *errors)
Encodes the Py_UNICODE buffer of the given size and returns a Python string object. encoding
and errors have the same meaning as the parameters of the same name in the Unicode .encode()
method. The codec to be used is looked up using the Python codec registry. Returns NULL in case
an exception was raised by the codec.

PyObject* PyUnicode_AsEncodedString(PyObject *unicode, const char *encoding, const char *errors)
Encodes a Unicode object and returns the result as Python string object. encoding and errors
have the same meaning as the parameters of the same name in the Unicode .encode() method. The
codec to be used is looked up using the Python codec registry. Returns NULL in case an exception
was raised by the codec.

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8(const char *s, int size, const char *errors)
Creates a Unicode object by decoding size bytes of the UTF-8 encoded string s. Returns NULL in
case an exception was raised by the codec.

PyObject* PyUnicode_EncodeUTF8(const Py_UNICODE *s, int size, const char *errors)
Encodes the Py_UNICODE buffer of the given size using UTF-8 and returns a Python string object.
Returns NULL in case an exception was raised by the codec.

PyObject* PyUnicode_AsUTF8String(PyObject *unicode)
Encodes a Unicode objects using UTF-8 and returns the result as Python string object. Error
handling is “strict”. Returns NULL in case an exception was raised by the codec.

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (const char *s, int size, const char *errors, int *byteorder)
Decodes length bytes from a UTF-16 encoded buffer string and returns the corresponding Unicode
object.

errors (if non-NULL) defines the error han