
Python Reference Manual
Release 2.1.1

Guido van Rossum

Fred L. Drake, Jr., editor

July 20, 2001

PythonLabs
E-mail: python-docs@python.org

Copyright c© 2001 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics.
Its high-level built in data structures, combined with dynamic typing and dynamic binding, make it
very attractive for rapid application development, as well as for use as a scripting or glue language to
connect existing components together. Python’s simple, easy to learn syntax emphasizes readability
and therefore reduces the cost of program maintenance. Python supports modules and packages, which
encourages program modularity and code reuse. The Python interpreter and the extensive standard
library are available in source or binary form without charge for all major platforms, and can be freely
distributed.

This reference manual describes the syntax and “core semantics” of the language. It is terse, but
attempts to be exact and complete. The semantics of non-essential built-in object types and of the built-
in functions and modules are described in the Python Library Reference. For an informal introduction
to the language, see the Python Tutorial. For C or C++ programmers, two additional manuals exist:
Extending and Embedding the Python Interpreter describes the high-level picture of how to write a Python
extension module, and the Python/C API Reference Manual describes the interfaces available to C/C++
programmers in detail.

CONTENTS

1 Introduction 1
1.1 Notation . 1

2 Lexical analysis 3
2.1 Line structure . 3
2.2 Other tokens . 5
2.3 Identifiers and keywords . 6
2.4 Literals . 6
2.5 Operators . 9
2.6 Delimiters . 9

3 Data model 11
3.1 Objects, values and types . 11
3.2 The standard type hierarchy . 12
3.3 Special method names . 17

4 Execution model 25
4.1 Code blocks, execution frames, and namespaces . 25
4.2 Exceptions . 26

5 Expressions 29
5.1 Arithmetic conversions . 29
5.2 Atoms . 29
5.3 Primaries . 32
5.4 The power operator . 34
5.5 Unary arithmetic operations . 35
5.6 Binary arithmetic operations . 35
5.7 Shifting operations . 36
5.8 Binary bit-wise operations . 36
5.9 Comparisons . 36
5.10 Boolean operations . 37
5.11 Expression lists . 39
5.12 Summary . 39

6 Simple statements 41
6.1 Expression statements . 41
6.2 Assert statements . 41
6.3 Assignment statements . 42
6.4 The pass statement . 44
6.5 The del statement . 44
6.6 The print statement . 45
6.7 The return statement . 45
6.8 The raise statement . 45
6.9 The break statement . 46

i

6.10 The continue statement . 46
6.11 The import statement . 46
6.12 The global statement . 47
6.13 The exec statement . 48

7 Compound statements 49
7.1 The if statement . 50
7.2 The while statement . 50
7.3 The for statement . 50
7.4 The try statement . 51
7.5 Function definitions . 52
7.6 Class definitions . 53

8 Top-level components 55
8.1 Complete Python programs . 55
8.2 File input . 55
8.3 Interactive input . 56
8.4 Expression input . 56

A Future statements and nested scopes 57
A.1 Future statements . 57
A.2 future — Future statement definitions . 58
A.3 Nested scopes . 59

A History and License 61
A.1 History of the software . 61
A.2 Terms and conditions for accessing or otherwise using Python 61

Index 65

ii

CHAPTER

ONE

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications
for everything except syntax and lexical analysis. This should make the document more understandable
to the average reader, but will leave room for ambiguities. Consequently, if you were coming from Mars
and tried to re-implement Python from this document alone, you might have to guess things and in
fact you would probably end up implementing quite a different language. On the other hand, if you are
using Python and wonder what the precise rules about a particular area of the language are, you should
definitely be able to find them here. If you would like to see a more formal definition of the language,
maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the im-
plementation may change, and other implementations of the same language may work differently. On
the other hand, there is currently only one Python implementation in widespread use (although a sec-
ond one now exists!), and its particular quirks are sometimes worth being mentioned, especially where
the implementation imposes additional limitations. Therefore, you’ll find short “implementation notes”
sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are not
documented here, but in the separate Python Library Reference document. A few built-in modules are
mentioned when they interact in a significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the
following style of definition:

name: lc_letter (lc_letter | "_")*

lc_letter: "a"..."z"

The first line says that a name is an lc letter followed by a sequence of zero or more lc letters and
underscores. An lc letter in turn is any of the single characters ‘a’ through ‘z’. (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A vertical bar (|) is
used to separate alternatives; it is the least binding operator in this notation. A star (*) means zero or
more repetitions of the preceding item; likewise, a plus (+) means one or more repetitions, and a phrase
enclosed in square brackets ([]) means zero or one occurrences (in other words, the enclosed phrase is
optional). The * and + operators bind as tightly as possible; parentheses are used for grouping. Literal
strings are enclosed in quotes. White space is only meaningful to separate tokens. Rules are normally
contained on a single line; rules with many alternatives may be formatted alternatively with each line
after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters

1

separated by three dots mean a choice of any single character in the given (inclusive) range of ascii

characters. A phrase between angular brackets (<...>) gives an informal description of the symbol
defined; e.g., this could be used to describe the notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of
lexical and syntactic definitions: a lexical definition operates on the individual characters of the input
source, while a syntax definition operates on the stream of tokens generated by the lexical analysis. All
uses of BNF in the next chapter (“Lexical Analysis”) are lexical definitions; uses in subsequent chapters
are syntactic definitions.

2 Chapter 1. Introduction

CHAPTER

TWO

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of tokens, generated by the lexical
analyzer. This chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bit ascii character set for program text and string literals. 8-bit characters may be
used in string literals and comments but their interpretation is platform dependent; the proper way to
insert 8-bit characters in string literals is by using octal or hexadecimal escape sequences.

The run-time character set depends on the I/O devices connected to the program but is generally a
superset of ascii.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters
is ISO Latin-1 (an ascii superset that covers most western languages that use the Latin alphabet), but
it is possible that in the future Unicode text editors will become common. These generally use the
UTF-8 encoding, which is also an ascii superset, but with very different use for the characters with
ordinals 128-255. While there is no consensus on this subject yet, it is unwise to assume either Latin-1
or UTF-8, even though the current implementation appears to favor Latin-1. This applies both to the
source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line
boundaries except where NEWLINE is allowed by the syntax (e.g., between statements in compound
statements). A logical line is constructed from one or more physical lines by following the explicit or
implicit line joining rules.

2.1.2 Physical lines

A physical line ends in whatever the current platform’s convention is for terminating lines. On Unix,
this is the ascii LF (linefeed) character. On DOS/Windows, it is the ascii sequence CR LF (return
followed by linefeed). On Macintosh, it is the ascii CR (return) character.

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of
the physical line. A comment signifies the end of the logical line unless the implicit line joining rules are
invoked. Comments are ignored by the syntax; they are not tokens.

3

2.1.4 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows:
when a physical line ends in a backslash that is not part of a string literal or comment, it is joined with
the following forming a single logical line, deleting the backslash and the following end-of-line character.
For example:

if 1900 < year < 2100 and 1 <= month <= 12 \

and 1 <= day <= 31 and 0 <= hour < 24 \

and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date

return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A
backslash does not continue a token except for string literals (i.e., tokens other than string literals cannot
be split across physical lines using a backslash). A backslash is illegal elsewhere on a line outside a string
literal.

2.1.5 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line
without using backslashes. For example:

month_names = [’Januari’, ’Februari’, ’Maart’, # These are the

’April’, ’Mei’, ’Juni’, # Dutch names

’Juli’, ’Augustus’, ’September’, # for the months

’Oktober’, ’November’, ’December’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important.
Blank continuation lines are allowed. There is no NEWLINE token between implicit continuation lines.
Implicitly continued lines can also occur within triple-quoted strings (see below); in that case they cannot
carry comments.

2.1.6 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no
NEWLINE token is generated). During interactive input of statements, handling of a blank line may
differ depending on the implementation of the read-eval-print loop. In the standard implementation, an
entirely blank logical line (i.e. one containing not even whitespace or a comment) terminates a multi-line
statement.

2.1.7 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation
level of the line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters
up to and including the replacement is a multiple of eight (this is intended to be the same rule as used
by Unix). The total number of spaces preceding the first non-blank character then determines the line’s
indentation. Indentation cannot be split over multiple physical lines using backslashes; the whitespace
up to the first backslash determines the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms,
it is unwise to use a mixture of spaces and tabs for the indentation in a single source file.

A formfeed character may be present at the start of the line; it will be ignored for the indentation

4 Chapter 2. Lexical analysis

calculations above. Formfeed characters occurring elsewhere in the leading whitespace have an undefined
effect (for instance, they may reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a
stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped
off again. The numbers pushed on the stack will always be strictly increasing from bottom to top. At
the beginning of each logical line, the line’s indentation level is compared to the top of the stack. If it is
equal, nothing happens. If it is larger, it is pushed on the stack, and one INDENT token is generated.
If it is smaller, it must be one of the numbers occurring on the stack; all numbers on the stack that are
larger are popped off, and for each number popped off a DEDENT token is generated. At the end of the
file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):

Compute the list of all permutations of l

if len(l) <= 1:

return [l]

r = []

for i in range(len(l)):

s = l[:i] + l[i+1:]

p = perm(s)

for x in p:

r.append(l[i:i+1] + x)

return r

The following example shows various indentation errors:

def perm(l): # error: first line indented

for i in range(len(l)): # error: not indented

s = l[:i] + l[i+1:]

p = perm(l[:i] + l[i+1:]) # error: unexpected indent

for x in p:

r.append(l[i:i+1] + x)

return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical
analyzer — the indentation of return r does not match a level popped off the stack.)

2.1.8 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and
formfeed can be used interchangeably to separate tokens. Whitespace is needed between two tokens only
if their concatenation could otherwise be interpreted as a different token (e.g., ab is one token, but a b
is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, key-
words, literals, operators, and delimiters. Whitespace characters (other than line terminators, discussed
earlier) are not tokens, but serve to delimit tokens. Where ambiguity exists, a token comprises the
longest possible string that forms a legal token, when read from left to right.

2.2. Other tokens 5

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions:

identifier: (letter|"_") (letter|digit|"_")*

letter: lowercase | uppercase

lowercase: "a"..."z"

uppercase: "A"..."Z"

digit: "0"..."9"

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as
ordinary identifiers. They must be spelled exactly as written here:

and del for is raise

assert elif from lambda return

break else global not try

class except if or while

continue exec import pass

def finally in print

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These are:

Form Meaning Notes
* Not imported by ‘from module import *’ (1)
* System-defined name
* Class-private name mangling

(XXX need section references here.)

Note:

(1) The special identifier ‘ ’ is used in the interactive interpreter to store the result of the last evaluation;
it is stored in the builtin module. When not in interactive mode, ‘ ’ has no special meaning
and is not defined.

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String literals

String literals are described by the following lexical definitions:

6 Chapter 2. Lexical analysis

stringliteral: shortstring | longstring

shortstring: "’" shortstringitem* "’" | ’"’ shortstringitem* ’"’

longstring: "’’’" longstringitem* "’’’" | ’"""’ longstringitem* ’"""’

shortstringitem: shortstringchar | escapeseq

longstringitem: longstringchar | escapeseq

shortstringchar: <any ASCII character except "\" or newline or the quote>

longstringchar: <any ASCII character except "\">

escapeseq: "\" <any ASCII character>

In plain English: String literals can be enclosed in matching single quotes (’) or double quotes ("). They
can also be enclosed in matching groups of three single or double quotes (these are generally referred to
as triple-quoted strings). The backslash (\) character is used to escape characters that otherwise have a
special meaning, such as newline, backslash itself, or the quote character. String literals may optionally
be prefixed with a letter ‘r’ or ‘R’; such strings are called raw strings and use different rules for backslash
escape sequences. A prefix of ’u’ or ’U’ makes the string a Unicode string. Unicode strings use the
Unicode character set as defined by the Unicode Consortium and ISO 10646. Some additional escape
sequences, described below, are available in Unicode strings.

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three
unescaped quotes in a row terminate the string. (A “quote” is the character used to open the string, i.e.
either ’ or ".)

Unless an ‘r’ or ‘R’ prefix is present, escape sequences in strings are interpreted according to rules similar
to those used by Standard C. The recognized escape sequences are:

Escape Sequence Meaning
\newline Ignored
\\ Backslash (\)
\’ Single quote (’)
\" Double quote (")
\a ascii Bell (BEL)
\b ascii Backspace (BS)
\f ascii Formfeed (FF)
\n ascii Linefeed (LF)
\N{name} Character named name in the Unicode database (Unicode only)
\r ascii Carriage Return (CR)
\t ascii Horizontal Tab (TAB)
\uxxxx Character with 16-bit hex value xxxx (Unicode only)
\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (Unicode only)
\v ascii Vertical Tab (VT)
\ooo ascii character with octal value ooo
\xhh ascii character with hex value hh

As in Standard C, up to three octal digits are accepted. However, exactly two hex digits are taken in
hex escapes.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash
is left in the string. (This behavior is useful when debugging: if an escape sequence is mistyped, the
resulting output is more easily recognized as broken.) It is also important to note that the escape
sequences marked as “(Unicode only)” in the table above fall into the category of unrecognized escapes
for non-Unicode string literals.

When an ‘r’ or ‘R’ prefix is present, a character following a backslash is included in the string without
change, and all backslashes are left in the string. For example, the string literal r"\n" consists of two
characters: a backslash and a lowercase ‘n’. String quotes can be escaped with a backslash, but the
backslash remains in the string; for example, r"\"" is a valid string literal consisting of two characters:
a backslash and a double quote; r"\" is not a value string literal (even a raw string cannot end in an odd
number of backslashes). Specifically, a raw string cannot end in a single backslash (since the backslash

2.4. Literals 7

would escape the following quote character). Note also that a single backslash followed by a newline is
interpreted as those two characters as part of the string, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" ’world’ is equivalent
to "helloworld". This feature can be used to reduce the number of backslashes needed, to split long
strings conveniently across long lines, or even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore

"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’
operator must be used to concatenate string expressions at run time. Also note that literal concatenation
can use different quoting styles for each component (even mixing raw strings and triple quoted strings).

2.4.3 Unicode literals

XXX explain more here...

2.4.4 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and
imaginary numbers. There are no complex literals (complex numbers can be formed by adding a real
number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of
the unary operator ‘-’ and the literal 1.

2.4.5 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger: integer ("l"|"L")

integer: decimalinteger | octinteger | hexinteger

decimalinteger: nonzerodigit digit* | "0"

octinteger: "0" octdigit+

hexinteger: "0" ("x"|"X") hexdigit+

nonzerodigit: "1"..."9"

octdigit: "0"..."7"

hexdigit: digit|"a"..."f"|"A"..."F"

Although both lower case ‘l’ and upper case ‘L’ are allowed as suffix for long integers, it is strongly
recommended to always use ‘L’, since the letter ‘l’ looks too much like the digit ‘1’.

Plain integer decimal literals must be at most 2147483647 (i.e., the largest positive integer, using 32-bit
arithmetic). Plain octal and hexadecimal literals may be as large as 4294967295, but values larger than
2147483647 are converted to a negative value by subtracting 4294967296. There is no limit for long
integer literals apart from what can be stored in available memory.

Some examples of plain and long integer literals:

7 2147483647 0177 0x80000000

3L 79228162514264337593543950336L 0377L 0x100000000L

8 Chapter 2. Lexical analysis

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber: pointfloat | exponentfloat

pointfloat: [intpart] fraction | intpart "."

exponentfloat: (nonzerodigit digit* | pointfloat) exponent

intpart: nonzerodigit digit* | "0"

fraction: "." digit+

exponent: ("e"|"E") ["+"|"-"] digit+

Note that the integer part of a floating point number cannot look like an octal integer, though the
exponent may look like an octal literal but will always be interpreted using radix 10. For example, ‘1e010’
is legal, while ‘07.1’ is a syntax error. The allowed range of floating point literals is implementation-
dependent. Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of
the operator - and the literal 1.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber: (floatnumber | intpart) ("j"|"J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented
as a pair of floating point numbers and have the same restrictions on their range. To create a complex
number with a nonzero real part, add a floating point number to it, e.g., (3+4j). Some examples of
imaginary literals:

3.14j 10.j 10j .001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ - * ** / %

<< >> & | ^ ~

< > <= >= == != <>

The comparison operators <> and != are alternate spellings of the same operator. != is the preferred
spelling; <> is obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

2.5. Operators 9

() [] { }

, : . ‘ = ;

+= -= *= /= %= **=

&= |= ^= >>= <<=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a
special meaning as an ellipsis in slices. The second half of the list, the augmented assignment operators,
serve lexically as delimiters, but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise
significant to the lexical analyzer:

’ " # \

The following printing ascii characters are not used in Python. Their occurrence outside string literals
and comments is an unconditional error:

@ $?

10 Chapter 2. Lexical analysis

CHAPTER

THREE

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or
by relations between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored
program computer,” code is also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been
created; you may think of it as the object’s address in memory. The ‘is’ operator compares the identity
of two objects; the id() function returns an integer representing its identity (currently implemented
as its address). An object’s type is also unchangeable. It determines the operations that an object
supports (e.g., “does it have a length?”) and also defines the possible values for objects of that type.
The type() function returns an object’s type (which is an object itself). The value of some objects can
change. Objects whose value can change are said to be mutable; objects whose value is unchangeable
once they are created are called immutable. (The value of an immutable container object that contains a
reference to a mutable object can change when the latter’s value is changed; however the container is still
considered immutable, because the collection of objects it contains cannot be changed. So, immutability
is not strictly the same as having an unchangeable value, it is more subtle.) An object’s mutability is
determined by its type; for instance, numbers, strings and tuples are immutable, while dictionaries and
lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-
collected. An implementation is allowed to postpone garbage collection or omit it altogether — it is
a matter of implementation quality how garbage collection is implemented, as long as no objects are
collected that are still reachable. (Implementation note: the current implementation uses a reference-
counting scheme with (optional) delayed detection of cyclicly linked garbage, which collects most objects
as soon as they become unreachable, but is not guaranteed to collect garbage containing circular refer-
ences. See the Python Library Reference for information on controlling the collection of cyclic garbage.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that
would normally be collectable. Also note that catching an exception with a ‘try...except’ statement
may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is under-
stood that these resources are freed when the object is garbage-collected, but since garbage collection
is not guaranteed to happen, such objects also provide an explicit way to release the external resource,
usually a close() method. Programs are strongly recommended to explicitly close such objects. The
‘try...finally’ statement provides a convenient way to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are
tuples, lists and dictionaries. The references are part of a container’s value. In most cases, when we talk
about the value of a container, we imply the values, not the identities of the contained objects; however,
when we talk about the mutability of a container, only the identities of the immediately contained objects
are implied. So, if an immutable container (like a tuple) contains a reference to a mutable object, its
value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in

11

some sense: for immutable types, operations that compute new values may actually return a reference
to any existing object with the same type and value, while for mutable objects this is not allowed. E.g.,
after ‘a = 1; b = 1’, a and b may or may not refer to the same object with the value one, depending
on the implementation, but after ‘c = []; d = []’, c and d are guaranteed to refer to two different,
unique, newly created empty lists. (Note that ‘c = d = []’ assigns the same object to both c and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules written in C can define
additional types. Future versions of Python may add types to the type hierarchy (e.g., rational numbers,
efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special attributes.’ These are attributes
that provide access to the implementation and are not intended for general use. Their definition may
change in the future. There are also some ‘generic’ special attributes, not listed with the individual
objects: methods is a list of the method names of a built-in object, if it has any; members is
a list of the data attribute names of a built-in object, if it has any.

None This type has a single value. There is a single object with this value. This object is accessed
through the built-in name None. It is used to signify the absence of a value in many situations,
e.g., it is returned from functions that don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object
is accessed through the built-in name NotImplemented. Numeric methods and rich comparison
methods may return this value if they do not implement the operation for the operands provided.
(The interpreter will then try the reflected operation, or some other fallback, depending on the
operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed
through the built-in name Ellipsis. It is used to indicate the presence of the ‘...’ syntax in a
slice. Its truth value is true.

Numbers These are created by numeric literals and returned as results by arithmetic operators and
arithmetic built-in functions. Numeric objects are immutable; once created their value never
changes. Python numbers are of course strongly related to mathematical numbers, but subject to
the limitations of numerical representation in computers.

Python distinguishes between integers, floating point numbers, and complex numbers:

Integers These represent elements from the mathematical set of whole numbers.
There are two types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647.
(The range may be larger on machines with a larger natural word size, but not
smaller.) When the result of an operation would fall outside this range, the exception
OverflowError is raised. For the purpose of shift and mask operations, integers are as-
sumed to have a binary, 2’s complement notation using 32 or more bits, and hiding no bits
from the user (i.e., all 4294967296 different bit patterns correspond to different values).

Long integers These represent numbers in an unlimited range, subject to available (virtual)
memory only. For the purpose of shift and mask operations, a binary representation is
assumed, and negative numbers are represented in a variant of 2’s complement which
gives the illusion of an infinite string of sign bits extending to the left.

The rules for integer representation are intended to give the most meaningful interpretation of
shift and mask operations involving negative integers and the least surprises when switching
between the plain and long integer domains. For any operation except left shift, if it yields
a result in the plain integer domain without causing overflow, it will yield the same result in
the long integer domain or when using mixed operands.

12 Chapter 3. Data model

Floating point numbers These represent machine-level double precision floating point numbers.
You are at the mercy of the underlying machine architecture and C implementation for the
accepted range and handling of overflow. Python does not support single-precision floating
point numbers; the savings in CPU and memory usage that are usually the reason for using
these is dwarfed by the overhead of using objects in Python, so there is no reason to complicate
the language with two kinds of floating point numbers.

Complex numbers These represent complex numbers as a pair of machine-level double precision
floating point numbers. The same caveats apply as for floating point numbers. The real and
imaginary value of a complex number z can be retrieved through the attributes z.real and
z.imag.

Sequences These represent finite ordered sets indexed by non-negative numbers. The built-in function
len() returns the number of items of a sequence. When the length of a sequence is n, the index
set contains the numbers 0, 1, . . . , n-1. Item i of sequence a is selected by a[i].

Sequences also support slicing: a[i:j] selects all items with index k such that i <= k < j . When
used as an expression, a slice is a sequence of the same type. This implies that the index set is
renumbered so that it starts at 0.

Sequences are distinguished according to their mutability:

Immutable sequences An object of an immutable sequence type cannot change once it is created.
(If the object contains references to other objects, these other objects may be mutable and
may be changed; however, the collection of objects directly referenced by an immutable object
cannot change.)
The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a character
is represented by a string of one item. Characters represent (at least) 8-bit bytes. The
built-in functions chr() and ord() convert between characters and nonnegative integers
representing the byte values. Bytes with the values 0-127 usually represent the corre-
sponding ascii values, but the interpretation of values is up to the program. The string
data type is also used to represent arrays of bytes, e.g., to hold data read from a file.
(On systems whose native character set is not ascii, strings may use EBCDIC in their
internal representation, provided the functions chr() and ord() implement a mapping
between ascii and EBCDIC, and string comparison preserves the ascii order. Or perhaps
someone can propose a better rule?)

Unicode The items of a Unicode object are Unicode characters. A Unicode character is
represented by a Unicode object of one item and can hold a 16-bit value representing a
Unicode ordinal. The built-in functions unichr() and ord() convert between characters
and nonnegative integers representing the Unicode ordinals as defined in the Unicode
Standard 3.0. Conversion from and to other encodings are possible through the Unicode
method encode and the built-in function unicode().

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are
formed by comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can
be formed by affixing a comma to an expression (an expression by itself does not create
a tuple, since parentheses must be usable for grouping of expressions). An empty tuple
can be formed by an empty pair of parentheses.

Mutable sequences Mutable sequences can be changed after they are created. The subscription
and slicing notations can be used as the target of assignment and del (delete) statements.

There is currently a single mutable sequence type:

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-
separated list of expressions in square brackets. (Note that there are no special cases
needed to form lists of length 0 or 1.)

The extension module array provides an additional example of a mutable sequence type.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation
a[k] selects the item indexed by k from the mapping a; this can be used in expressions and as the

3.2. The standard type hierarchy 13

target of assignments or del statements. The built-in function len() returns the number of items
in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only
types of values not acceptable as keys are values containing lists or dictionaries or other
mutable types that are compared by value rather than by object identity, the reason being
that the efficient implementation of dictionaries requires a key’s hash value to remain constant.
Numeric types used for keys obey the normal rules for numeric comparison: if two numbers
compare equal (e.g., 1 and 1.0) then they can be used interchangeably to index the same
dictionary entry.
Dictionaries are mutable; they are created by the {...} notation (see section 5.2.5, “Dictio-
nary Displays”).
The extension modules dbm, gdbm, bsddb provide additional examples of mapping types.

Callable types These are the types to which the function call operation (see section 5.3.4, “Calls”) can
be applied:

User-defined functions A user-defined function object is created by a function definition (see
section 7.5, “Function definitions”). It should be called with an argument list containing the
same number of items as the function’s formal parameter list.
Special attributes: func doc or doc is the function’s documentation string, or None
if unavailable; func name or name is the function’s name; func defaults is a tuple
containing default argument values for those arguments that have defaults, or None if no
arguments have a default value; func code is the code object representing the compiled
function body; func globals is (a reference to) the dictionary that holds the function’s global
variables — it defines the global namespace of the module in which the function was defined;
func dict or dict contains the namespace supporting arbitrary function attributes;
func closure is None or a tuple of cells that contain binding for the function’s free variables.
Of these, func code, func defaults, func closure, func doc/ doc , and
func dict/ dict may be writable; the others can never be changed. Additional infor-
mation about a function’s definition can be retrieved from its code object; see the description
of internal types below.
In Python 2.1, the func closure slot is always None unless nested scopes are enabled. (See
the appendix.)

User-defined methods A user-defined method object combines a class, a class instance (or None)
and a user-defined function.
Special read-only attributes: im self is the class instance object, im func is the function
object; im class is the class that defined the method (which may be a base class of the
class of which im self is an instance); doc is the method’s documentation (same as
im func. doc); name is the method name (same as im func. name).
Methods also support accessing (but not setting) the arbitrary function attributes on the
underlying function object.
User-defined method objects are created in two ways: when getting an attribute of a class
that is a user-defined function object, or when getting an attribute of a class instance that is
a user-defined function object defined by the class of the instance. In the former case (class
attribute), the im self attribute is None, and the method object is said to be unbound; in
the latter case (instance attribute), im self is the instance, and the method object is said
to be bound. For instance, when C is a class which contains a definition for a function f(),
C.f does not yield the function object f; rather, it yields an unbound method object m where
m.im class is C, m.im func is f(), and m.im self is None. When x is a C instance, x.f
yields a bound method object m where m.im class is C, m.im func is f(), and m.im self
is x.
When an unbound user-defined method object is called, the underlying function (im func)
is called, with the restriction that the first argument must be an instance of the proper class
(im class) or of a derived class thereof.

14 Chapter 3. Data model

When a bound user-defined method object is called, the underlying function (im func) is
called, inserting the class instance (im self) in front of the argument list. For instance,
when C is a class which contains a definition for a function f(), and x is an instance of C,
calling x.f(1) is equivalent to calling C.f(x, 1).
Note that the transformation from function object to (unbound or bound) method object
happens each time the attribute is retrieved from the class or instance. In some cases, a
fruitful optimization is to assign the attribute to a local variable and call that local variable.
Also notice that this transformation only happens for user-defined functions; other callable
objects (and all non-callable objects) are retrieved without transformation. It is also important
to note that user-defined functions which are attributes of a class instance are not converted
to bound methods; this only happens when the function is an attribute of the class.

Built-in functions A built-in function object is a wrapper around a C function. Examples of
built-in functions are len() and math.sin() (math is a standard built-in module). The
number and type of the arguments are determined by the C function. Special read-only
attributes: doc is the function’s documentation string, or None if unavailable; name
is the function’s name; self is set to None (but see the next item).

Built-in methods This is really a different disguise of a built-in function, this time containing
an object passed to the C function as an implicit extra argument. An example of a built-in
method is list.append(), assuming list is a list object. In this case, the special read-only
attribute self is set to the object denoted by list.

Classes Class objects are described below. When a class object is called, a new class instance
(also described below) is created and returned. This implies a call to the class’s init ()
method if it has one. Any arguments are passed on to the init () method. If there is
no init () method, the class must be called without arguments.

Class instances Class instances are described below. Class instances are callable only when the
class has a call () method; x(arguments) is a shorthand for x. call (arguments).

Modules Modules are imported by the import statement (see section 6.11, “The import statement”).
A module object has a namespace implemented by a dictionary object (this is the dictionary
referenced by the func globals attribute of functions defined in the module). Attribute references
are translated to lookups in this dictionary, e.g., m.x is equivalent to m. dict ["x"]. A module
object does not contain the code object used to initialize the module (since it isn’t needed once
the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., ‘m.x = 1’ is equivalent to
‘m. dict ["x"] = 1’.

Special read-only attribute: dict is the module’s namespace as a dictionary object.

Predefined (writable) attributes: name is the module’s name; doc is the module’s doc-
umentation string, or None if unavailable; file is the pathname of the file from which the
module was loaded, if it was loaded from a file. The file attribute is not present for C
modules that are statically linked into the interpreter; for extension modules loaded dynamically
from a shared library, it is the pathname of the shared library file.

Classes Class objects are created by class definitions (see section 7.6, “Class definitions”). A class has a
namespace implemented by a dictionary object. Class attribute references are translated to lookups
in this dictionary, e.g., ‘C.x’ is translated to ‘C. dict ["x"]’. When the attribute name is not
found there, the attribute search continues in the base classes. The search is depth-first, left-to-
right in the order of occurrence in the base class list. When a class attribute reference would yield
a user-defined function object, it is transformed into an unbound user-defined method object (see
above). The im class attribute of this method object is the class in which the function object
was found, not necessarily the class for which the attribute reference was initiated.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).

Special attributes: name is the class name; module is the module name in which the
class was defined; dict is the dictionary containing the class’s namespace; bases is a
tuple (possibly empty or a singleton) containing the base classes, in the order of their occurrence
in the base class list; doc is the class’s documentation string, or None if undefined.

3.2. The standard type hierarchy 15

Class instances A class instance is created by calling a class object (see above). A class instance has
a namespace implemented as a dictionary which is the first place in which attribute references
are searched. When an attribute is not found there, and the instance’s class has an attribute by
that name, the search continues with the class attributes. If a class attribute is found that is a
user-defined function object (and in no other case), it is transformed into an unbound user-defined
method object (see above). The im class attribute of this method object is the class in which the
function object was found, not necessarily the class of the instance for which the attribute reference
was initiated. If no class attribute is found, and the object’s class has a getattr () method,
that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If
the class has a setattr () or delattr () method, this is called instead of updating the
instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with
certain special names. See section 3.3, “Special method names.”

Special attributes: dict is the attribute dictionary; class is the instance’s class.

Files A file object represents an open file. File objects are created by the open() built-in function, and
also by os.popen(), os.fdopen(), and the makefile() method of socket objects (and perhaps by
other functions or methods provided by extension modules). The objects sys.stdin, sys.stdout
and sys.stderr are initialized to file objects corresponding to the interpreter’s standard input,
output and error streams. See the Python Library Reference for complete documentation of file
objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions
may change with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represent byte-compiled executable Python code, or bytecode. The
difference between a code object and a function object is that the function object contains
an explicit reference to the function’s globals (the module in which it was defined), while a
code object contains no context; also the default argument values are stored in the function
object, not in the code object (because they represent values calculated at run-time). Unlike
function objects, code objects are immutable and contain no references (directly or indirectly)
to mutable objects.
Special read-only attributes: co name gives the function name; co argcount is the number of
positional arguments (including arguments with default values); co nlocals is the number of
local variables used by the function (including arguments); co varnames is a tuple containing
the names of the local variables (starting with the argument names); co cellvars is a tuple
containing the names of local variables that are referenced by nested functions; co freevars
is a tuple containing the names of local variables that are neither local nor global; co code is a
string representing the sequence of bytecode instructions; co consts is a tuple containing the
literals used by the bytecode; co names is a tuple containing the names used by the bytecode;
co filename is the filename from which the code was compiled; co firstlineno is the first
line number of the function; co lnotab is a string encoding the mapping from byte code
offsets to line numbers (for details see the source code of the interpreter); co stacksize is
the required stack size (including local variables); co flags is an integer encoding a number
of flags for the interpreter.
The co cellvars and co freevars are present in Python 2.1 when nested scopes are not
enabled, but the code itself does not use or create cells.
The following flag bits are defined for co flags: bit 0x04 is set if the function uses the
‘*arguments’ syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if
the function uses the ‘**keywords’ syntax to accept arbitrary keyword arguments; other bits
are used internally or reserved for future use; bit 0x10 is set if the function was compiled with
nested scopes enabled. If a code object represents a function, the first item in co consts is
the documentation string of the function, or None if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects
(see below).
Special read-only attributes: f back is to the previous stack frame (towards the caller), or
None if this is the bottom stack frame; f code is the code object being executed in this

16 Chapter 3. Data model

frame; f locals is the dictionary used to look up local variables; f globals is used for
global variables; f builtins is used for built-in (intrinsic) names; f restricted is a flag
indicating whether the function is executing in restricted execution mode; f lineno gives
the line number and f lasti gives the precise instruction (this is an index into the bytecode
string of the code object).
Special writable attributes: f trace, if not None, is a function called at the start of each source
code line (this is used by the debugger); f exc type, f exc value, f exc traceback rep-
resent the most recent exception caught in this frame.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object
is created when an exception occurs. When the search for an exception handler unwinds the
execution stack, at each unwound level a traceback object is inserted in front of the current
traceback. When an exception handler is entered, the stack trace is made available to the
program. (See section 7.4, “The try statement.”) It is accessible as sys.exc traceback, and
also as the third item of the tuple returned by sys.exc info(). The latter is the preferred
interface, since it works correctly when the program is using multiple threads. When the
program contains no suitable handler, the stack trace is written (nicely formatted) to the
standard error stream; if the interpreter is interactive, it is also made available to the user as
sys.last traceback.
Special read-only attributes: tb next is the next level in the stack trace (towards the frame
where the exception occurred), or None if there is no next level; tb frame points to the
execution frame of the current level; tb lineno gives the line number where the exception
occurred; tb lasti indicates the precise instruction. The line number and last instruction in
the traceback may differ from the line number of its frame object if the exception occurred in
a try statement with no matching except clause or with a finally clause.

Slice objects Slice objects are used to represent slices when extended slice syntax is used. This is
a slice using two colons, or multiple slices or ellipses separated by commas, e.g., a[i:j:step],
a[i:j, k:l], or a[..., i:j]). They are also created by the built-in slice() function.
Special read-only attributes: start is the lower bound; stop is the upper bound; step is the
step value; each is None if omitted. These attributes can have any type.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic op-
erations or subscripting and slicing) by defining methods with special names. For instance, if a class
defines a method named getitem (), and x is an instance of this class, then x[i] is equivalent to
x. getitem (i). (The reverse is not true — if x is a list object, x. getitem (i) is not equiv-
alent to x[i].) Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined.

When implementing a class that emulates any built-in type, it is important that the emulation only
be implemented to the degree that it makes sense for the object being modelled. For example, some
sequences may work well with retrieval of individual elements, but extracting a slice may not make sense.
(One example of this is the NodeList interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

init (self [, args...])
Called when the instance is created. The arguments are those passed to the class constructor
expression. If a base class has an init () method the derived class’s init () method
must explicitly call it to ensure proper initialization of the base class part of the instance, e.g.,
‘BaseClass. init (self , [args...])’.

del (self)
Called when the instance is about to be destroyed. This is also called a destructor. If a base
class has a del () method, the derived class’s del () method must explicitly call it to
ensure proper deletion of the base class part of the instance. Note that it is possible (though not

3.3. Special method names 17

recommended!) for the del () method to postpone destruction of the instance by creating a
new reference to it. It may then be called at a later time when this new reference is deleted. It is
not guaranteed that del () methods are called for objects that still exist when the interpreter
exits.

Programmer’s note: ‘del x’ doesn’t directly call x. del () — the former decrements the
reference count for x by one, and the latter is only called when its reference count reaches zero.
Some common situations that may prevent the reference count of an object to go to zero include:
circular references between objects (e.g., a doubly-linked list or a tree data structure with parent
and child pointers); a reference to the object on the stack frame of a function that caught an
exception (the traceback stored in sys.exc traceback keeps the stack frame alive); or a reference
to the object on the stack frame that raised an unhandled exception in interactive mode (the
traceback stored in sys.last traceback keeps the stack frame alive). The first situation can only
be remedied by explicitly breaking the cycles; the latter two situations can be resolved by storing
None in sys.exc traceback or sys.last traceback.

Warning: due to the precarious circumstances under which del () methods are invoked,
exceptions that occur during their execution are ignored, and a warning is printed to sys.stderr
instead. Also, when del () is invoked is response to a module being deleted (e.g., when
execution of the program is done), other globals referenced by the del () method may already
have been deleted. For this reason, del () methods should do the absolute minimum needed to
maintain external invariants. Python 1.5 guarantees that globals whose name begins with a single
underscore are deleted from their module before other globals are deleted; if no other references to
such globals exist, this may help in assuring that imported modules are still available at the time
when the del () method is called.

repr (self)
Called by the repr() built-in function and by string conversions (reverse quotes) to compute the
“official” string representation of an object. If at all possible, this should look like a valid Python
expression that could be used to recreate an object with the same value (given an appropriate
environment). If this is not possible, a string of the form ‘<...some useful description...>’ should
be returned. The return value must be a string object.

This is typically used for debugging, so it is important that the representation is information-rich
and unambiguous.

str (self)
Called by the str() built-in function and by the print statement to compute the “informal” string
representation of an object. This differs from repr () in that it does not have to be a valid
Python expression: a more convenient or concise representation may be used instead. The return
value must be a string object.

lt (self, other)
le (self, other)
eq (self, other)
ne (self, other)
gt (self, other)
ge (self, other)

New in version 2.1. These are the so-called “rich comparison” methods, and are called for
comparison operators in preference to cmp () below. The correspondence between operator
symbols and method names is as follows: x<y calls x. lt (y), x<=y calls x. le (y), x==y
calls x. eq (y), x!=y and x<>y call x. ne (y), x>y calls x. gt (y), and x>=y calls
x. ge (y). These methods can return any value, but if the comparison operator is used in a
Boolean context, the return value should be interpretable as a Boolean value, else a TypeError
will be raised. By convention, 0 is used for false and 1 for true.

There are no reflected (swapped-argument) versions of these methods (to be used when the left
argument does not support the operation but the right argument does); rather, lt () and

gt () are each other’s reflection, le () and ge () are each other’s reflection, and
eq () and ne () are their own reflection.

Arguments to rich comparison methods are never coerced. A rich comparison method may return
NotImplemented if it does not implement the operation for a given pair of arguments.

18 Chapter 3. Data model

cmp (self, other)
Called by comparison operations if rich comparison (see above) is not defined. Should return a
negative integer if self < other, zero if self == other, a positive integer if self > other. If no

cmp (), eq () or ne () operation is defined, class instances are compared by object
identity (“address”). See also the description of hash () for some important notes on creating
objects which support custom comparison operations and are usable as dictionary keys. (Note: the
restriction that exceptions are not propagated by cmp () has been removed in Python 1.5.)

rcmp (self, other)
Changed in version 2.1: No longer supported.

hash (self)
Called for the key object for dictionary operations, and by the built-in function hash(). Should
return a 32-bit integer usable as a hash value for dictionary operations. The only required property
is that objects which compare equal have the same hash value; it is advised to somehow mix together
(e.g., using exclusive or) the hash values for the components of the object that also play a part
in comparison of objects. If a class does not define a cmp () method it should not define
a hash () operation either; if it defines cmp () or eq () but not hash (), its
instances will not be usable as dictionary keys. If a class defines mutable objects and implements
a cmp () or eq () method, it should not implement hash (), since the dictionary
implementation requires that a key’s hash value is immutable (if the object’s hash value changes,
it will be in the wrong hash bucket).

nonzero (self)
Called to implement truth value testing; should return 0 or 1. When this method is not de-
fined, len () is called, if it is defined (see below). If a class defines neither len () nor

nonzero (), all its instances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment
to, or deletion of x.name) for class instances. For performance reasons, these methods are cached in
the class object at class definition time; therefore, they cannot be changed after the class definition is
executed.

getattr (self, name)
Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an
instance attribute nor is it found in the class tree for self). name is the attribute name. This
method should return the (computed) attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, getattr () is not called.
(This is an intentional asymmetry between getattr () and setattr ().) This is done
both for efficiency reasons and because otherwise setattr () would have no way to access
other attributes of the instance. Note that at least for instance variables, you can fake total control
by not inserting any values in the instance attribute dictionary (but instead inserting them in
another object).

setattr (self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism
(i.e. store the value in the instance dictionary). name is the attribute name, value is the value to
be assigned to it.

If setattr () wants to assign to an instance attribute, it should not simply execute
‘self.name = value’ — this would cause a recursive call to itself. Instead, it should insert the
value in the dictionary of instance attributes, e.g., ‘self. dict [name] = value’.

delattr (self, name)
Like setattr () but for attribute deletion instead of assignment. This should only be imple-
mented if ‘del obj.name’ is meaningful for the object.

3.3. Special method names 19

3.3.3 Emulating callable objects

call (self [, args...])
Called when the instance is “called” as a function; if this method is defined, x(arg1, arg2, ...)
is a shorthand for x. call (arg1, arg2, ...).

3.3.4 Emulating sequence and mapping types

The following methods can be defined to emulate sequence or mapping objects. The first set of methods
is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the
allowable keys should be the integers k for which 0 <= k < N where N is the length of the sequence, or
slice objects, which define a range of items. (For backwards compatibility, the method getslice ()
(see below) can also be defined to handle simple, but not extended slices.) It is also recommended that
mappings provide the methods keys(), values(), items(), has key(), get(), clear(), copy(), and
update() behaving similar to those for Python’s standard dictionary objects; mutable sequences should
provide methods append(), count(), index(), insert(), pop(), remove(), reverse() and sort(),
like Python standard list objects. Finally, sequence types should implement addition (meaning concate-
nation) and multiplication (meaning repetition) by defining the methods add (), radd (),

iadd (), mul (), rmul () and imul () described below; they should not define
coerce () or other numerical operators. It is recommended that both mappings and sequences

implement the contains , to allow efficient use of the in operator; for mappings, in should be
equivalent of has key(); for sequences, it should search through the values.

len (self)
Called to implement the built-in function len(). Should return the length of the object, an integer
>= 0. Also, an object that doesn’t define a nonzero () method and whose len () method
returns zero is considered to be false in a Boolean context.

getitem (self, key)
Called to implement evaluation of self [key]. For sequence types, the accepted keys should be
integers and slice objects. Note that the special interpretation of negative indexes (if the class wishes
to emulate a sequence type) is up to the getitem () method. If key is of an inappropriate
type, TypeError may be raised; if of a value outside the set of indexes for the sequence (after any
special interpretation of negative values), IndexError should be raised. Note: for loops expect
that an IndexError will be raised for illegal indexes to allow proper detection of the end of the
sequence.

setitem (self, key, value)
Called to implement assignment to self [key]. Same note as for getitem (). This should only
be implemented for mappings if the objects support changes to the values for keys, or if new keys
can be added, or for sequences if elements can be replaced. The same exceptions should be raised
for improper key values as for the getitem () method.

delitem (self, key)
Called to implement deletion of self [key]. Same note as for getitem (). This should only
be implemented for mappings if the objects support removal of keys, or for sequences if elements
can be removed from the sequence. The same exceptions should be raised for improper key values
as for the getitem () method.

3.3.5 Additional methods for emulation of sequence types

The following methods can be defined to further emulate sequence objects. Immutable sequences methods
should only define getslice (); mutable sequences, should define all three three methods.

getslice (self, i, j)
Deprecated since release 2.0. Support slice objects as parameters to the getitem ()
method.

Called to implement evaluation of self [i:j]. The returned object should be of the same type
as self . Note that missing i or j in the slice expression are replaced by zero or sys.maxint,

20 Chapter 3. Data model

respectively. If negative indexes are used in the slice, the length of the sequence is added to that
index. If the instance does not implement the len () method, an AttributeError is raised.
No guarantee is made that indexes adjusted this way are not still negative. Indexes which are
greater than the length of the sequence are not modified. If no getslice () is found, a slice
object is created instead, and passed to getitem () instead.

setslice (self, i, j, sequence)
Called to implement assignment to self [i:j]. Same notes for i and j as for getslice ().

This method is deprecated. If no setslice () is found, a slice object is created instead, and
passed to setitem () instead.

delslice (self, i, j)
Called to implement deletion of self [i:j]. Same notes for i and j as for getslice (). This
method is deprecated. If no delslice () is found, a slice object is created instead, and passed
to delitem () instead.

Notice that these methods are only invoked when a single slice with a single colon is used, and the
slice method is available. For slice operations involving extended slice notation, or in absence of the
slice methods, getitem (), setitem () or delitem () is called with a slice object as
argument.

The following example demonstrate how to make your program or module compatible with earlier versions
of Python (assuming that methods getitem (), setitem () and delitem () support slice
objects as arguments):

class MyClass:

...

def __getitem__(self, index):

...

def __setitem__(self, index, value):

...

def __delitem__(self, index):

...

if sys.version_info < (2, 0):

They won’t be defined if version is at least 2.0 final

def __getslice__(self, i, j):

return self[max(0, i):max(0, j):]

def __setslice__(self, i, j, seq):

self[max(0, i):max(0, j):] = seq

def __delslice__(self, i, j):

del self[max(0, i):max(0, j):]

...

Note the calls to max(); these are actually necessary due to the handling of negative indices before
the *slice () methods are called. When negative indexes are used, the *item () methods
receive them as provided, but the *slice () methods get a “cooked” form of the index values. For
each negative index value, the length of the sequence is added to the index before calling the method
(which may still result in a negative index); this is the customary handling of negative indexes by the
built-in sequence types, and the *item () methods are expected to do this as well. However, since
they should already be doing that, negative indexes cannot be passed in; they must be be constrained
to the bounds of the sequence before being passed to the *item () methods. Calling max(0, i)
conveniently returns the proper value.

The membership test operators (in and not in) are normally implemented as iteration loop through
the sequence. However, sequence objects can supply the following special method with a more efficient
implementation:

contains (self, item)
Called to implement membership test operators. Should return true if item is in self , false other-

3.3. Special method names 21

wise.

3.3.6 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations
that are not supported by the particular kind of number implemented (e.g., bitwise operations for non-
integral numbers) should be left undefined.

add (self, other)
sub (self, other)
mul (self, other)
div (self, other)
mod (self, other)
divmod (self, other)
pow (self, other[, modulo])
lshift (self, other)
rshift (self, other)
and (self, other)
xor (self, other)
or (self, other)

These functions are called to implement the binary arithmetic operations (+, -, *, /, %, divmod(),
pow(), **, <<, >>, &, ^, |). For instance, to evaluate the expression x+y , where x is an instance of a
class that has an add () method, x. add (y) is called. Note that pow () should be
defined to accept an optional third argument if the ternary version of the built-in pow() function
is to be supported.

radd (self, other)
rsub (self, other)
rmul (self, other)
rdiv (self, other)
rmod (self, other)
rdivmod (self, other)
rpow (self, other)
rlshift (self, other)
rrshift (self, other)
rand (self, other)
rxor (self, other)
ror (self, other)

These functions are called to implement the binary arithmetic operations (+, -, *, /, %, divmod(),
pow(), **, <<, >>, &, ^, |) with reflected (swapped) operands. These functions are only called if the
left operand does not support the corresponding operation. For instance, to evaluate the expression
x-y , where y is an instance of a class that has an rsub () method, y. rsub (x) is called.
Note that ternary pow() will not try calling rpow () (the coercion rules would become too
complicated).

iadd (self, other)
isub (self, other)
imul (self, other)
idiv (self, other)
imod (self, other)
ipow (self, other[, modulo])
ilshift (self, other)
irshift (self, other)
iand (self, other)
ixor (self, other)
ior (self, other)

These methods are called to implement the augmented arithmetic operations (+=, -=, *=, /=,
%=, **=, <<=, >>=, &=, ^=, |=). These methods should attempt to do the operation in-place
(modifying self) and return the result (which could be, but does not have to be, self). If a specific

22 Chapter 3. Data model

method is not defined, the augmented operation falls back to the normal methods. For instance, to
evaluate the expression x+=y , where x is an instance of a class that has an iadd () method,
x. iadd (y) is called. If x is an instance of a class that does not define a iadd() method,
x. add (y) and y. radd (x) are considered, as with the evaluation of x+y .

neg (self)
pos (self)
abs (self)
invert (self)

Called to implement the unary arithmetic operations (-, +, abs() and ~).

complex (self)
int (self)
long (self)
float (self)

Called to implement the built-in functions complex(), int(), long(), and float(). Should return
a value of the appropriate type.

oct (self)
hex (self)

Called to implement the built-in functions oct() and hex(). Should return a string value.

coerce (self, other)
Called to implement “mixed-mode” numeric arithmetic. Should either return a 2-tuple containing
self and other converted to a common numeric type, or None if conversion is impossible. When
the common type would be the type of other, it is sufficient to return None, since the interpreter
will also ask the other object to attempt a coercion (but sometimes, if the implementation of the
other type cannot be changed, it is useful to do the conversion to the other type here).

Coercion rules: to evaluate x op y , the following steps are taken (where op () and rop ()
are the method names corresponding to op, e.g., if op is ‘+’, add () and radd () are used). If
an exception occurs at any point, the evaluation is abandoned and exception handling takes over.

0. If x is a string object and op is the modulo operator (%), the string formatting operation is invoked
and the remaining steps are skipped.

1. If x is a class instance:

1a. If x has a coerce () method: replace x and y with the 2-tuple returned by
x. coerce (y); skip to step 2 if the coercion returns None.

1b. If neither x nor y is a class instance after coercion, go to step 3.

1c. If x has a method op (), return x. op (y); otherwise, restore x and y to their value
before step 1a.

2. If y is a class instance:

2a. If y has a coerce () method: replace y and x with the 2-tuple returned by
y. coerce (x); skip to step 3 if the coercion returns None.

2b. If neither x nor y is a class instance after coercion, go to step 3.

2b. If y has a method rop (), return y. rop (x); otherwise, restore x and y to their
value before step 2a.

3. We only get here if neither x nor y is a class instance.

3a. If op is ‘+’ and x is a sequence, sequence concatenation is invoked.

3b. If op is ‘*’ and one operand is a sequence and the other an integer, sequence repetition is
invoked.

3c. Otherwise, both operands must be numbers; they are coerced to a common type if possible,
and the numeric operation is invoked for that type.

3.3. Special method names 23

24

CHAPTER

FOUR

Execution model

4.1 Code blocks, execution frames, and namespaces

A code block is a piece of Python program text that can be executed as a unit, such as a module, a
class definition or a function body. Some code blocks (like modules) are normally executed only once,
others (like function bodies) may be executed many times. Code blocks may textually contain other
code blocks. Code blocks may invoke other code blocks (that may or may not be textually contained in
them) as part of their execution, e.g., by invoking (calling) a function.

The following are code blocks: A module is a code block. A function body is a code block. A class
definition is a code block. Each command typed interactively is a separate code block; a script file (a
file given as standard input to the interpreter or specified on the interpreter command line the first
argument) is a code block; a script command (a command specified on the interpreter command line
with the ‘-c’ option) is a code block. The file read by the built-in function execfile() is a code block.
The string argument passed to the built-in function eval() and to the exec statement is a code block.
And finally, the expression read and evaluated by the built-in function input() is a code block.

A code block is executed in an execution frame. An execution frame contains some administrative
information (used for debugging), determines where and how execution continues after the code block’s
execution has completed, and (perhaps most importantly) defines two namespaces, the local and the
global namespace, that affect execution of the code block.

A namespace is a mapping from names (identifiers) to objects. A particular namespace may be referenced
by more than one execution frame, and from other places as well. Adding a name to a namespace is
called binding a name (to an object); changing the mapping of a name is called rebinding; removing a
name is unbinding. Namespaces are functionally equivalent to dictionaries (and often implemented as
dictionaries).

The local namespace of an execution frame determines the default place where names are defined and
searched. The global namespace determines the place where names listed in global statements are defined
and searched, and where names that are not bound anywhere in the current code block are searched.

Whether a name is local or global in a code block is determined by static inspection of the source text for
the code block: in the absence of global statements, a name that is bound anywhere in the code block
is local in the entire code block; all other names are considered global. The global statement forces
global interpretation of selected names throughout the code block. The following constructs bind names:
formal parameters to functions, import statements, class and function definitions (these bind the class
or function name in the defining block), and targets that are identifiers if occurring in an assignment,
for loop header, or in the second position of an except clause header. Local names are searched only
on the local namespace; global names are searched only in the global and built-in namespace.1

A target occurring in a del statement is also considered bound for this purpose (though the actual
semantics are to “unbind” the name).

When a global name is not found in the global namespace, it is searched in the built-in namespace (which
is actually the global namespace of the module builtin). The built-in namespace associated with

1If the code block contains exec statements or the construct “‘from ...import *”’, the semantics of local names change:
local name lookup first searches the local namespace, then the global namespace and the built-in namespace.

25

the execution of a code block is actually found by looking up the name builtins in its global
namespace; this should be a dictionary or a module (in the latter case its dictionary is used). Normally,
the builtins namespace is the dictionary of the built-in module builtin (note: no ‘s’); if
it isn’t, restricted execution mode is in effect. When a name is not found at all, a NameError exception
is raised.

The following table lists the meaning of the local and global namespace for various types of code blocks.
The namespace for a particular module is automatically created when the module is first imported (i.e.,
when it is loaded). Note that in almost all cases, the global namespace is the namespace of the containing
module — scopes in Python do not nest!

Code block type Global namespace Local namespace Notes
Module n.s. for this module same as global
Script (file or command) n.s. for main same as global (1)
Interactive command n.s. for main same as global
Class definition global n.s. of containing block new n.s.
Function body global n.s. of containing block new n.s. (2)
String passed to exec statement global n.s. of containing block local n.s. of containing block (2), (3)
String passed to eval() global n.s. of caller local n.s. of caller (2), (3)
File read by execfile() global n.s. of caller local n.s. of caller (2), (3)
Expression read by input() global n.s. of caller local n.s. of caller

Notes:

n.s. means namespace

(1) The main module for a script is always called main ; “the filename don’t enter into it.”

(2) The global and local namespace for these can be overridden with optional extra arguments.

(3) The exec statement and the eval() and execfile() functions have optional arguments to override
the global and local namespace. If only one namespace is specified, it is used for both.

The built-in functions globals() and locals() returns a dictionary representing the current global
and local namespace, respectively. The effect of modifications to this dictionary on the namespace are
undefined.2

4.2 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle
errors or other exceptional conditions. An exception is raised at the point where the error is detected; it
may be handled by the surrounding code block or by any code block that directly or indirectly invoked
the code block where the error occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A
Python program can also explicitly raise an exception with the raise statement. Exception handlers are
specified with the try ... except statement. The try ... finally statement specifies cleanup code which
does not handle the exception, but is executed whether an exception occurred or not in the preceding
code.

Python uses the “termination” model of error handling: an exception handler can find out what happened
and continue execution at an outer level, but it cannot repair the cause of the error and retry the failing
operation (except by re-entering the offending piece of code from the top).

2The current implementations return the dictionary actually used to implement the namespace, except for functions,
where the optimizer may cause the local namespace to be implemented differently, and locals() returns a read-only
dictionary.

26 Chapter 4. Execution model

When an exception is not handled at all, the interpreter terminates execution of the program, or returns
to its interactive main loop. In either case, it prints a stack backtrace, except when the exception is
SystemExit.

Exceptions are identified by string objects or class instances. Selection of a matching except clause
is based on object identity (i.e., two different string objects with the same value represent different
exceptions!) For string exceptions, the except clause must reference the same string object. For class
exceptions, the except clause must reference the same class or a base class of it.

When an exception is raised, an object (maybe None) is passed as the exception’s “parameter” or “value”;
this object does not affect the selection of an exception handler, but is passed to the selected exception
handler as additional information. For class exceptions, this object must be an instance of the exception
class being raised.

See also the description of the try statement in section 7.4 and raise statement in section 6.8.

4.2. Exceptions 27

28

CHAPTER

FIVE

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe
syntax, not lexical analysis. When (one alternative of) a syntax rule has the form

name: othername

and no semantics are given, the semantics of this form of name are the same as for othername.

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted
to a common type,” the arguments are coerced using the coercion rules listed at the end of chapter 3. If
both arguments are standard numeric types, the following coercions are applied:

• If either argument is a complex number, the other is converted to complex;

• otherwise, if either argument is a floating point number, the other is converted to floating point;

• otherwise, if either argument is a long integer, the other is converted to long integer;

• otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the ‘%’ operator).
Extensions can define their own coercions.

5.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms
enclosed in reverse quotes or in parentheses, brackets or braces are also categorized syntactically as
atoms. The syntax for atoms is:

atom: identifier | literal | enclosure

enclosure: parenth_form|list_display|dict_display|string_conversion

5.2.1 Identifiers (Names)

An identifier occurring as an atom is a reference to a local, global or built-in name binding. If a
name is assigned to anywhere in a code block (even in unreachable code), and is not mentioned in a
global statement in that code block, then it refers to a local name throughout that code block. When

29

it is not assigned to anywhere in the block, or when it is assigned to but also explicitly listed in a
global statement, it refers to a global name if one exists, else to a built-in name (and this binding may
dynamically change).1

When the name is bound to an object, evaluation of the atom yields that object. When a name is not
bound, an attempt to evaluate it raises a NameError exception.

Private name mangling:when an identifier that textually occurs in a class definition begins with two
or more underscore characters and does not end in two or more underscores, it is considered a private
name of that class. Private names are transformed to a longer form before code is generated for them.
The transformation inserts the class name in front of the name, with leading underscores removed, and
a single underscore inserted in front of the class name. For example, the identifier spam occurring
in a class named Ham will be transformed to Ham spam. This transformation is independent of the
syntactical context in which the identifier is used. If the transformed name is extremely long (longer
than 255 characters), implementation defined truncation may happen. If the class name consists only of
underscores, no transformation is done.

5.2.2 Literals

Python supports string literals and various numeric literals:

literal: stringliteral | integer | longinteger | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point
number, complex number) with the given value. The value may be approximated in the case of floating
point and imaginary (complex) literals. See section 2.4 for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than
its value. Multiple evaluations of literals with the same value (either the same occurrence in the program
text or a different occurrence) may obtain the same object or a different object with the same value.

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form: "(" [expression_list] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least
one comma, it yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the rules for
literals apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The
exception is the empty tuple, for which parentheses are required — allowing unparenthesized “nothing”
in expressions would cause ambiguities and allow common typos to pass uncaught.

5.2.4 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:
1The Python interpreter provides a useful set of predefined built-in functions. It is not recommended to reuse (hide)

these names with self defined objects. See the Python Library Reference for the descriptions of built-in functions and
methods.

30 Chapter 5. Expressions

list_display: "[" [listmaker] "]"

listmaker: expression (list_for | ("," expression)* [","])

list_iter: list_for | list_if

list_for: "for" expression_list "in" testlist [list_iter]

list_if: "if" test [list_iter]

A list display yields a new list object. Its contents are specified by providing either a list of expressions
or a list comprehension. When a comma-separated list of expressions is supplied, its elements are
evaluated from left to right and placed into the list object in that order. When a list comprehension is
supplied, it consists of a single expression followed by at least one for clause and zero or more for or if
clauses. In this case, the elements of the new list are those that would be produced by considering each
of the for or if clauses a block, nesting from left to right, and evaluating the expression to produce a
list element each time the innermost block is reached.

5.2.5 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display: "{" [key_datum_list] "}"

key_datum_list: key_datum ("," key_datum)* [","]

key_datum: expression ":" expression

A dictionary display yields a new dictionary object.

The key/datum pairs are evaluated from left to right to define the entries of the dictionary: each key
object is used as a key into the dictionary to store the corresponding datum.

Restrictions on the types of the key values are listed earlier in section 3.2. (To summarize,the key
type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not
detected; the last datum (textually rightmost in the display) stored for a given key value prevails.

5.2.6 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string_conversion: "‘" expression_list "‘"

A string conversion evaluates the contained expression list and converts the resulting object into a string
according to rules specific to its type.

If the object is a string, a number, None, or a tuple, list or dictionary containing only objects whose
type is one of these, the resulting string is a valid Python expression which can be passed to the built-
in function eval() to yield an expression with the same value (or an approximation, if floating point
numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to escape
sequences that are safe to print.)

It is illegal to attempt to convert recursive objects (e.g., lists or dictionaries that contain a reference to
themselves, directly or indirectly.)

The built-in function repr() performs exactly the same conversion in its argument as enclosing it in
parentheses and reverse quotes does. The built-in function str() performs a similar but more user-
friendly conversion.

5.2. Atoms 31

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary: atom | attributeref | subscription | slicing | call

5.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref: primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, e.g., a module, list,
or an instance. This object is then asked to produce the attribute whose name is the identifier. If this
attribute is not available, the exception AttributeError is raised. Otherwise, the type and value of the
object produced is determined by the object. Multiple evaluations of the same attribute reference may
yield different objects.

5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:

subscription: primary "[" expression_list "]"

The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the
keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key.
(The expression list is a tuple except if it has exactly one item.)

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value is negative,
the length of the sequence is added to it (so that, e.g., x[-1] selects the last item of x.) The resulting
value must be a nonnegative integer less than the number of items in the sequence, and the subscription
selects the item whose index is that value (counting from zero).

A string’s items are characters. A character is not a separate data type but a string of exactly one
character.

5.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used
as expressions or as targets in assignment or del statements. The syntax for a slicing:

32 Chapter 5. Expressions

slicing: simple_slicing | extended_slicing

simple_slicing: primary "[" short_slice "]"

extended_slicing: primary "[" slice_list "]"

slice_list: slice_item ("," slice_item)* [","]

slice_item: expression | proper_slice | ellipsis

proper_slice: short_slice | long_slice

short_slice: [lower_bound] ":" [upper_bound]

long_slice: short_slice ":" [stride]

lower_bound: expression

upper_bound: expression

stride: expression

ellipsis: "..."

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a
slice list, so any subscription can be interpreted as a slicing. Rather than further complicating the syntax,
this is disambiguated by defining that in this case the interpretation as a subscription takes priority over
the interpretation as a slicing (this is the case if the slice list contains no proper slice nor ellipses).
Similarly, when the slice list has exactly one short slice and no trailing comma, the interpretation as a
simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The
lower and upper bound expressions, if present, must evaluate to plain integers; defaults are zero and the
sys.maxint, respectively. If either bound is negative, the sequence’s length is added to it. The slicing
now selects all items with index k such that i <= k < j where i and j are the specified lower and upper
bounds. This may be an empty sequence. It is not an error if i or j lie outside the range of valid indexes
(such items don’t exist so they aren’t selected).

The semantics for an extended slicing are as follows. The primary must evaluate to a mapping object,
and it is indexed with a key that is constructed from the slice list, as follows. If the slice list contains at
least one comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion
of the lone slice item is the key. The conversion of a slice item that is an expression is that expression.
The conversion of an ellipsis slice item is the built-in Ellipsis object. The conversion of a proper slice
is a slice object (see section 3.2) whose start, stop and step attributes are the values of the expressions
given as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

5.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call: primary "(" [argument_list [","]] ")"

argument_list: positional_arguments ["," keyword_arguments]

| keyword_arguments

positional_arguments: expression ("," expression)*

keyword_arguments: keyword_item ("," keyword_item)*

keyword_item: identifier "=" expression

A trailing comma may be present after an argument list but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of
built-in objects, class objects, methods of class instances, and certain class instances themselves are
callable; extensions may define additional callable object types). All argument expressions are evaluated
before the call is attempted. Please refer to section 7.5 for the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First,
a list of unfilled slots is created for the formal parameters. If there are N positional arguments, they
are placed in the first N slots. Next, for each keyword argument, the identifier is used to determine
the corresponding slot (if the identifier is the same as the first formal parameter name, the first slot is
used, and so on). If the slot is already filled, a TypeError exception is raised. Otherwise, the value of
the argument is placed in the slot, filling it (even if the expression is None, it fills the slot). When all

5.3. Primaries 33

arguments have been processed, the slots that are still unfilled are filled with the corresponding default
value from the function definition. (Default values are calculated, once, when the function is defined;
thus, a mutable object such as a list or dictionary used as default value will be shared by all calls that
don’t specify an argument value for the corresponding slot; this should usually be avoided.) If there are
any unfilled slots for which no default value is specified, a TypeError exception is raised. Otherwise, the
list of filled slots is used as the argument list for the call.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is
raised, unless a formal parameter using the syntax ‘*identifier’ is present; in this case, that formal
parameter receives a tuple containing the excess positional arguments (or an empty tuple if there were
no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is
raised, unless a formal parameter using the syntax ‘**identifier’ is present; in this case, that formal
parameter receives a dictionary containing the excess keyword arguments (using the keywords as keys
and the argument values as corresponding values), or a (new) empty dictionary if there were no excess
keyword arguments.

Formal parameters using the syntax ‘*identifier’ or ‘**identifier’ cannot be used as positional
argument slots or as keyword argument names. Formal parameters using the syntax ‘(sublist)’ cannot
be used as keyword argument names; the outermost sublist corresponds to a single unnamed argument
slot, and the argument value is assigned to the sublist using the usual tuple assignment rules after all
other parameter processing is done.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed
depends on the type of the callable object.

If it is—

a user-defined function: The code block for the function is executed, passing it the argument list.
The first thing the code block will do is bind the formal parameters to the arguments; this is
described in section 7.5. When the code block executes a return statement, this specifies the
return value of the function call.

a built-in function or method: The result is up to the interpreter; see the Python Library Reference
for the descriptions of built-in functions and methods.

a class object: A new instance of that class is returned.

a class instance method: The corresponding user-defined function is called, with an argument list
that is one longer than the argument list of the call: the instance becomes the first argument.

a class instance: The class must define a call () method; the effect is then the same as if that
method was called.

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary
operators on its right. The syntax is:

power: primary ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from
right to left (this does not constrain the evaluation order for the operands).

The power operator has the same semantics as the built-in pow() function, when called with two argu-
ments: it yields its left argument raised to the power of its right argument. The numeric arguments are
first converted to a common type. The result type is that of the arguments after coercion; if the result
is not expressible in that type (as in raising an integer to a negative power, or a negative floating point
number to a broken power), a TypeError exception is raised.

34 Chapter 5. Expressions

5.5 Unary arithmetic operations

All unary arithmetic (and bit-wise) operations have the same priority:

u_expr: power | "-" u_expr | "+" u_expr | "~" u_expr

The unary - (minus) operator yields the negation of its numeric argument.

The unary + (plus) operator yields its numeric argument unchanged.

The unary ~ (invert) operator yields the bit-wise inversion of its plain or long integer argument. The
bit-wise inversion of x is defined as -(x+1). It only applies to integral numbers.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

5.6 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations
also apply to certain non-numeric types. Apart from the power operator, there are only two levels, one
for multiplicative operators and one for additive operators:

m_expr: u_expr | m_expr "*" u_expr

| m_expr "/" u_expr | m_expr "%" u_expr

a_expr: m_expr | aexpr "+" m_expr | aexpr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be
numbers, or one argument must be an integer (plain or long) and the other must be a sequence. In the
former case, the numbers are converted to a common type and then multiplied together. In the latter
case, sequence repetition is performed; a negative repetition factor yields an empty sequence.

The / (division) operator yields the quotient of its arguments. The numeric arguments are first converted
to a common type. Plain or long integer division yields an integer of the same type; the result is that
of mathematical division with the ‘floor’ function applied to the result. Division by zero raises the
ZeroDivisionError exception.

The % (modulo) operator yields the remainder from the division of the first argument by the sec-
ond. The numeric arguments are first converted to a common type. A zero right argument raises the
ZeroDivisionError exception. The arguments may be floating point numbers, e.g., 3.14%0.7 equals
0.34 (since 3.14 equals 4*0.7 + 0.34.) The modulo operator always yields a result with the same
sign as its second operand (or zero); the absolute value of the result is strictly smaller than the second
operand.

The integer division and modulo operators are connected by the following identity: x == (x/y)*y +
(x%y). Integer division and modulo are also connected with the built-in function divmod(): divmod(x,
y) == (x/y, x%y). These identities don’t hold for floating point and complex numbers; there similar
identities hold approximately where x/y is replaced by floor(x/y)) or floor(x/y) - 1 (for floats),2 or
floor((x/y).real) (for complex).

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers
or both sequences of the same type. In the former case, the numbers are converted to a common type
and then added together. In the latter case, the sequences are concatenated.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first
converted to a common type.

2If x is very close to an exact integer multiple of y, it’s possible for floor(x/y) to be one larger than (x-x%y)/y due to
rounding. In such cases, Python returns the latter result, in order to preserve that divmod(x,y)[0] * y + x % y be very
close to x.

5.5. Unary arithmetic operations 35

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr: a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept plain or long integers as arguments. The arguments are converted to a common
type. They shift the first argument to the left or right by the number of bits given by the second
argument.

A right shift by n bits is defined as division by pow(2,n). A left shift by n bits is defined as multiplication
with pow(2,n); for plain integers there is no overflow check so in that case the operation drops bits and
flips the sign if the result is not less than pow(2,31) in absolute value. Negative shift counts raise a
ValueError exception.

5.8 Binary bit-wise operations

Each of the three bitwise operations has a different priority level:

and_expr: shift_expr | and_expr "&" shift_expr

xor_expr: and_expr | xor_expr "^" and_expr

or_expr: xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The
arguments are converted to a common type.

The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be plain or long
integers. The arguments are converted to a common type.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be plain or long integers.
The arguments are converted to a common type.

5.9 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any
arithmetic, shifting or bitwise operation. Also unlike C, expressions like a < b < c have the interpreta-
tion that is conventional in mathematics:

comparison: or_expr (comp_operator or_expr)*

comp_operator: "<"|">"|"=="|">="|"<="|"<>"|"!="|"is" ["not"]|["not"] "in"

Comparisons yield integer values: 1 for true, 0 for false.

Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y and y <= z, except
that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be
false).

Formally, if a, b, c, . . . , y , z are expressions and opa, opb, . . . , opy are comparison operators, then a
opa b opb c . . . y opy z is equivalent to a opa b and b opb c and . . . y opy z , except that each expression
is evaluated at most once.

Note that a opa b opb c doesn’t imply any kind of comparison between a and c, so that, e.g., x < y >
z is perfectly legal (though perhaps not pretty).

The forms <> and != are equivalent; for consistency with C, != is preferred; where != is mentioned below

36 Chapter 5. Expressions

<> is also accepted. The <> spelling is considered obsolescent.

The operators <, >, ==, >=, <=, and != compare the values of two objects. The objects need not have the
same type. If both are numbers, they are coverted to a common type. Otherwise, objects of different
types always compare unequal, and are ordered consistently but arbitrarily.

(This unusual definition of comparison was used to simplify the definition of operations like sorting and
the in and not in operators. In the future, the comparison rules for objects of different types are likely
to change.)

Comparison of objects of the same type depends on the type:

• Numbers are compared arithmetically.

• Strings are compared lexicographically using the numeric equivalents (the result of the built-in
function ord()) of their characters. Unicode and 8-bit strings are fully interoperable in this be-
havior.

• Tuples and lists are compared lexicographically using comparison of corresponding items.

• Mappings (dictionaries) are compared through lexicographic comparison of their sorted (key, value)
lists.3

• Most other types compare unequal unless they are the same object; the choice whether one object
is considered smaller or larger than another one is made arbitrarily but consistently within one
execution of a program.

The operators in and not in test for set membership. x in s evaluates to true if x is a member of
the set s, and false otherwise. x not in s returns the negation of x in s. The set membership test
has traditionally been bound to sequences; an object is a member of a set if the set is a sequence and
contains an element equal to that object. However, it is possible for an object to support membership
tests without being a sequence.

For the list and tuple types, x in y is true if and only if there exists an index i such that x == y[i] is
true.

For the Unicode and string types, x in y is true if and only if there exists an index i such that x ==
y[i] is true. If x is not a string or Unicode object of length 1, a TypeError exception is raised.

For user-defined classes which define the contains () method, x in y is true if and only if
y. contains (x) is true.

For user-defined classes which do not define contains () and do define getitem (), x in y
is true if and only if there is a non-negative integer index i such that x == y[i], and all lower integer
indices do not raise IndexError exception. (If any other exception is raised, it is as if in raised that
exception).

The operator not in is defined to have the inverse true value of in.

The operators is and is not test for object identity: x is y is true if and only if x and y are the same
object. x is not y yields the inverse truth value.

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:
3This is expensive since it requires sorting the keys first, but it is about the only sensible definition. An earlier version

of Python compared dictionaries by identity only, but this caused surprises because people expected to be able to test a
dictionary for emptiness by comparing it to {}.

5.10. Boolean operations 37

expression: or_test | lambda_form

or_test: and_test | or_test "or" and_test

and_test: not_test | and_test "and" not_test

not_test: comparison | "not" not_test

lambda_form: "lambda" [parameter_list]: expression

In the context of Boolean operations, and also when expressions are used by control flow statements,
the following values are interpreted as false: None, numeric zero of all types, empty sequences (strings,
tuples and lists), and empty mappings (dictionaries). All other values are interpreted as true.

The operator not yields 1 if its argument is false, 0 otherwise.

The expression x and y first evaluates x ; if x is false, its value is returned; otherwise, y is evaluated
and the resulting value is returned.

The expression x or y first evaluates x ; if x is true, its value is returned; otherwise, y is evaluated and
the resulting value is returned.

(Note that neither and nor or restrict the value and type they return to 0 and 1, but rather return
the last evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by
a default value if it is empty, the expression s or ’foo’ yields the desired value. Because not has to
invent a value anyway, it does not bother to return a value of the same type as its argument, so e.g., not
’foo’ yields 0, not ’’.)

Lambda forms (lambda expressions) have the same syntactic position as expressions. They are a short-
hand to create anonymous functions; the expression lambda arguments: expression yields a function
object that behaves virtually identical to one defined with

def name(arguments):

return expression

See section 7.5 for the syntax of parameter lists. Note that functions created with lambda forms cannot
contain statements.

Programmer’s note: Prior to Python 2.1, a lambda form defined inside a function has no access to
names defined in the function’s namespace. This is because Python had only two scopes: local and
global. A common work-around was to use default argument values to pass selected variables into the
lambda’s namespace, e.g.:

def make_incrementor(increment):

return lambda x, n=increment: x+n

Python 2.1 introduced nested scopes as an optional feature, and this work-around has not been necessary
when the feature is enabled. The use of nested scopes is enabled by the statement ‘from future
import nested scopes’; future versions of Python will enable nested scopes by default. This version
works starting with Python 2.1:

from __future__ import nested_scopes

def make_incrementor(increment):

return lambda x: x+increment

38 Chapter 5. Expressions

5.11 Expression lists

expression_list: expression ("," expression)* [","]

An expression list containing at least one comma yields a tuple. The length of the tuple is the number
of expressions in the list. The expressions are evaluated from left to right.

The trailing comma is required only to create a single tuple (a.k.a. a singleton); it is optional in all other
cases. A single expression without a trailing comma doesn’t create a tuple, but rather yields the value
of that expression. (To create an empty tuple, use an empty pair of parentheses: ().)

5.12 Summary

The following table summarizes the operator precedences in Python, from lowest precedence (least bind-
ing) to highest precedence (most binding). Operators in the same box have the same precedence. Unless
the syntax is explicitly given, operators are binary. Operators in the same box group left to right (except
for comparisons, which chain from left to right — see above, and exponentiation, which groups from
right to left).

Operator Description
lambda Lambda expression
or Boolean OR
and Boolean AND
not x Boolean NOT

in, not in Membership tests
is, is not Identity tests

<, <=, >, >=, <>, !=, == Comparisons
| Bitwise OR
^ Bitwise XOR
& Bitwise AND

<<, >> Shifts
+, - Addition and subtraction

*, /, % Multiplication, division, remainder
+x , -x Positive, negative
~x Bitwise not
** Exponentiation

x.attribute Attribute reference
x[index] Subscription

x[index:index] Slicing
f (arguments...) Function call
(expressions...) Binding or tuple display
[expressions...] List display
{key:datum...} Dictionary display
‘expressions...‘ String conversion

5.11. Expression lists 39

40

CHAPTER

SIX

Simple statements

Simple statements are comprised within a single logical line. Several simple statements may occur on a
single line separated by semicolons. The syntax for simple statements is:

simple_stmt: expression_stmt

| assert_stmt

| assignment_stmt

| augmented_assignment_stmt

| pass_stmt

| del_stmt

| print_stmt

| return_stmt

| raise_stmt

| break_stmt

| continue_stmt

| import_stmt

| global_stmt

| exec_stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call
a procedure (a function that returns no meaningful result; in Python, procedures return the value None).
Other uses of expression statements are allowed and occasionally useful. The syntax for an expression
statement is:

expression_stmt: expression_list

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr() function
and the resulting string is written to standard output (see section 6.6) on a line by itself. (Expression
statements yielding None are not written, so that procedure calls do not cause any output.)

6.2 Assert statements

Assert statements are a convenient way to insert debugging assertions into a program:

assert_statement: "assert" expression ["," expression]

The simple form, ‘assert expression’, is equivalent to

41

if __debug__:

if not expression: raise AssertionError

The extended form, ‘assert expression1, expression2’, is equivalent to

if __debug__:

if not expression1: raise AssertionError, expression2

These equivalences assume that debug and AssertionError refer to the built-in variables with
those names. In the current implementation, the built-in variable debug is 1 under normal cir-
cumstances, 0 when optimization is requested (command line option -O). The current code generator
emits no code for an assert statement when optimization is requested at compile time. Note that it is
unnecessary to include the source code for the expression that failed in the error message; it will be
displayed as part of the stack trace.

Assignments to debug are illegal. The value for the built-in variable is determined when the
interpreter starts.

6.3 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable
objects:

assignment_stmt: (target_list "=")+ expression_list

target_list: target ("," target)* [","]

target: identifier | "(" target_list ")" | "[" target_list "]"

| attributeref | subscription | slicing

(See section 5.3 for the syntax definitions for the last three symbols.)

An assignment statement evaluates the expression list (remember that this can be a single expression or
a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the
target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of
a mutable object (an attribute reference, subscription or slicing), the mutable object must ultimately
perform the assignment and decide about its validity, and may raise an exception if the assignment is
unacceptable. The rules observed by various types and the exceptions raised are given with the definition
of the object types (see section 3.2).

Assignment of an object to a target list is recursively defined as follows.

• If the target list is a single target: The object is assigned to that target.

• If the target list is a comma-separated list of targets: The object must be a sequence with the same
number of items as the there are targets in the target list, and the items are assigned, from left
to right, to the corresponding targets. (This rule is relaxed as of Python 1.5; in earlier versions,
the object had to be a tuple. Since strings are sequences, an assignment like ‘a, b = "xy"’ is now
legal as long as the string has the right length.)

Assignment of an object to a single target is recursively defined as follows.

• If the target is an identifier (name):

– If the name does not occur in a global statement in the current code block: the name is
bound to the object in the current local namespace.

42 Chapter 6. Simple statements

– Otherwise: the name is bound to the object in the current global namespace.

The name is rebound if it was already bound. This may cause the reference count for the object
previously bound to the name to reach zero, causing the object to be deallocated and its destructor
(if it has one) to be called.

• If the target is a target list enclosed in parentheses or in square brackets: The object must be a
sequence with the same number of items as there are targets in the target list, and its items are
assigned, from left to right, to the corresponding targets.

• If the target is an attribute reference: The primary expression in the reference is evaluated. It
should yield an object with assignable attributes; if this is not the case, TypeError is raised. That
object is then asked to assign the assigned object to the given attribute; if it cannot perform the
assignment, it raises an exception (usually but not necessarily AttributeError).

• If the target is a subscription: The primary expression in the reference is evaluated. It should yield
either a mutable sequence object (e.g., a list) or a mapping object (e.g., a dictionary). Next, the
subscript expression is evaluated.

If the primary is a mutable sequence object (e.g., a list), the subscript must yield a plain integer.
If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative
integer less than the sequence’s length, and the sequence is asked to assign the assigned object
to its item with that index. If the index is out of range, IndexError is raised (assignment to a
subscripted sequence cannot add new items to a list).

If the primary is a mapping object (e.g., a dictionary), the subscript must have a type compatible
with the mapping’s key type, and the mapping is then asked to create a key/datum pair which
maps the subscript to the assigned object. This can either replace an existing key/value pair with
the same key value, or insert a new key/value pair (if no key with the same value existed).

• If the target is a slicing: The primary expression in the reference is evaluated. It should yield a
mutable sequence object (e.g., a list). The assigned object should be a sequence object of the same
type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults
are zero and the sequence’s length. The bounds should evaluate to (small) integers. If either bound
is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between
zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice
with the items of the assigned sequence. The length of the slice may be different from the length
of the assigned sequence, thus changing the length of the target sequence, if the object allows it.

(In the current implementation, the syntax for targets is taken to be the same as for expressions, and
invalid syntax is rejected during the code generation phase, causing less detailed error messages.)

WARNING: Although the definition of assignment implies that overlaps between the left-hand side and
the right-hand side are ‘safe’ (e.g., ‘a, b = b, a’ swaps two variables), overlaps within the collection of
assigned-to variables are not safe! For instance, the following program prints ‘[0, 2]’:

x = [0, 1]

i = 0

i, x[i] = 1, 2

print x

6.3.1 Augmented Assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment
statement:

6.3. Assignment statements 43

augmented_assignment_stmt: target augop expression_list

augop: "+=" | "-=" | "*=" | "/=" | "%=" | "**="

| ">>=" | "<<=" | "&=" | "^=" | "|="

target: identifier | "(" target_list ")" | "[" target_list "]"

| attributeref | subscription | slicing

(See section 5.3 for the syntax definitions for the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be
an unpacking) and the expression list, performs the binary operation specific to the type of assignment
on the two operands, and assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewritten as x = x + 1 to achieve a similar,
but not exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible,
the actual operation is performed in-place, meaning that rather than creating a new object and assigning
that to the target, the old object is modified instead.

With the exception of assigning to tuples and multiple targets in a single statement, the assignment
done by augmented assignment statements is handled the same way as normal assignments. Similarly,
with the exception of the possible in-place behaviour, the binary operation performed by augmented
assignment is the same as the normal binary operations.

6.4 The pass statement

pass_stmt: "pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a
statement is required syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

6.5 The del statement

del_stmt: "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather that spelling it out
in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name (which must exist) from the local or global
namespace, depending on whether the name occurs in a global statement in the same code block.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved;
deletion of a slicing is in general equivalent to assignment of an empty slice of the right type (but even
this is determined by the sliced object).

44 Chapter 6. Simple statements

6.6 The print statement

print_stmt: "print" [expression ("," expression)* [","]]

print evaluates each expression in turn and writes the resulting object to standard output (see below).
If an object is not a string, it is first converted to a string using the rules for string conversions. The
(resulting or original) string is then written. A space is written before each object is (converted and)
written, unless the output system believes it is positioned at the beginning of a line. This is the case
(1) when no characters have yet been written to standard output, (2) when the last character written
to standard output is ‘\n’, or (3) when the last write operation on standard output was not a print
statement. (In some cases it may be functional to write an empty string to standard output for this
reason.)

A ‘\n’ character is written at the end, unless the print statement ends with a comma. This is the only
action if the statement contains just the keyword print.

Standard output is defined as the file object named stdout in the built-in module sys. If no such object
exists, or if it does not have a write() method, a RuntimeError exception is raised.

print also has an extended form, defined as

print_stmt: "print" ">>" expression [("," expression)+ [","]]

In this form, the first expression after the >> must evaluate to a “file-like” object, specifically an object
that has a write() method as described above. With this extended form, the subsequent expressions
are printed to this file object. If the first expression evaluates to None, then sys.stdout is used as the
file for output.

6.7 The return statement

return_stmt: "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is
executed before really leaving the function.

6.8 The raise statement

raise_stmt: "raise" [expression ["," expression ["," expression]]]

If no expressions are present, raise re-raises the last expression that was raised in the current scope.

Otherwise, raise evaluates its first expression, which must yield a string, class, or instance object. If
there is a second expression, this is evaluated, else None is substituted. If the first expression is a class
object, then the second expression may be an instance of that class or one of its derivatives, and then
that instance is raised. If the second expression is not such an instance, the given class is instantiated.

6.6. The print statement 45

The argument list for the instantiation is determined as follows: if the second expression is a tuple, it is
used as the argument list; if it is None, the argument list is empty; otherwise, the argument list consists
of a single argument which is the second expression. If the first expression is an instance object, the
second expression must be None.

If the first object is a string, it then raises the exception identified by the first object, with the second
one (or None) as its parameter. If the first object is a class or instance, it raises the exception identified
by the class of the instance determined in the previous step, with the instance as its parameter.

If a third object is present, and it is not None, it should be a traceback object (see section 3.2), and it is
substituted instead of the current location as the place where the exception occurred. This is useful to
re-raise an exception transparently in an except clause.

6.9 The break statement

break_stmt: "break"

break may only occur syntactically nested in a for or while loop, but not nested in a function or class
definition within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed
before really leaving the loop.

6.10 The continue statement

continue_stmt: "continue"

continue may only occur syntactically nested in a for or while loop, but not nested in a function
or class definition or try statement within that loop.1 It continues with the next cycle of the nearest
enclosing loop.

6.11 The import statement

import_stmt: "import" module ["as" name] ("," module ["as" name])*

| "from" module "import" identifier ["as" name]

("," identifier ["as" name])*

| "from" module "import" "*"

module: (identifier ".")* identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define
a name or names in the local namespace (of the scope where the import statement occurs). The first
form (without from) repeats these steps for each identifier in the list. The form with from performs step
(1) once, and then performs step (2) repeatedly.

The system maintains a table of modules that have been initialized, indexed by module name. This table
is accessible as sys.modules. When a module name is found in this table, step (1) is finished. If not, a

1It may occur within an except or else clause. The restriction on occurring in the try clause is implementor’s laziness
and will eventually be lifted.

46 Chapter 6. Simple statements

search for a module definition is started. When a module is found, it is loaded. Details of the module
searching and loading process are implementation and platform specific. It generally involves searching
for a “built-in” module with the given name and then searching a list of locations given as sys.path.

If a built-in module is found, its built-in initialization code is executed and step (1) is finished. If no
matching file is found, ImportError is raised. If a file is found, it is parsed, yielding an executable code
block. If a syntax error occurs, SyntaxError is raised. Otherwise, an empty module of the given name
is created and inserted in the module table, and then the code block is executed in the context of this
module. Exceptions during this execution terminate step (1).

When step (1) finishes without raising an exception, step (2) can begin.

The first form of import statement binds the module name in the local namespace to the module object,
and then goes on to import the next identifier, if any. If the module name is followed by as, the
name following as is used as the local name for the module. To avoid confusion, you cannot import
modules with dotted names as a different local name. So import module as m is legal, but import
module.submod as s is not. The latter should be written as from module import submod as s; see
below.

The from form does not bind the module name: it goes through the list of identifiers, looks each one
of them up in the module found in step (1), and binds the name in the local namespace to the object
thus found. As with the first form of import, an alternate local name can be supplied by specifying ”as
localname”. If a name is not found, ImportError is raised. If the list of identifiers is replaced by a star
(‘*’), all names defined in the module are bound, except those beginning with an underscore (‘ ’).

Names bound by import statements may not occur in global statements in the same scope.

The from form with ‘*’ may only occur in a module scope.

Hierarchical module names: when the module names contains one or more dots, the module search
path is carried out differently. The sequence of identifiers up to the last dot is used to find a “package”;
the final identifier is then searched inside the package. A package is generally a subdirectory of a directory
on sys.path that has a file ‘ init .py’. [XXX Can’t be bothered to spell this out right now; see the
URL http://www.python.org/doc/essays/packages.html for more details, also about how the module search
works from inside a package.]

[XXX Also should mention import ().]

6.12 The global statement

global_stmt: "global" identifier ("," identifier)*

The global statement is a declaration which holds for the entire current code block. It means that the
listed identifiers are to be interpreted as globals. While using global names is automatic if they are not
defined in the local scope, assigning to global names would be impossible without global.

Names listed in a global statement must not be used in the same code block textually preceding that
global statement.

Names listed in a global statement must not be defined as formal parameters or in a for loop control
target, class definition, function definition, or import statement.

(The current implementation does not enforce the latter two restrictions, but programs should not abuse
this freedom, as future implementations may enforce them or silently change the meaning of the program.)

Programmer’s note: the global is a directive to the parser. It applies only to code parsed at the
same time as the global statement. In particular, a global statement contained in an exec statement
does not affect the code block containing the exec statement, and code contained in an exec statement
is unaffected by global statements in the code containing the exec statement. The same applies to the
eval(), execfile() and compile() functions.

6.12. The global statement 47

6.13 The exec statement

exec_stmt: "exec" expression ["in" expression ["," expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to
either a string, an open file object, or a code object. If it is a string, the string is parsed as a suite of
Python statements which is then executed (unless a syntax error occurs). If it is an open file, the file is
parsed until EOF and executed. If it is a code object, it is simply executed.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first
expression after in is specified, it should be a dictionary, which will be used for both the global and the
local variables. If two expressions are given, both must be dictionaries and they are used for the global
and local variables, respectively.

As a side effect, an implementation may insert additional keys into the dictionaries given besides those
corresponding to variable names set by the executed code. For example, the current implementation may
add a reference to the dictionary of the built-in module builtin under the key builtins (!).

Programmer’s hints: dynamic evaluation of expressions is supported by the built-in function eval().
The built-in functions globals() and locals() return the current global and local dictionary, respec-
tively, which may be useful to pass around for use by exec.

Also, in the current implementation, multi-line compound statements must end with a newline:
exec "for v in seq:\n\tprint v\n" works, but exec "for v in seq:\n\tprint v" fails with
SyntaxError.

48 Chapter 6. Simple statements

CHAPTER

SEVEN

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those
other statements in some way. In general, compound statements span multiple lines, although in simple
incarnations a whole compound statement may be contained in one line.

The if, while and for statements implement traditional control flow constructs. try specifies excep-
tion handlers and/or cleanup code for a group of statements. Function and class definitions are also
syntactically compound statements.

Compound statements consist of one or more ‘clauses.’ A clause consists of a header and a ‘suite.’
The clause headers of a particular compound statement are all at the same indentation level. Each
clause header begins with a uniquely identifying keyword and ends with a colon. A suite is a group of
statements controlled by a clause. A suite can be one or more semicolon-separated simple statements on
the same line as the header, following the header’s colon, or it can be one or more indented statements on
subsequent lines. Only the latter form of suite can contain nested compound statements; the following
is illegal, mostly because it wouldn’t be clear to which if clause a following else clause would belong:

if test1: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following example,
either all or none of the print statements are executed:

if x < y < z: print x; print y; print z

Summarizing:

compound_stmt: if_stmt | while_stmt | for_stmt

| try_stmt | funcdef | classdef

suite: stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT

statement: stmt_list NEWLINE | compound_stmt

stmt_list: simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional
continuation clauses always begin with a keyword that cannot start a statement, thus there are no
ambiguities (the ‘dangling else’ problem is solved in Python by requiring nested if statements to be
indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for
clarity.

49

7.1 The if statement

The if statement is used for conditional execution:

if_stmt: "if" expression ":" suite

("elif" expression ":" suite)*

["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true
(see section 5.10 for the definition of true and false); then that suite is executed (and no other part of
the if statement is executed or evaluated). If all expressions are false, the suite of the else clause, if
present, is executed.

7.2 The while statement

The while statement is used for repeated execution as long as an expression is true:

while_stmt: "while" expression ":" suite

["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false
(which may be the first time it is tested) the suite of the else clause, if present, is executed and the loop
terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s
suite. A continue statement executed in the first suite skips the rest of the suite and goes back to
testing the expression.

7.3 The for statement

The for statement is used to iterate over the elements of a sequence (string, tuple or list):

for_stmt: "for" target_list "in" expression_list ":" suite

["else" ":" suite]

The expression list is evaluated once; it should yield a sequence. The suite is then executed once for each
item in the sequence, in the order of ascending indices. Each item in turn is assigned to the target list
using the standard rules for assignments, and then the suite is executed. When the items are exhausted
(which is immediately when the sequence is empty), the suite in the else clause, if present, is executed,
and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s
suite. A continue statement executed in the first suite skips the rest of the suite and continues with the
next item, or with the else clause if there was no next item.

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to
it.

The target list is not deleted when the loop is finished, but if the sequence is empty, it will not have
been assigned to at all by the loop. Hint: the built-in function range() returns a sequence of integers
suitable to emulate the effect of Pascal’s for i := a to b do; e.g., range(3) returns the list [0, 1,
2].

Warning: There is a subtlety when the sequence is being modified by the loop (this can only occur for

50 Chapter 7. Compound statements

mutable sequences, i.e. lists). An internal counter is used to keep track of which item is used next, and
this is incremented on each iteration. When this counter has reached the length of the sequence the loop
terminates. This means that if the suite deletes the current (or a previous) item from the sequence, the
next item will be skipped (since it gets the index of the current item which has already been treated).
Likewise, if the suite inserts an item in the sequence before the current item, the current item will be
treated again the next time through the loop. This can lead to nasty bugs that can be avoided by making
a temporary copy using a slice of the whole sequence, e.g.,

for x in a[:]:

if x < 0: a.remove(x)

7.4 The try statement

The try statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt: try_exc_stmt | try_fin_stmt

try_exc_stmt: "try" ":" suite

("except" [expression ["," target]] ":" suite)+

["else" ":" suite]

try_fin_stmt: "try" ":" suite

"finally" ":" suite

There are two forms of try statement: try...except and try...finally. These forms cannot be mixed
(but they can be nested in each other).

The try...except form specifies one or more exception handlers (the except clauses). When no exception
occurs in the try clause, no exception handler is executed. When an exception occurs in the try suite,
a search for an exception handler is started. This search inspects the except clauses in turn until one
is found that matches the exception. An expression-less except clause, if present, must be last; it
matches any exception. For an except clause with an expression, that expression is evaluated, and the
clause matches the exception if the resulting object is “compatible” with the exception. An object is
compatible with an exception if it is either the object that identifies the exception, or (for exceptions
that are classes) it is a base class of the exception, or it is a tuple containing an item that is compatible
with the exception. Note that the object identities must match, i.e. it must be the same object, not just
an object with the same value.

If no except clause matches the exception, the search for an exception handler continues in the surround-
ing code and on the invocation stack.

If the evaluation of an expression in the header of an except clause raises an exception, the original search
for a handler is canceled and a search starts for the new exception in the surrounding code and on the
call stack (it is treated as if the entire try statement raised the exception).

When a matching except clause is found, the exception’s parameter is assigned to the target specified in
that except clause, if present, and the except clause’s suite is executed. All except clauses must have an
executable block. When the end of this block is reached, execution continues normally after the entire
try statement. (This means that if two nested handlers exist for the same exception, and the exception
occurs in the try clause of the inner handler, the outer handler will not handle the exception.)

Before an except clause’s suite is executed, details about the exception are assigned to three variables in
the sys module: sys.exc type receives the object identifying the exception; sys.exc value receives
the exception’s parameter; sys.exc traceback receives a traceback object (see section 3.2) identifying
the point in the program where the exception occurred. These details are also available through the
sys.exc info() function, which returns a tuple (exc type, exc value, exc traceback). Use of the
corresponding variables is deprecated in favor of this function, since their use is unsafe in a threaded
program. As of Python 1.5, the variables are restored to their previous values (before the call) when
returning from a function that handled an exception.

7.4. The try statement 51

The optional else clause is executed if and when control flows off the end of the try clause.1 Exceptions
in the else clause are not handled by the preceding except clauses.

The try...finally form specifies a ‘cleanup’ handler. The try clause is executed. When no exception
occurs, the finally clause is executed. When an exception occurs in the try clause, the exception is
temporarily saved, the finally clause is executed, and then the saved exception is re-raised. If the
finally clause raises another exception or executes a return or break statement, the saved exception is
lost. A continue statement is illegal in the finally clause. (The reason is a problem with the current
implementation – thsi restriction may be lifted in the future). The exception information is not available
to the program during execution of the finally clause.

When a return, break or continue statement is executed in the try suite of a try...finally statement,
the finally clause is also executed ‘on the way out.’ A continue statement is illegal in the finally
clause. (The reason is a problem with the current implementation — this restriction may be lifted in
the future).

7.5 Function definitions

A function definition defines a user-defined function object (see section 3.2):

funcdef: "def" funcname "(" [parameter_list] ")" ":" suite

parameter_list: (defparameter ",")* ("*" identifier [, "**" identifier]

| "**" identifier

| defparameter [","])

defparameter: parameter ["=" expression]

sublist: parameter ("," parameter)* [","]

parameter: identifier | "(" sublist ")"

funcname: identifier

A function definition is an executable statement. Its execution binds the function name in the current
local namespace to a function object (a wrapper around the executable code for the function). This
function object contains a reference to the current global namespace as the global namespace to be used
when the function is called.

The function definition does not execute the function body; this gets executed only when the function
is called.

When one or more top-level parameters have the form parameter = expression, the function is said to
have “default parameter values.” For a parameter with a default value, the corresponding argument may
be omitted from a call, in which case the parameter’s default value is substituted. If a parameter has
a default value, all following parameters must also have a default value — this is a syntactic restriction
that is not expressed by the grammar.

Default parameter values are evaluated when the function definition is executed. This means
that the expression is evaluated once, when the function is defined, and that that same “pre-computed”
value is used for each call. This is especially important to understand when a default parameter is a
mutable object, such as a list or a dictionary: if the function modifies the object (e.g. by appending an
item to a list), the default value is in effect modified. This is generally not what was intended. A way
around this is to use None as the default, and explicitly test for it in the body of the function, e.g.:

def whats_on_the_telly(penguin=None):

if penguin is None:

penguin = []

penguin.append("property of the zoo")

return penguin

1Currently, control “flows off the end” except in the case of an exception or the execution of a return, continue, or
break statement.

52 Chapter 7. Compound statements

Function call semantics are described in more detail in section 5.3.4. A function call always assigns
values to all parameters mentioned in the parameter list, either from position arguments, from keyword
arguments, or from default values. If the form “*identifier” is present, it is initialized to a tuple
receiving any excess positional parameters, defaulting to the empty tuple. If the form “**identifier”
is present, it is initialized to a new dictionary receiving any excess keyword arguments, defaulting to a
new empty dictionary.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in
expressions. This uses lambda forms, described in section 5.10. Note that the lambda form is merely
a shorthand for a simplified function definition; a function defined in a “def” statement can be passed
around or assigned to another name just like a function defined by a lambda form. The “def” form is
actually more powerful since it allows the execution of multiple statements.

Programmer’s note: a “def” form executed inside a function definition defines a local function that
can be returned or passed around. The semantics of name resolution in the nested function will change
in Python 2.2. See the appendix for a description of the new semantics.

7.6 Class definitions

A class definition defines a class object (see section 3.2):

classdef: "class" classname [inheritance] ":" suite

inheritance: "(" [expression_list] ")"

classname: identifier

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each
item in the inheritance list should evaluate to a class object. The class’s suite is then executed in a
new execution frame (see section 4.1), using a newly created local namespace and the original global
namespace. (Usually, the suite contains only function definitions.) When the class’s suite finishes
execution, its execution frame is discarded but its local namespace is saved. A class object is then
created using the inheritance list for the base classes and the saved local namespace for the attribute
dictionary. The class name is bound to this class object in the original local namespace.

Programmer’s note: variables defined in the class definition are class variables; they are shared by all
instances. To define instance variables, they must be given a value in the the init () method or
in another method. Both class and instance variables are accessible through the notation “self.name”,
and an instance variable hides a class variable with the same name when accessed in this way. Class
variables with immutable values can be used as defaults for instance variables.

7.6. Class definitions 53

54

CHAPTER

EIGHT

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard
input or as program argument, typed in interactively, from a module source file, etc. This chapter gives
the syntax used in these cases.

8.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to
have a notion of a complete Python program. A complete Python program is executed in a minimally
initialized environment: all built-in and standard modules are available, but none have been initialized,
except for sys (various system services), builtin (built-in functions, exceptions and None) and

main . The latter is used to provide the local and global namespace for execution of the complete
program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a
complete program but reads and executes one statement (possibly compound) at a time. The initial
environment is identical to that of a complete program; each statement is executed in the namespace of

main .

Under Unix, a complete program can be passed to the interpreter in three forms: with the -c string
command line option, as a file passed as the first command line argument, or as standard input. If the
file or standard input is a tty device, the interpreter enters interactive mode; otherwise, it executes the
file as a complete program.

8.2 File input

All input read from non-interactive files has the same form:

file_input: (NEWLINE | statement)*

This syntax is used in the following situations:

• when parsing a complete Python program (from a file or from a string);

• when parsing a module;

• when parsing a string passed to the exec statement;

55

8.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input: [stmt_list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this
is needed to help the parser detect the end of the input.

8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string argument to eval()
must have the following form:

eval_input: expression_list NEWLINE*

The input line read by input() must have the following form:

input_input: expression_list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in function raw input() or
the readline() method of file objects.

56 Chapter 8. Top-level components

APPENDIX

A

Future statements and nested scopes

The semantics of Python’s static scoping will change in version 2.2 to support resolution of unbound local
names in enclosing functions’ namespaces. The new semantics will be available in Python 2.1 through
the use of a future statement. This appendix documents these two features for Python 2.1; it will be
removed in Python 2.2 and the features will be documented in the main sections of this manual.

A.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using
syntax or semantics that will be available in a specified future release of Python. The future statement
is intended to ease migration to future versions of Python that introduce incompatible changes to the
language. It allows use of the new features on a per-module basis before the release in which the feature
becomes standard.

future_statement: "from" "__future__" "import" feature ["as" name]

("," feature ["as" name])*

feature: identifier

name: identifier

A future statement must appear near the top of the module. The only lines that can appear before a
future statement are:

• the module docstring (if any),

• comments,

• blank lines, and

• other future statements.

The only feature recognized by Python 2.1 is ‘nested scopes’.

A future statement is recognized and treated specially at compile time: Changes to the semantics of
core constructs are often implemented by generating different code. It may even be the case that a new
feature introduces new incompatible syntax (such as a new reserved word), in which case the compiler
may need to parse the module differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-
time error if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module
future , described later, and it will be imported in the usual way at the time the future statement

is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

57

Note that there is nothing special about the statement:

import __future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax
restrictions.

Code compiled by an exec statement or calls to the builtin functions compile() and execfile() that
occur in a module M containing a future statement will use the new syntax or semantics associated with
the future statement.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter
session. If an interpreter is started with the -i option, is passed a script name to execute, and the script
includes a future statement, it will be in effect in the interactive session started after the script is executed.

A.2 future — Future statement definitions

future is a real module, and serves three purposes:

• To avoid confusing existing tools that analyze import statements and expect to find the modules
they’re importing.

• To ensure that future statements run under releases prior to 2.1 at least yield runtime exceptions
(the import of future will fail, because there was no module of that name prior to 2.1).

• To document when incompatible changes were introduced, and when they will be — or were — made
mandatory. This is a form of executable documentation, and can be inspected programatically via
importing future and examining its contents.

Each statment in ‘ future .py’ is of the form:

FeatureName = "_Feature(" OptionalRelease "," MandatoryRelease ")"

where, normally, OptionalRelease is less then MandatoryRelease, and both are 5-tuples of the same form
as sys.version info:

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int

PY_MINOR_VERSION, # the 1; an int

PY_MICRO_VERSION, # the 0; an int

PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string

PY_RELEASE_SERIAL # the 3; an int

)

OptionalRelease records the first release in which the feature was accepted.

In the case of MandatoryReleases that have not yet occurred, MandatoryRelease predicts the release in
which the feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after
that, modules no longer need a future statement to use the feature in question, but may continue to use
such imports.

MandatoryRelease may also be None, meaning that a planned feature got dropped.

Instances of class Feature have two corresponding methods, getOptionalRelease() and
getMandatoryRelease().

No feature description will ever be deleted from future .

58 Appendix A. Future statements and nested scopes

A.3 Nested scopes

This section defines the new scoping semantics that will be introduced in Python 2.2. They are available in
Python 2.1 by using the future statement ‘nested scopes’. This section begins with a bit of terminology.

A.3.1 Definitions and rules

Names refer to objects. Names are introduced by name binding operations. Each occurrence of a name
in the program text refers to the binding of that name established in the innermost function block
containing the use.

A block is a pice of Python program text that can is executed as a unit. The following are blocks: a
module, a function body, and a class defintion.

A scope defines the visibility of a name within a block. If a local variable is defined in a block, it’s
scope includes that block. If the definition occurs in a function block, the scope extends to any blocks
contained within the defining one, unless a contained block introduces a different binding for the name.
The scope of names defined in a class block is limited to the class block; it does not extend to the code
blocks of methods.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such
scopes visible to a code block is called the block’s environment.

If a name is bound in a block, it is a local variable of that block. If a name is bound at the module
level, it is a global variable. (The variables of the module code block are local and global.) If a variable
is used in a code block but not defined there, it is a free variable.

The name binding operations are assignment, class and function definition, import statements, for state-
ments, and except statements. Each assignment or import statement occurs within a block defined by a
class or function definition or at the module level (the top-level code block).

If a name binding operation occurs anywhere within a code block, all uses of the name within the block
are treated as references to the current block. This can lead to errors when a name is used within a
block before it is bound.

The previous rule is a subtle. Python lacks declarations and allows name binding operations to occur
anywhere within a code block. The local variables of a code block can be determined by scanning the
entire text of the block for name binding operations.

If the global statement occurs within a block, all uses of the name specified in the statement refer to
the binding of that name in the top-level namespace. Names are resolved in the top-level namespace by
searching the global namespace, i.e. the namespace of the module containing the code block, and the
builtin namespace, the namespace of the module builtin . The global namespace is searched first.
If the name is not found there, the builtin namespace is searched. The global statement must precede
all uses of the name.

The global statement has the same scope as a name binding operation in the same block. If the nearest
enclosing scope for a free variable contains a global statement, the free variable is treated as a global.

A class definition is an executable statement that may use and define names. These references follow the
normal rules for name resolution. The namespace of the class definition becomes the attribute dictionary
of the class. Names defined at the class scope are not visible in methods.

A.3.2 Interaction with dynamic features

There are several cases where Python statements are illegal when used in conjunction with nested scopes
that contain free variables.

If a variable is referenced in an enclosing scope, it is illegal to delete the name. An error will be reported
at compile time.

If the wild card form of import — ‘import *’ — is used in a function and the function contains or is a
nested block with free variables, the compiler will raise a SyntaxError.

A.3. Nested scopes 59

If exec is used in a function and the function contains or is a nested block with free variables, the compiler
will raise a SyntaxError unless the exec explicitly specifies the local namespace for the exec. (In other
words, ”exec obj” would be illegal, but ”exec obj in ns” would be legal.)

The builtin functions eval() and input() can not access free variables unless the variables are also
referenced by the program text of the block that contains the call to eval() or input().

Compatibility note: The compiler for Python 2.1 will issue warnings for uses of nested functions that will
behave differently with nested scopes. The warnings will not be issued if nested scopes are enabled via a
future statement. If a name bound in a function scope and the function contains a nested function scope
that uses the name, the compiler will issue a warning. The name resolution rules will result in different
bindings under Python 2.1 than under Python 2.2. The warning indicates that the program may not
run correctly with all versions of Python.

60 Appendix A. Future statements and nested scopes

APPENDIX

A

History and License

A.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI)
in the Netherlands as a successor of a language called ABC. Guido is Python’s principal author, although
it includes many contributions from others. The last version released from CWI was Python 1.2. In
1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI)
in Reston, Virginia where he released several versions of the software. Python 1.6 was the last of the
versions released by CNRI. In 2000, Guido and the Python core development team moved to BeOpen.com
to form the BeOpen PythonLabs team. Python 2.0 was the first and only release from BeOpen.com.

Following the release of Python 1.6, and after Guido van Rossum left CNRI to work with commercial
software developers, it became clear that the ability to use Python with software available under the GNU
Public License (GPL) was very desirable. CNRI and the Free Software Foundation (FSF) interacted to
develop enabling wording changes to the Python license. Python 1.6.1 is essentially the same as Python
1.6, with a few minor bug fixes, and with a different license that enables later versions to be GPL-
compatible. Python 2.0.1 is a derivative work of Python 1.6.1, as well as of Python 2.0.

After Python 2.0 was released by BeOpen.com, Guido van Rossum and the other PythonLabs developers
joined Digital Creations. All intellectual property added from this point on, including Python 2.0.1 and
its alpha and beta releases, and Python 2.1.1, is owned by the Python Software Foundation (PSF),
a non-profit modeled after the Apache Software Foundation. See http://www.python.org/psf/ for more
information about the PSF.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases
possible.

A.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the
Individual or Organization (“Licensee”) accessing and otherwise using Python 2.1.1 software in
source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a
nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use Python 2.1.1 alone or in any
derivative version, provided, however, that PSF’s License Agreement and PSF’s notice of copyright,
i.e., “Copyright c© 2001 Python Software Foundation; All Rights Reserved” are retained in Python
2.1.1 alone or in any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.1.1 or
any part thereof, and wants to make the derivative work available to others as provided herein,
then Licensee hereby agrees to include in any such work a brief summary of the changes made to
Python 2.1.1.

61

4. PSF is making Python 2.1.1 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT
NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WAR-
RANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
THAT THE USE OF PYTHON 2.1.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.1.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RE-
SULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.1.1, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership,
or joint venture between PSF and Licensee. This License Agreement does not grant permission
to use PSF trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.1.1, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

BEOPEN.COM TERMS AND CONDITIONS FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160
Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) access-
ing and otherwise using this software in source or binary form and its associated documentation
(“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby
grants Licensee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform
and/or display publicly, prepare derivative works, distribute, and otherwise use the Software alone
or in any derivative version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAM-
PLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESEN-
TATION OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD
PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFT-
WARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of
the State of California, excluding conflict of law provisions. Nothing in this License Agree-
ment shall be deemed to create any relationship of agency, partnership, or joint venture be-
tween BeOpen and Licensee. This License Agreement does not grant permission to use BeOpen
trademarks or trade names in a trademark sense to endorse or promote products or services
of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that
web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms
and conditions of this License Agreement.

62 Appendix A. History and License

CNRI OPEN SOURCE GPL-COMPATIBLE LICENSE AGREEMENT

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, hav-
ing an office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 1.6.1 software in source or binary
form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee
a nonexclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or dis-
play publicly, prepare derivative works, distribute, and otherwise use Python 1.6.1 alone or in
any derivative version, provided, however, that CNRI’s License Agreement and CNRI’s notice of
copyright, i.e., “Copyright c© 1995-2001 Corporation for National Research Initiatives; All Rights
Reserved” are retained in Python 1.6.1 alone or in any derivative version prepared by Licensee.
Alternately, in lieu of CNRI’s License Agreement, Licensee may substitute the following text (omit-
ting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in CNRI’s
License Agreement. This Agreement together with Python 1.6.1 may be located on the Inter-
net using the following unique, persistent identifier (known as a handle): 1895.22/1013. This
Agreement may also be obtained from a proxy server on the Internet using the following URL:
http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or
any part thereof, and wants to make the derivative work available to others as provided herein,
then Licensee hereby agrees to include in any such work a brief summary of the changes made to
Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE
OR THAT THE USE OF PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RE-
SULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and
conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United
States, including without limitation the federal copyright law, and, to the extent such U.S. federal
law does not apply, by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of
law provisions. Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed under the GNU
General Public License (GPL), the law of the Commonwealth of Virginia shall govern this License
Agreement only as to issues arising under or with respect to Paragraphs 4, 5, and 7 of this License
Agreement. Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does
not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse or
promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using
Python 1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI PERMISSIONS STATEMENT AND DISCLAIMER

Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights
reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that

A.2. Terms and conditions for accessing or otherwise using Python 63

both that copyright notice and this permission notice appear in supporting documentation, and that the
name of Stichting Mathematisch Centrum or CWI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSO-
EVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

64 Appendix A. History and License

INDEX

Symbols
abs () (numeric object method), 23
add () (numeric object method), 22
add () (sequence object method), 20
and () (numeric object method), 22
bases (class attribute), 15
builtin (built-in module), 25, 48, 55
builtins , 48
call () (object method), 20
call () (object method), 34
class (instance attribute), 16
cmp () (object method), 19
cmp () (object method), 19
coerce () (numeric object method), 23
coerce () (numeric object method), 20
complex () (numeric object method), 23
contains () (sequence object method), 21
contains () (mapping object method), 20
contains () (sequence object method), 20
debug , 42
del () (object method), 17
delattr () (object method), 19
delitem () (mapping object method), 20
delslice () (sequence object method), 21
dict (class attribute), 15
dict (function attribute), 14
dict (instance attribute), 16, 19
dict (module attribute), 15
div () (numeric object method), 22
divmod () (numeric object method), 22
doc (class attribute), 15
doc (function attribute), 14
doc (module attribute), 15
eq () (object method), 18
file (module attribute), 15
float () (numeric object method), 23
future (standard module), 58
ge () (object method), 18
getattr () (object method), 19
getitem () (mapping object method), 20
getitem () (mapping object method), 17
getslice () (sequence object method), 20
gt () (object method), 18
hash () (object method), 19
hex () (numeric object method), 23
iadd () (numeric object method), 22

iadd () (sequence object method), 20
iand () (numeric object method), 22
idiv () (numeric object method), 22
ilshift () (numeric object method), 22
imod () (numeric object method), 22
import () (built-in function), 47
imul () (numeric object method), 22
imul () (sequence object method), 20
init () (object method), 17
init () (object method), 15
init .py, 47
int () (numeric object method), 23
invert () (numeric object method), 23
ior () (numeric object method), 22
ipow () (numeric object method), 22
irshift () (numeric object method), 22
isub () (numeric object method), 22
ixor () (numeric object method), 22
le () (object method), 18
len () (mapping object method), 20
len () (mapping object method), 19
long () (numeric object method), 23
lshift () (numeric object method), 22
lt () (object method), 18
main (built-in module), 26, 55
members (built-in object attribute), 12
methods (built-in object attribute), 12
mod () (numeric object method), 22
module (class attribute), 15
mul () (numeric object method), 22
mul () (sequence object method), 20
name (class attribute), 15
name (function attribute), 14
name (module attribute), 15
ne () (object method), 18
neg () (numeric object method), 23
nonzero () (object method), 19
nonzero () (object method), 20
oct () (numeric object method), 23
or () (numeric object method), 22
pos () (numeric object method), 23
pow () (numeric object method), 22
radd () (numeric object method), 22
radd () (sequence object method), 20
rand () (numeric object method), 22
rcmp () (object method), 19

65

rdiv () (numeric object method), 22
rdivmod () (numeric object method), 22
repr () (object method), 18
rlshift () (numeric object method), 22
rmod () (numeric object method), 22
rmul () (numeric object method), 22
rmul () (sequence object method), 20
ror () (numeric object method), 22
rpow () (numeric object method), 22
rrshift () (numeric object method), 22
rshift () (numeric object method), 22
rsub () (numeric object method), 22
rxor () (numeric object method), 22
setattr () (object method), 19
setattr () (object method), 19
setitem () (mapping object method), 20
setslice () (sequence object method), 21
str () (object method), 18
sub () (numeric object method), 22
xor () (numeric object method), 22

A
abs() (built-in function), 23
addition, 35
and

bit-wise, 36
and

operator, 38
anonmymous

function, 38
append() (sequence object method), 20
argument

function, 14
arithmetic

conversion, 29
operation, binary, 35
operation, unary, 35

array (standard module), 13
ascii, 2, 7, 10, 13
assert

statement, 41
AssertionError

exception, 42
assertions

debugging, 41
assignment

attribute, 42, 43
augmented, 43
class attribute, 15
class instance attribute, 16
slicing, 43
statement, 13, 42
subscription, 43
target list, 42

atom, 29
attribute, 12

assignment, 42, 43
assignment, class, 15

assignment, class instance, 16
class, 15
class instance, 16
deletion, 44
generic special, 12
reference, 32
special, 12

AttributeError
exception, 32

augmented
assignment, 43

B
back-quotes, 18, 31
backslash character, 4
backward

quotes, 18, 31
binary

arithmetic operation, 35
bit-wise operation, 36

binding
global name, 47
name, 25, 30, 42, 46, 47, 52, 53

bit-wise
and, 36
operation, binary, 36
operation, unary, 35
or, 36
xor, 36

blank line, 4
block

code, 25
BNF, 1, 29
Boolean

operation, 37
break

statement, 46, 50, 52
bsddb (standard module), 14
built-in

method, 15
module, 47
name, 30

built-in function
call, 34
object, 15, 34

built-in method
call, 34
object, 15, 34

byte, 13
bytecode, 16

C
C, 7

language, 12, 13, 15, 36
call, 33

built-in function, 34
built-in method, 34
class instance, 34

66 Index

class object, 15, 34
function, 14, 34
instance, 20, 34
method, 34
procedure, 41
user-defined function, 34

callable
object, 14, 33

chaining
comparisons, 36

character, 13, 32
character set, 13
chr() (built-in function), 13
class

attribute, 15
attribute assignment, 15
constructor, 17
definition, 45, 53
instance, 16
name, 53
object, 15, 34, 53

class instance
attribute, 16
attribute assignment, 16
call, 34
object, 15, 16, 34

class object
call, 15, 34

clause, 49
clear() (mapping object method), 20
cmp() (built-in function), 19
co argcount (code object attribute), 16
co cellvars (code object attribute), 16
co code (code object attribute), 16
co consts (code object attribute), 16
co filename (code object attribute), 16
co firstlineno (code object attribute), 16
co flags (code object attribute), 16
co freevars (code object attribute), 16
co lnotab (code object attribute), 16
co name (code object attribute), 16
co names (code object attribute), 16
co nlocals (code object attribute), 16
co stacksize (code object attribute), 16
co varnames (code object attribute), 16
code

block, 25
object, 16

code block, 25, 30, 47
comma, 30

trailing, 39, 45
command line, 55
comment, 3
comparison, 36

string, 13
comparisons, 19

chaining, 36
compile() (built-in function), 47

complex
number, 13
object, 13

complex() (built-in function), 23
complex literal, 8
compound

statement, 49
comprehensions

list, 30, 31
constant, 6
constructor

class, 17
container, 11, 15
continue

statement, 46, 50, 52
conversion

arithmetic, 29
string, 18, 31, 41

copy() (mapping object method), 20
count() (sequence object method), 20

D
dangling

else, 49
data, 11

type, 12
type, immutable, 30

datum, 31
dbm (standard module), 14
debugging

assertions, 41
decimal literal, 8
DEDENT token, 5, 49
default

parameter value, 52
definition

class, 45, 53
function, 45, 52

del
statement, 13, 18, 44

delete, 13
deletion

attribute, 44
target, 44
target list, 44

delimiters, 9
destructor, 17, 43
dictionary

display, 31
object, 14, 15, 19, 31, 32, 43

display
dictionary, 31
list, 30
tuple, 30

division, 35
divmod() (built-in function), 22
documentation string, 16

Index 67

E
EBCDIC, 13
elif

keyword, 50
Ellipsis, 12

object, 12
else

dangling, 49
else

keyword, 46, 50, 52
empty

list, 31
tuple, 13, 30

error handling, 26
errors, 26
escape sequence, 7
eval() (built-in function), 47, 48, 56
exc info (in module sys), 17
exc traceback (in module sys), 17, 51
exc type (in module sys), 51
exc value (in module sys), 51
except

keyword, 51
exception, 26, 46

AssertionError, 42
AttributeError, 32
handler, 17
ImportError, 47
NameError, 30
raising, 46
RuntimeError, 45
SyntaxError, 47, 48
TypeError, 35
ValueError, 36
ZeroDivisionError, 35

exception handler, 26
exclusive

or, 36
exec

statement, 26, 47, 48
execfile() (built-in function), 47
execution

frame, 25, 53
restricted, 26
stack, 17

execution model, 25
expression, 29

lambda, 38
list, 39, 41, 42
statement, 41

extended
slicing, 33

extended print statement, 45
extension

filename, 47
module, 12

F
f back (frame attribute), 17
f builtins (frame attribute), 17
f code (frame attribute), 17
f exc traceback (frame attribute), 17
f exc type (frame attribute), 17
f exc value (frame attribute), 17
f globals (frame attribute), 17
f lasti (frame attribute), 17
f lineno (frame attribute), 17
f locals (frame attribute), 17
f restricted (frame attribute), 17
f trace (frame attribute), 17
file

object, 16, 56
filename

extension, 47
finally

keyword, 45, 46, 52
float() (built-in function), 23
floating point

number, 13
object, 13

floating point literal, 8
for

statement, 46, 50
form

lambda, 38, 53
frame

execution, 25, 53
object, 16

from
keyword, 46, 47
statement, 26, 47

func code (function attribute), 14
func defaults (function attribute), 14
func dict (function attribute), 14
func doc (function attribute), 14
func globals (function attribute), 14
function

anonmymous, 38
argument, 14
call, 14, 34
call, user-defined, 34
definition, 45, 52
name, 52
object, 14, 15, 34, 52
user-defined, 14

future
statement, 57

G
garbage collection, 11
gdbm (standard module), 14
generic

special attribute, 12
get() (mapping object method), 20
global

68 Index

name, 30
name binding, 47
namespace, 14, 25

global
statement, 25, 26, 30, 42, 44, 47

globals() (built-in function), 48
grammar, 1
grouping, 4

H
handle an exception, 26
handler

exception, 17
has key() (mapping object method), 20
hash() (built-in function), 19
hash character, 3
hex() (built-in function), 23
hexadecimal literal, 8
hierarchical

module names, 47
hierarchy

type, 12

I
id() (built-in function), 11
identifier, 6, 29
identity

test, 37
identity of an object, 11
if

statement, 50
im class (method attribute), 14
im func (method attribute), 14
im self (method attribute), 14
imaginary literal, 8
immutable

data type, 30
object, 13, 30, 31

immutable object, 11
immutable sequence

object, 13
import

statement, 15, 46
ImportError

exception, 47
importing

module, 46
in

keyword, 50
operator, 37

inclusive
or, 36

INDENT token, 5
indentation, 4
index operation, 13
index() (sequence object method), 20
inheritance, 53
initialization

module, 47
input, 56

raw, 56
input() (built-in function), 56
insert() (sequence object method), 20
instance

call, 20, 34
class, 16
object, 15, 16, 34

int() (built-in function), 23
integer, 13

object, 12
representation, 12

integer literal, 8
interactive mode, 55
internal type, 16
interpreter, 55
inversion, 35
invocation, 14
is

operator, 37
is not

operator, 37
item

sequence, 32
string, 32

item selection, 13
items() (mapping object method), 20

K
key, 31
key/datum pair, 31
keys() (mapping object method), 20
keyword, 6

elif, 50
else, 46, 50, 52
except, 51
finally, 45, 46, 52
from, 46, 47
in, 50

L
lambda

expression, 38
form, 38, 53

language
C, 12, 13, 15, 36
Pascal, 50

last traceback (in module sys), 17
leading whitespace, 4
len() (built-in function), 13, 14, 20
lexical analysis, 3
lexical definitions, 2
line continuation, 4
line joining, 3, 4
line structure, 3
list

assignment, target, 42

Index 69

comprehensions, 30, 31
deletion target, 44
display, 30
empty, 31
expression, 39, 41, 42
object, 13, 31, 32, 43
target, 42, 50

literal, 6, 30
local

namespace, 25
locals() (built-in function), 48
logical line, 3
long() (built-in function), 23
long integer

object, 12
long integer literal, 8
loop

over mutable sequence, 51
statement, 46, 50

loop control
target, 46

M
makefile() (socket method), 16
mangling

name, 30
mapping

object, 14, 16, 32, 43
membership

test, 37
method

built-in, 15
call, 34
object, 14, 15, 34
user-defined, 14

minus, 35
module

built-in, 47
extension, 12
importing, 46
initialization, 47
name, 47
names, hierarchical, 47
namespace, 15
object, 15, 32
search path, 47
user-defined, 47

modules (in module sys), 47
modulo, 35
multiplication, 35
mutable

object, 13, 14, 42, 43
mutable object, 11
mutable sequence

loop over, 51
object, 13

N
name, 6, 29

binding, 25, 30, 42, 46, 47, 52, 53
binding, global, 47
built-in, 30
class, 53
function, 52
global, 30
mangling, 30
module, 47
rebinding, 25, 42
unbinding, 25, 44

NameError
exception, 30

NameError (built-in exception), 26
names

hierarchical module, 47
private, 30

namespace, 25
global, 14, 25
local, 25
module, 15

negation, 35
nested

scopes, 59
newline

suppression, 45
NEWLINE token, 3, 49
None, 12, 41

object, 12
not

operator, 38
not in

operator, 37
notation, 1
NotImplemented, 12

object, 12
null

operation, 44
number, 8

complex, 13
floating point, 13

numeric
object, 12, 16

numeric literal, 8

O
object, 11

built-in function, 15, 34
built-in method, 15, 34
callable, 14, 33
class, 15, 34, 53
class instance, 15, 16, 34
code, 16
complex, 13
dictionary, 14, 15, 19, 31, 32, 43
Ellipsis, 12
file, 16, 56

70 Index

floating point, 13
frame, 16
function, 14, 15, 34, 52
immutable, 13, 30, 31
immutable sequence, 13
instance, 15, 16, 34
integer, 12
list, 13, 31, 32, 43
long integer, 12
mapping, 14, 16, 32, 43
method, 14, 15, 34
module, 15, 32
mutable, 13, 14, 42, 43
mutable sequence, 13
None, 12
NotImplemented, 12
numeric, 12, 16
plain integer, 12
recursive, 31
sequence, 13, 16, 32, 37, 43, 50
slice, 20
string, 13, 32
traceback, 17, 46, 51
tuple, 13, 32, 39
unicode, 13
user-defined function, 14, 34, 52
user-defined method, 14

oct() (built-in function), 23
octal literal, 8
open() (built-in function), 16
operation

binary arithmetic, 35
binary bit-wise, 36
Boolean, 37
null, 44
shifting, 36
unary arithmetic, 35
unary bit-wise, 35

operator
and, 38
in, 37
is, 37
is not, 37
not, 38
not in, 37
or, 38
precedence, 39

operators, 9
or

bit-wise, 36
exclusive, 36
inclusive, 36

or
operator, 38

ord() (built-in function), 13
output, 41, 45

standard, 41, 45
OverflowError (built-in exception), 12

P
packages, 47
parameter

value, default, 52
parenthesized form, 30
parser, 3
Pascal

language, 50
pass

statement, 44
path

module search, 47
physical line, 3, 4, 7
plain integer

object, 12
plain integer literal, 8
plus, 35
pop() (sequence object method), 20
popen() (in module os), 16
pow() (built-in function), 22
precedence

operator, 39
primary, 32
print

statement, 18, 45
private

names, 30
procedure

call, 41
program, 55

Q
quotes

backward, 18, 31
reverse, 18, 31

R
raise

statement, 45
raise an exception, 26
raising

exception, 46
range() (built-in function), 50
raw input, 56
raw string, 7
raw input() (built-in function), 56
readline() (file method), 56
rebinding

name, 25, 42
recursive

object, 31
reference

attribute, 32
reference counting, 11
remove() (sequence object method), 20
repr() (built-in function), 18, 31, 41
representation

integer, 12

Index 71

reserved word, 6
restricted

execution, 26
return

statement, 45, 52
reverse

quotes, 18, 31
reverse() (sequence object method), 20
RuntimeError

exception, 45

S
scopes

nested, 59
search

path, module, 47
sequence

item, 32
object, 13, 16, 32, 37, 43, 50

shifting
operation, 36

simple
statement, 41

singleton
tuple, 13

slice, 32
object, 20

slice() (built-in function), 17
slicing, 13, 32

assignment, 43
extended, 33

sort() (sequence object method), 20
space, 4
special

attribute, 12
attribute, generic, 12

stack
execution, 17
trace, 17

standard
output, 41, 45

Standard C, 7
standard input, 55
start (slice object attribute), 17, 33
statement

assert, 41
assignment, 13, 42
assignment, augmented, 43
break, 46, 50, 52
compound, 49
continue, 46, 50, 52
del, 13, 18, 44
exec, 26, 47, 48
expression, 41
for, 46, 50
from, 26, 47
future, 57
global, 25, 26, 30, 42, 44, 47

if, 50
import, 15, 46
loop, 46, 50
pass, 44
print, 18, 45
raise, 45
return, 45, 52
simple, 41
try, 17, 51
while, 46, 50

statement grouping, 4
stderr (in module sys), 16
stdin (in module sys), 16
stdio, 16
stdout (in module sys), 16, 45
step (slice object attribute), 17, 33
stop (slice object attribute), 17, 33
str() (built-in function), 18, 31
string

comparison, 13
conversion, 18, 31, 41
item, 32
object, 13, 32
Unicode, 7

string literal, 6
subscription, 13, 14, 32

assignment, 43
subtraction, 35
suite, 49
suppression

newline, 45
syntax, 1, 29
SyntaxError

exception, 47, 48
sys (built-in module), 45, 47, 51, 55
sys.exc info, 17
sys.exc traceback, 17
sys.last traceback, 17
sys.modules, 47
sys.stderr, 16
sys.stdin, 16
sys.stdout, 16
SystemExit (built-in exception), 27

T
tab, 4
target, 42

deletion, 44
list, 42, 50
list assignment, 42
list, deletion, 44
loop control, 46

tb frame (traceback attribute), 17
tb lasti (traceback attribute), 17
tb lineno (traceback attribute), 17
tb next (traceback attribute), 17
termination model, 26
test

72 Index

identity, 37
membership, 37

token, 3
trace

stack, 17
traceback

object, 17, 46, 51
trailing

comma, 39, 45
triple-quoted string, 7
try

statement, 17, 51
tuple

display, 30
empty, 13, 30
object, 13, 32, 39
singleton, 13

type, 12
data, 12
hierarchy, 12
immutable data, 30

type() (built-in function), 11
type of an object, 11
TypeError

exception, 35
types, internal, 16

U
unary

arithmetic operation, 35
bit-wise operation, 35

unbinding
name, 25, 44

unichr() (built-in function), 13
Unicode, 13
unicode

object, 13
unicode() (built-in function), 13
Unicode Consortium, 7
UNIX, 55
unreachable object, 11
unrecognized escape sequence, 7
update() (mapping object method), 20
user-defined

function, 14
function call, 34
method, 14
module, 47

user-defined function
object, 14, 34, 52

user-defined method
object, 14

V
value

default parameter, 52
value of an object, 11
ValueError

exception, 36
values

writing, 41, 45
values() (mapping object method), 20

W
while

statement, 46, 50
whitespace, 4
writing

values, 41, 45

X
xor

bit-wise, 36

Z
ZeroDivisionError

exception, 35

Index 73

	1 Introduction
	1.1 Notation

	2 Lexical analysis
	2.1 Line structure
	2.1.1 Logical lines
	2.1.2 Physical lines
	2.1.3 Comments
	2.1.4 Explicit line joining
	2.1.5 Implicit line joining
	2.1.6 Blank lines
	2.1.7 Indentation
	2.1.8 Whitespace between tokens

	2.2 Other tokens
	2.3 Identifiers and keywords
	2.3.1 Keywords
	2.3.2 Reserved classes of identifiers

	2.4 Literals
	2.4.1 String literals
	2.4.2 String literal concatenation
	2.4.3 Unicode literals
	2.4.4 Numeric literals
	2.4.5 Integer and long integer literals
	2.4.6 Floating point literals
	2.4.7 Imaginary literals

	2.5 Operators
	2.6 Delimiters

	3 Data model
	3.1 Objects, values and types
	3.2 The standard type hierarchy
	3.3 Special method names
	3.3.1 Basic customization
	3.3.2 Customizing attribute access
	3.3.3 Emulating callable objects
	3.3.4 Emulating sequence and mapping types
	3.3.5 Additional methods for emulation of sequence types
	3.3.6 Emulating numeric types

	4 Execution model
	4.1 Code blocks, execution frames, and namespaces
	4.2 Exceptions

	5 Expressions
	5.1 Arithmetic conversions
	5.2 Atoms
	5.2.1 Identifiers (Names)
	5.2.2 Literals
	5.2.3 Parenthesized forms
	5.2.4 List displays
	5.2.5 Dictionary displays
	5.2.6 String conversions

	5.3 Primaries
	5.3.1 Attribute references
	5.3.2 Subscriptions
	5.3.3 Slicings
	5.3.4 Calls

	5.4 The power operator
	5.5 Unary arithmetic operations
	5.6 Binary arithmetic operations
	5.7 Shifting operations
	5.8 Binary bit-wise operations
	5.9 Comparisons
	5.10 Boolean operations
	5.11 Expression lists
	5.12 Summary

	6 Simple statements
	6.1 Expression statements
	6.2 Assert statements
	6.3 Assignment statements
	6.3.1 Augmented Assignment statements

	6.4 The pass statement
	6.5 The del statement
	6.6 The print statement
	6.7 The return statement
	6.8 The raise statement
	6.9 The break statement
	6.10 The continue statement
	6.11 The import statement
	6.12 The global statement
	6.13 The exec statement

	7 Compound statements
	7.1 The if statement
	7.2 The while statement
	7.3 The for statement
	7.4 The try statement
	7.5 Function definitions
	7.6 Class definitions

	8 Top-level components
	8.1 Complete Python programs
	8.2 File input
	8.3 Interactive input
	8.4 Expression input

	A Future statements and nested scopes
	A.1 Future statements
	A.2 protect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em}futureprotect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em} --- Future statement definitions
	A.3 Nested scopes
	A.3.1 Definitions and rules
	A.3.2 Interaction with dynamic features

	A History and License
	A.1 History of the software
	A.2 Terms and conditions for accessing or otherwise using Python

	Index

