Python Library Reference
Release 2.2.1

Guido van Rossum
Fred L. Drake, Jr., editor

April 10, 2002

PythonLabs
Email: python-docs@python.org

Copyright (©) 2001 Python Software Foundation. All rights reserved.

Copyright (© 2000 BeOpen.com. All rights reserved.

Copyright (©) 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright (©) 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range
of applications, from simple text processing scripts to interactive Web browsers.

While the Python Reference Manual describes the exact syntax and semantics of the language, it does
not describe the standard library that is distributed with the language, and which greatly enhances its
immediate usability. This library contains built-in modules (written in C) that provide access to system
functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as
modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability
of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library
modules (which may or may not be available, depending on whether the underlying platform supports
them and on the configuration choices made at compile time). It also documents the standard types of the
language and its built-in functions and exceptions, many of which are not or incompletely documented
in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to
Python, see the Python Tutorial; the Python Reference Manual remains the highest authority on syntactic
and semantic questions. Finally, the manual entitled Eztending and Embedding the Python Interpreter
describes how to add new extensions to Python and how to embed it in other applications.

CONTENTS

1 Introduction 1
2 Built-in Functions, Types, and Exceptions 3
2.1 Built-in Functions L 3
2.2 Built-in Types o e e e e e 12
2.3 Built-in Exceptions oL 26
3 Python Runtime Services 31
3.1 sys — System-specific parameters and functionso 31
3.2 gc — Garbage Collector interface 36
3.3 weakref — Weak references L L L 38
3.4 fpectl — Floating point exception control oo 41
3.5 atexit — Exit handlers 42
3.6 types — Names for all built-in types o oo 43
3.7 UserDict — Class wrapper for dictionary objects 45
3.8 UserList — Class wrapper for list objects 45
3.9 UserString — Class wrapper for string objects 46
3.10 operator — Standard operators as functions. Lo oL 46
3.11 imspect — Inspect live objects Lo 50
3.12 traceback — Print or retrieve a stack traceback o000 54
3.13 linecache — Random access to text lines 56
3.14 pickle — Python object serializationo oL 56
3.15 cPickle — A faster pickle 64
3.16 copy_reg — Register pickle support functions Lo 65
3.17 shelve — Python object persistence 65
3.18 copy — Shallow and deep copy operations 66
3.19 marshal — Internal Python object serialization 67
3.20 warnings — Warning control oL oL o 68
3.21 imp — Access the import internals oL Lo 70
3.22 code — Interpreter base classes L 73
3.23 codeop — Compile Python code 75
3.24 pprint — Data pretty printero Lo 76
3.25 repr — Alternate repr () implementation 78
3.26 new — Creation of runtime internal objects L o oL 79
3.27 site — Site-specific configuration hook oo o000 80
3.28 user — User-specific configuration hook 0oL 81
3.29 __builtin__ — Built-in functions oo o 81
3.30 __main__ — Top-level script environment Lo oo 81
4 String Services 83
4.1 string — Common string operations e 83
4.2 re — Regular expression operations L Lo 86
4.3 struct — Interpret strings as packed binary data 95

4.4
4.5
4.6
4.7
4.8
4.9

difflib — Helpers for computing deltas
fpformat — Floating point conversions oL 0oL
StringI0 — Read and write strings as files o oL
cStringI0 — Faster version of StringI0 oo
codecs — Codec registry and base classes o o
unicodedata — Unicode Database

Miscellaneous Services

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

pydoc — Documentation generator and online help system
doctest — Test docstrings represent reality Lo oL
unittest — Unit testing framework
math — Mathematical functions e
cmath — Mathematical functions for complex numbers
random — Generate pseudo-random numberso
whrandom — Pseudo-random number generator L.
bisect — Array bisection algorithm
array — BEfficient arrays of numeric valueso oL
ConfigParser — Configuration file parser
fileinput — Iterate over lines from multiple input streams
xreadlines — Efficient iteration over afile oL
calendar — General calendar-related functions Lo
cmd — Support for line-oriented command interpreters
shlex — Simple lexical analysis L

Generic Operating System Services

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

os — Miscellaneous operating system interfaces
os.path — Common pathname manipulations
dircache — Cached directory listings o oL
stat — Interpreting stat() results Lo
statcache — An optimization of os.stat()
statvfs — Constants used with os.statvfs(),
filecmp — File and Directory Comparisons
popen2 — Subprocesses with accessible I/O streams
time — Time access and conversionso e e
sched — Event scheduler
mutex — Mutual exclusion support Lo
getpass — Portable password inputo oo oo
curses — Terminal handling for character-cell displays
curses.textpad — Text input widget for curses programs
curses.wrapper — Terminal handler for curses programs.
curses.ascii — Utilities for ASCII characters
curses.panel — A panel stack extension for curses. L.
getopt — Parser for command line optionso oL
tempfile — Generate temporary filenames oo
errno — Standard errno system symbols L oL
glob — UNIX style pathname pattern expansion
fnmatch — UNIX filename pattern matching L.
shutil — High-level file operations o
locale — Internationalization services
gettext — Multilingual internationalization services

Optional Operating System Services

7.1
7.2
7.3
7.4
7.5
7.6
7.7

signal — Set handlers for asynchronous events L.
socket — Low-level networking interface
select — Waiting for I/O completion Lo
thread — Multiple threads of control
threading — Higher-level threading interface
Queue — A synchronized queue class e
mmap — Memory-mapped file support oo

111
111
112
117
126
127
129
131
132
133
135
138
139
140
141
143

147
147
160
162
162
164
165
165
167
168
171
172
173
173
187
189
189
191
192
194
195
200
201
201
203
208

7.8 anydbm — Generic access to DBM-style databases 236

7.9 dumbdbm — Portable DBM implementation 0L, 237
7.10 dbhash — DBM-style interface to the BSD database library 237
7.11 whichdb — Guess which DBM module created a database 238
7.12 bsddb — Interface to Berkeley DB library 0. 239
7.13 zlib — Compression compatible with gzip L. 240
7.14 gzip — Support for gzip fileso 242
7.15 zipfile — Work with ZIP archives o o 243
7.16 readline — GNU readline interface 246
7.17 rlcompleter — Completion function for GNU readline 247
8 Unix Specific Services 249
8.1 posix — The most common POSIX system calls 249
8.2 pwd — The password database Lo 250
8.3 grp — The group database L L 251
8.4 crypt — Function to check UNIX passwords 251
8.5 dl — Call C functions in shared objects Lo oL 252
8.6 dbm — Simple “database” interface Lo oL o 253
8.7 gdbm — GNU’s reinterpretation of dbm o000 254
8.8 termios — POSIX style tty control 255
8.9 TERMIOS — Constants used with the termios module 256
8.10 tty — Terminal control functions L o 256
8.11 pty — Pseudo-terminal utilities oL o 256
8.12 fcntl — The fentl() and ioctl() systemcalls. L. 257
8.13 pipes — Interface to shell pipelines o 258
8.14 posixfile — File-like objects with locking support 259
8.15 resource — Resource usage information 261
8.16 nis — Interface to Sun’s NIS (Yellow Pages) 263
8.17 syslog — UNIX syslog library routines 264
8.18 commands — Utilities for running commands L oo 264
9 The Python Debugger 267
9.1 Debugger Commands L e 268
9.2 How It Works e 270
10 The Python Profiler 271
10.1 Imtroduction to the profiler L 271
10.2 How Is This Profiler Different From The Old Profiler? 271
10.3 Imstant Users Manual L L 272
10.4 What Is Deterministic Profiling? o 273
10.5 Reference Manual L 274
10.6 Limitations oL 276
10.7 Calibration oL e 277
10.8 Extensions — Deriving Better Profilers o oo 278
11 Internet Protocols and Support 279
11.1 webbrowser — Convenient Web-browser controller 279
11.2 cgi — Common Gateway Interface support. 281
11.3 cgitb — Traceback manager for CGL scripts, 287
11.4 urllib — Open arbitrary resources by URL 288
11.5 urllib2 — extensible library for opening URLs 292
11.6 httplib — HTTP protocol client 298
11.7 ftplib — FTP protocol client L o 301
11.8 gopherlib — Gopher protocol client L oo 304
11.9 poplib — POP3 protocol client L 304
11.10 imaplib — IMAP4 protocol client L 306
11.11 nntplib — NNTP protocol client 309
11.12 smtplib — SMTP protocol client 312

11.13 telnetlib — Telnet client e e e 316

11.14 urlparse — Parse URLs into components
11.15 SocketServer — A framework for network servers L.
11.16 BaseHTTPServer — Basic HTTP server
11.17 SimpleHTTPServer — Simple HTTP request handler
11.18 CGIHTTPServer — CGl-capable HTTP request handler
11.19 Cookie — HTTP state management
11.20 xmlrpclib — XML-RPC client access
11.21 SimpleXMLRPCServer — Basic XML-RPC server
11.22 asyncore — Asynchronous socket handler o 0oL,

12 Internet Data Handling

12.1 formatter — Generic output formatting oo
12.2 email — An email and MIME handling package
12.3 mailcap — Mailcap file handling. L
12.4 mailbox — Read various mailbox formats 0oL
12.5 mhlib — Access to MH mailboxes
12.6 mimetools — Tools for parsing MIME messages
12.7 mimetypes — Map filenames to MIME types L.
12.8 MimeWriter — Generic MIME file writer
12.9 mimify — MIME processing of mail messages,
12.10 multifile — Support for files containing distinct parts
12.11 r£c822 — Parse RFC 2822 mail headers
12.12 base64 — Encode and decode MIME base64 data
12.13 binascii — Convert between binary and ASCIT,
12.14 binhex — Encode and decode binhex4 files oL oL
12.15 quopri — Encode and decode MIME quoted-printable data
12.16 uu — Encode and decode uuencode fileso
12.17 xdrlib — Encode and decode XDR data
12.18 netrc — netrc file processing
12.19 robotparser — Parser for robots.txt L o oo oo

13 Structured Markup Processing Tools

13.1 HTMLParser — Simple HTML and XHTML parser
13.2 sgmllib — Simple SGML parser L
13.3 htmllib — A parser for HTML documents
13.4 htmlentitydefs — Definitions of HTML general entities
13.5 xml.parsers.expat — Fast XML parsing using Expat
13.6 xml.dom — The Document Object Model APT
13.7 xml.dom.minidom — Lightweight DOM implementation
13.8 zml.dom.pulldom — Support for building partial DOM trees
13.9 zml.sax — Support for SAX2 parsers Lo
13.10 xml.sax.handler — Base classes for SAX handlers
13.11 xml.sax.saxutils — SAX Utilities L
13.12 xml.sax.xmlreader — Interface for XML parsers
13.13 xm11ib — A parser for XML documents L Lo

14 Multimedia Services

14.1 audioop — Manipulate raw audio data Lo Lo
14.2 imageop — Manipulate raw image data oL
14.3 aifc — Read and write AIFF and ATFC files.
14.4 sunau — Read and write Sun AU files oL o o
14.5 wave — Read and write WAV files L
14.6 chunk — Read IFF chunked data
14.7 colorsys — Conversions between color systems
14.8 rgbimg — Read and write “SGI RGB” files
14.9 imghdr — Determine the type of an image
14.10 sndhdr — Determine type of sound file oL oL oL

15 Cryptographic Services

335
335
339
356
356
358
360
361
363
363
364
366
370
370
372
373
373
374
376
377

379
379
381
383
384
384
391
400
404
405
406
410
411
414

419
419
422
423
425
427
429
430
431
431
432

433

15.1 hmac — Keyed-Hashing for Message Authentication 433

15.2 md5 — MD5 message digest algorithm oo 434
15.3 sha — SHA message digest algorithm 434
15.4 mpz — GNU arbitrary magnitude integers. L oL 435
15.5 rotor — Enigma-like encryption and decryption 436
16 Graphical User Interfaces with Tk 439
16.1 Tkinter — Python interface to Tcl/Tk o o oL 439
16.2 Tix — Extension widgets for Tk o 449
16.3 ScrolledText — Scrolled Text Widget 454
16.4 turtle — Turtle graphics for Tk 454
16.5 Idle o o e 456
16.6 Other Graphical User Interface Packages 459
17 Restricted Execution 461
17.1 rexec — Restricted execution framework 0oL 462
17.2 Bastion — Restricting access to objects L oL oo 464
18 Python Language Services 467
18.1 parser — Access Python parse trees o 467
18.2 symbol — Constants used with Python parse trees. 475
18.3 token — Constants used with Python parse trees 476
18.4 keyword — Testing for Python keywords 476
18.5 tokenize — Tokenizer for Python source oL 476
18.6 tabnanny — Detection of ambiguous indentation 0oL 477
18.7 pyclbr — Python class browser support o 478
18.8 py_compile — Compile Python source files 478
18.9 compileall — Byte-compile Python libraries 479
18.10 dis — Disassembler for Python byte code 0oL 479
18.11 distutils — Building and installing Python modules 486
19 Python compiler package 487
19.1 The basic interface L 487
19.2 Limitations Lo e e e 488
19.3 Python Abstract Syntax 488
19.4 Using Visitors to Walk ASTso o 492
19.5 Bytecode Generation Lo 493
20 SGI IRIX Specific Services 495
20.1 al — Audio functions on the SGI Lo 495
20.2 AL — Constants used with the al module L. 497
20.3 cd — CD-ROM access on SGI systems 0 e 497
20.4 £1 — FORMS library for graphical user interfaces 500
20.5 FL — Constants used with the f1 module 505
20.6 flp — Functions for loading stored FORMS designs 505
20.7 fm — Font Manager interface L 505
20.8 gl — Graphics Library interfaceo oL 506
20.9 DEVICE — Constants used with the gl module 508
20.10 GL — Constants used with the gl module 000 508
20.11 imgfile — Support for SGI imglib files oo oo 508
20.12 jpeg — Read and write JPEG files oo o 509
21 SunOS Specific Services 511
21.1 sunaudiodev — Access to Sun audio hardware00 511
21.2 SUNAUDIODEV — Constants used with sunaudiodev 512
22 MS Windows Specific Services 513
22.1 msvcrt — Useful routines from the MS VC++ runtime 513
22.2 _winreg — Windows registry access L o e 514

22.3 winsound — Sound-playing interface for Windows
Undocumented Modules

A1 Frameworks
A.2 Miscellaneous useful utilities o o
A.3 Platform specific modules
A4 Multimedia e e e e
A5 Obsolete e
A.6 SGIl-specific Extension modules Lo

B Reporting Bugs

History and License

C.1 History of the software
C.2 Terms and conditions for accessing or otherwise using Python

Module Index

Index

521
521
521
521
521
522
923

525

527
527
527

531

535

vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as
numbers and lists. For these types, the Python language core defines the form of literals and places some
constraints on their semantics, but does not fully define the semantics. (On the other hand, the language
core does define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python
code without the need of an import statement. Some of these are defined by the core language, but
many are not essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect
this collection. Some modules are written in C and built in to the Python interpreter; others are written
in Python and imported in source form. Some modules provide interfaces that are highly specific to
Python, like printing a stack trace; some provide interfaces that are specific to particular operating
systems, such as access to specific hardware; others provide interfaces that are specific to a particular
application domain, like the World Wide Web. Some modules are available in all versions and ports of
Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in
functions and exceptions, and finally the modules, grouped in chapters of related modules. The ordering
of the chapters as well as the ordering of the modules within each chapter is roughly from most relevant
to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when
you get bored, you will get a reasonable overview of the available modules and application areas that
are supported by the Python library. Of course, you don’t have to read it like a novel — you can also
browse the table of contents (in front of the manual), or look for a specific function, module or term in
the index (in the back). And finally, if you enjoy learning about random subjects, you choose a random
page number (see module random) and read a section or two. Regardless of the order in which you read
the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions and Functions,”
as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Functions, Types, and Exceptions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched
last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.!

The tables in this chapter document the priorities of operators by listing them in order of ascending
priority (within a table) and grouping operators that have the same priority in the same box. Binary
operators of the same priority group from left to right. (Unary operators group from right to left, but
there you have no real choice.) See chapter 5 of the Python Reference Manual for the complete picture
on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed
here in alphabetical order.

__import__(name [, globals[, locals[, fromlist]]])
This function is invoked by the import statement. It mainly exists so that you can replace it with
another function that has a compatible interface, in order to change the semantics of the import
statement. For examples of why and how you would do this, see the standard library modules
ihooks and rexec. See also the built-in module imp, which defines some useful operations out of
which you can build your own __import__() function.

For example, the statement ‘import spam’ results in the following call: __import__(’spam’,
globals(), locals(), [1); the statement ‘from spam.ham import eggs’ results in
‘__import__(’spam.ham’, globals(), locals(), [’eggs’])’. Note that even though

locals() and [’eggs’] are passed in as arguments, the __import__() function does not set
the local variable named eggs; this is done by subsequent code that is generated for the import
statement. (In fact, the standard implementation does not use its locals argument at all, and uses
its globals only to determine the package context of the import statement.)

When the name variable is of the form package.module, normally, the top-level package (the
name up till the first dot) is returned, not the module named by name. However, when a non-
empty fromlist argument is given, the module named by name is returned. This is done for
compatibility with the bytecode generated for the different kinds of import statement; when using
‘import spam.ham.eggs’, the top-level package spam must be placed in the importing namespace,
but when using ‘from spam.ham import eggs’, the spam.ham subpackage must be used to find the
eggs variable. As a workaround for this behavior, use getattr () to extract the desired components.
For example, you could define the following helper:

import string

def my_import (name) :

1 Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version
of this manual.

mod = __import__(name)
components = string.split(name, ’.’)
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs(z)
Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

apply (function, args [, keywords])

The function argument must be a callable object (a user-defined or built-in function or method,
or a class object) and the args argument must be a sequence. The function is called with args as
the argument list; the number of arguments is the the length of the tuple. If the optional keywords
argument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments
to be added to the end of the the argument list. Calling apply () is different from just calling
function Cargs), since in that case there is always exactly one argument. The use of apply() is
equivalent to function (xargs, **keywords).

buffer(object[, offset [, size]])
The object argument must be an object that supports the buffer call interface (such as strings,
arrays, and buffers). A new buffer object will be created which references the object argument.
The buffer object will be a slice from the beginning of object (or from the specified offset). The
slice will extend to the end of object (or will have a length given by the size argument).

callable (object)
Return true if the object argument appears callable, false if not. If this returns true, it is still
possible that a call fails, but if it is false, calling object will never succeed. Note that classes
are callable (calling a class returns a new instance); class instances are callable if they have a
__call__ () method.

chr (¢)
Return a string of one character whose ASCII code is the integer . For example, chr (97) returns
the string ’a’. This is the inverse of ord(). The argument must be in the range [0..255], inclusive;
ValueError will be raised if 7 is outside that range.

cmp (z, y)
Compare the two objects x and y and return an integer according to the outcome. The return
value is negative if z < y, zero if x == y and strictly positive if z > y.

coerce(z, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the
same rules as used by arithmetic operations.

compile(string, filename, kz’nd[, ﬂags[, dont,mherit]])

Compile the string into a code object. Code objects can be executed by an exec statement or
evaluated by a call to eval(). The filename argument should give the file from which the code
was read; pass some recognizable value if it wasn’t read from a file (’<string>’ is commonly
used). The kind argument specifies what kind of code must be compiled; it can be ’exec’ if string
consists of a sequence of statements, ’eval’ if it consists of a single expression, or ’single’ if it
consists of a single interactive statement (in the latter case, expression statements that evaluate to
something else than None will printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a
single newline character (’\n’), and the input must be terminated by at least one newline character.
If line endings are represented by ’\r\n’, use the string replace() method to change them into
\n’.

The optional arguments flags and dont_inherit (which are new in Python 2.2) control which future
statements (see PEP 236) affect the compilation of string. If neither is present (or both are zero) the
code is compiled with those future statements that are in effect in the code that is calling compile. If
the flags argument is given and dont_inherit is not (or is zero) then the future statements specified
by the flags argument are used in addition to those that would be used anyway. If dont_inherit is
a non-zero integer then the flags argument is it — the future statements in effect around the call to

4 Chapter 2. Built-in Functions, Types, and Exceptions

compile are ignored.

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple
statements. The bitfield required to specify a given feature can be found as the compiler_flag
attribute on the _Feature instance in the __future__ module.

complex(real[, imag])
Create a complex number with the value real + imag*j or convert a string or number to a complex
number. If the first parameter is a string, it will be interpreted as a complex number and the
function must be called without a second parameter. The second parameter can never be a string.
Each argument may be any numeric type (including complex). If imag is omitted, it defaults to
zero and the function serves as a numeric conversion function like int (), long() and float().

delattr (object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be
the name of one of the object’s attributes. The function deletes the named attribute, provided the
object allows it. For example, delattr(z, ’foobar’) is equivalent to del x.foobar.

dict([mapping—or—sequence])

Return a new dictionary initialized from the optional argument. If an argument is not specified,
return a new empty dictionary. If the argument is a mapping object, return a dictionary mapping
the same keys to the same values as does the mapping object. Else the argument must be a
sequence, a container that supports iteration, or an iterator object. The elements of the argument
must each also be of one of those kinds, and each must in turn contain exactly two objects. The
first is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen
more than once, the last value associated with it is retained in the new dictionary. For example,
these all return a dictionary equal to {1: 2, 2: 3}

edict({1: 2, 2: 3})

edict({1: 2, 2: 3}.items())
edict({1: 2, 2: 3}.iteritems())
edict (zip((1, 2), (2, 3)))
edict([[2, 3], [1, 21])
edict([(i-1, i) for i in (2, 3)1)

New in version 2.2.

dir([object])

Without arguments, return the list of names in the current local symbol table. With an argument,
attempts to return a list of valid attributes for that object. This information is gleaned from
the object’s __dict__ attribute, if defined, and from the class or type object. The list is not
necessarily complete. If the object is a module object, the list contains the names of the module’s
attributes. If the object is a type or class object, the list contains the names of its attributes, and
recursively of the attributes of its bases. Otherwise, the list contains the object’s attributes’ names,
the names of its class’s attributes, and recursively of the attributes of its class’s base classes. The
resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’, ’struct’]

>>> dir(struct)

[’__doc__’, ’__name__’, ’calcsize’, ’error’, ’pack’, ’unpack’]

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it
tries to supply an interesting set of names more than it tries to supply a rigorously or consistently
defined set of names, and its detailed behavior may change across releases.

divmod(a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic

2.1. Built-in Functions 5

operators apply. For plain and long integers, the result is the same as (a / b, a % b). For
floating point numbers the result is (¢, a % b), where ¢ is usually math.floor(a / b) but may
be 1 less than that. In any case ¢ * b + a % b is very close to a, if a % b is non-zero it has the
same sign as b, and 0 <= abs(a % b) < abs(b).

eval(e:zrpression[, globals[, locals]])
The arguments are a string and two optional dictionaries. The expression argument is parsed and
evaluated as a Python expression (technically speaking, a condition list) using the globals and locals
dictionaries as global and local name space. If the locals dictionary is omitted it defaults to the
globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

>>>x =1
>>> print eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (such as those created by
compile()). In this case pass a code object instead of a string. The code object must have
been compiled passing ’eval’ as the kind argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of state-
ments from a file is supported by the execfile () function. The globals() and locals() functions
returns the current global and local dictionary, respectively, which may be useful to pass around
for use by eval () or execfile().

execfile(ﬁle[, globals[, locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different
from the import statement in that it does not use the module administration — it reads the file
unconditionally and does not create a new module.?

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a
sequence of Python statements (similarly to a module) using the globals and locals dictionaries as
global and local namespace. If the locals dictionary is omitted it defaults to the globals dictionary.
If both dictionaries are omitted, the expression is executed in the environment where execfile ()
is called. The return value is None.

Warning: The default locals act as described for function locals() below: modifications to the
default locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to
see effects of the code on locals after function execfile() returns. execfile() cannot be used
reliably to modify a function’s locals.

file(filename [, mode [, bufsize]])
Return a new file object (described earlier under Built-in Types). The first two arguments are the
same as for stdio’s fopen(): filename is the file name to be opened, mode indicates how the file
is to be opened: ’r’ for reading, ’w’ for writing (truncating an existing file), and ’a’ opens it
for appending (which on some UNIX systems means that all writes append to the end of the file,
regardless of the current seek position).

Modes ’r+’, >w+’ and ’a+’ open the file for updating (note that >w+’ truncates the file). Append
’b’ to the mode to open the file in binary mode, on systems that differentiate between binary and
text files (else it is ignored). If the file cannot be opened, I0Error is raised.

If mode is omitted, it defaults to >r’. When opening a binary file, you should append ’b’ to the
mode value for improved portability. (It’s useful even on systems which don’t treat binary and text
files differently, where it serves as documentation.) The optional bufsize argument specifies the
file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negative bufsize means to use the system default,
which is usually line buffered for for tty devices and fully buffered for other files. If omitted, the
system default is used.3

2Tt is used relatively rarely so does not warrant being made into a statement.
3Specifying a buffer size currently has no effect on systems that don’t have setvbuf (). The interface to specify the

6 Chapter 2. Built-in Functions, Types, and Exceptions

The file() comstructor is new in Python 2.2. The previous spelling, open(), is retained for
compatibility, and is an alias for file().

filter (function, list)
Construct a list from those elements of list for which function returns true. list may be either
a sequence, a container which supports iteration, or an iterator, If list is a string or a tuple, the
result also has that type; otherwise it is always a list. If function is None, the identity function is
assumed, that is, all elements of list that are false (zero or empty) are removed.

float(z)
Convert a string or a number to floating point. If the argument is a string, it must contain a
possibly signed decimal or floating point number, possibly embedded in whitespace; this behaves
identical to string.atof (z). Otherwise, the argument may be a plain or long integer or a floating
point number, and a floating point number with the same value (within Python’s floating point
precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

getattr (object, name[, default])
Return the value of the named attributed of object. name must be a string. If the string is the
name of one of the object’s attributes, the result is the value of that attribute. For example,
getattr(x, ’foobar’) is equivalent to x.foobar. If the named attribute does not exist, default
is returned if provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of
the current module (inside a function or method, this is the module where it is defined, not the
module from which it is called).

hasattr (object, name)
The arguments are an object and a string. The result is 1 if the string is the name of one of the
object’s attributes, 0 if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to
quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal
have the same hash value (even if they are of different types, as is the case for 1 and 1.0).

help([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is
given, the interactive help system starts on the interpreter console. If the argument is a string, then
the string is looked up as the name of a module, function, class, method, keyword, or documentation
topic, and a help page is printed on the console. If the argument is any other kind of object, a help
page on the object is generated.

hex(z)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python
expression. Note: this always yields an unsigned literal. For example, on a 32-bit machine,
hex(-1) yields *Oxffffffff’. When evaluated on a machine with the same word size, this literal
is evaluated as -1; at a different word size, it may turn up as a large positive number or raise an
OverflowError exception.

id (object)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be
unique and constant for this object during its lifetime. Two objects whose lifetimes are disjunct
may have the same id() value. (Implementation note: this is the address of the object.)

input([prompt])

buffer size is not done using a method that calls setvbuf (), because that may dump core when called after any I/O has
been performed, and there’s no reliable way to determine whether this is the case.

2.1. Built-in Functions 7

Equivalent to eval (raw_input (prompt)). Warning: This function is not safe from user errors!
It expects a valid Python expression as input; if the input is not syntactically valid, a SyntaxError
will be raised. Other exceptions may be raised if there is an error during evaluation. (On the other
hand, sometimes this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

Consider using the raw_input () function for general input from users.

int (x[, mdix])

Convert a string or number to a plain integer. If the argument is a string, it must contain a pos-
sibly signed decimal number representable as a Python integer, possibly embedded in whitespace;
this behaves identical to string.atoi(a:[, mdz’x]). The radiz parameter gives the base for the
conversion and may be any integer in the range [2, 36], or zero. If radiz is zero, the proper radix
is guessed based on the contents of string; the interpretation is the same as for integer literals. If
radiz is specified and z is not a string, TypeError is raised. Otherwise, the argument may be a
plain or long integer or a floating point number. Conversion of floating point numbers to integers
truncates (towards zero).

intern(string)
Enter string in the table of “interned” strings and return the interned string — which is string itself
or a copy. Interning strings is useful to gain a little performance on dictionary lookup — if the keys
in a dictionary are interned, and the lookup key is interned, the key comparisons (after hashing)
can be done by a pointer compare instead of a string compare. Normally, the names used in Python
programs are automatically interned, and the dictionaries used to hold module, class or instance
attributes have interned keys. Interned strings are immortal (never get garbage collected).

isinstance (object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct or
indirect) subclass thereof. Also return true if classinfo is a type object and object is an object of
that type. If object is not a class instance or a object of the given type, the function always returns
false. If classinfo is neither a class object nor a type object, it may be a tuple of class or type
objects, or may recursively contain other such tuples (other sequence types are not accepted). If
classinfo is not a class, type, or tuple of classes, types, and such tuples, a TypeError exception is
raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass(classi, class2)
Return true if class! is a subclass (direct or indirect) of class2. A class is considered a subclass of
itself. If either argument is not a class object, a TypeError exception is raised.

iter(o[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the
presence of the second argument. Without a second argument, o must be a collection object
which supports the iteration protocol (the __iter__ () method), or it must support the sequence
protocol (the __getitem__ () method with integer arguments starting at 0). If it does not support
either of those protocols, TypeError is raised. If the second argument, sentinel, is given, then o
must be a callable object. The iterator created in this case will call o with no arguments for each
call to its next () method; if the value returned is equal to sentinel, StopIteration will be raised,
otherwise the value will be returned. New in version 2.2.

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (string,
tuple or list) or a mapping (dictionary).

list([sequence])
Return a list whose items are the same and in the same order as sequence’s items. sequence may be
either a sequence, a container that supports iteration, or an iterator object. If sequence is already
a list, a copy is made and returned, similar to sequence[:]. For instance, 1list(’abc’) returns
[’a’, ’b’, ’c’] and 1list((1, 2, 3)) returns [1, 2, 3].

locals()
Return a dictionary representing the current local symbol table. Warning: The contents of this

8 Chapter 2. Built-in Functions, Types, and Exceptions

dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long(x[, mdim])
Convert a string or number to a long integer. If the argument is a string, it must contain a
possibly signed number of arbitrary size, possibly embedded in whitespace; this behaves identical
to string.atol(z). The radiz argument is interpreted in the same way as for int (), and may
only be given when z is a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating
point numbers to integers truncates (towards zero).

map (function, list, ...)
Apply function to every item of list and return a list of the results. If additional list arguments are
passed, function must take that many arguments and is applied to the items of all lists in parallel;
if a list is shorter than another it is assumed to be extended with None items. If function is None,
the identity function is assumed; if there are multiple list arguments, map () returns a list consisting
of tuples containing the corresponding items from all lists (a kind of transpose operation). The list
arguments may be any kind of sequence; the result is always a list.

max(s[, args...])
With a single argument s, return the largest item of a non-empty sequence (such as a string, tuple
or list). With more than one argument, return the largest of the arguments.

min(s[, args...])
With a single argument s, return the smallest item of a non-empty sequence (such as a string,
tuple or list). With more than one argument, return the smallest of the arguments.

oct(z)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression.
Note: this always yields an unsigned literal. For example, on a 32-bit machine, oct(-1) yields
2037777777777°. When evaluated on a machine with the same word size, this literal is evaluated
as -1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

open (filename [, mode[, bufsize]])
An alias for the file() function above.

ord(c)
Return the AsciII value of a string of one character or a Unicode character. E.g., ord(’a’) returns
the integer 97, ord(u’
u2020°) returns 8224. This is the inverse of chr() for strings and of unichr() for Unicode
characters.

pow (z, y[, z])

Return z to the power y; if z is present, return z to the power y, modulo z (computed more
efficiently than pow(z, y) % z). The arguments must have numeric types. With mixed operand
types, the coercion rules for binary arithmetic operators apply. For int and long int operands, the
result has the same type as the operands (after coercion) unless the second argument is negative;
in that case, all arguments are converted to float and a float result is delivered. For example,
10#*2 returns 100, but 10%*-2 returns 0.01. (This last feature was added in Python 2.2. In
Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must
be omitted. If z is present, z and y must be of integer types, and y must be non-negative. (This
restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argument pow() returned
platform-dependent results depending on floating-point rounding accidents.)

range([start,] stop [, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used
in for loops. The arguments must be plain integers. If the step argument is omitted, it defaults
to 1. If the start argument is omitted, it defaults to 0. The full form returns a list of plain integers
[start, start + step, start + 2 * step, ...]. If step is positive, the last element is the largest
start + i * step less than stop; if step is negative, the last element is the largest start + i * step

2.1. Built-in Functions 9

greater than stop. step must not be zero (or else ValueError is raised). Example:

>>> range(10)

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

o, 3, 6, 9]

>>> range(0, -10, -1)

[o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

1

>>> range(1, 0)

1

raw_input ([prompt])

If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and
returns that. When EOF is read, EOFError is raised. Example:

>>> s = raw_input(’--> ’)

-=> Monty Python’s Flying Circus
>>> s

"Monty Python’s Flying Circus"

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing
and history features.

reduce (function, sequence[, initializer])

Apply function of two arguments cumulatively to the items of sequence, from left to right, so as
to reduce the sequence to a single value. For example, reduce(lambda x, y: =x+y, [1, 2, 3,
4, 5]) calculates ((((1+2)+3)+4)+5). If the optional initializer is present, it is placed before the
items of the sequence in the calculation, and serves as a default when the sequence is empty.

reload (module)

Re-parse and re-initialize an already imported module. The argument must be a module object,
so it must have been successfully imported before. This is useful if you have edited the module
source file using an external editor and want to try out the new version without leaving the Python
interpreter. The return value is the module object (the same as the module argument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does
not bind its name locally, but does store a (partially initialized) module object in sys.modules. To
reload the module you must first import it again (this will bind the name to the partially initialized
module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained.
Redefinitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache
of objects — with a try statement it can test for the table’s presence and skip its initialization if
desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except
for sys, __main__ and __builtin__. In many cases, however, extension modules are not designed
to be initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload()
for the other module does not redefine the objects imported from it — one way around this is
to re-execute the from statement, another is to use import and qualified names (module.name)
instead.

10

Chapter 2. Built-in Functions, Types, and Exceptions

If a module instantiates instances of a class, reloading the module that defines the class does not
affect the method definitions of the instances — they continue to use the old class definition. The
same is true for derived classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded
by conversions (reverse quotes). It is sometimes useful to be able to access this operation as an
ordinary function. For many types, this function makes an attempt to return a string that would
yield an object with the same value when passed to eval().

round(m[, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it
defaults to zero. The result is a floating point number. Values are rounded to the closest multiple
of 10 to the power minus n; if two multiples are equally close, rounding is done away from 0 (so.
for example, round (0.5) is 1.0 and round(-0.5) is -1.0).

setattr (object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary
value. The string may name an existing attribute or a new attribute. The function assigns the
value to the attribute, provided the object allows it. For example, setattr(z, ’foobar’, 123) is
equivalent to x . foobar = 123.

slice([start,] stop [, step])
Return a slice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start,
stop and step which merely return the argument values (or their default). They have no other
explicit functionality; however they are used by Numerical Python and other third party exten-
sions. Slice objects are also generated when extended indexing syntax is used. For example:
‘a[start:stop:step]’ or ‘al[start:stop, i]’.

str(object)
Return a string containing a nicely printable representation of an object. For strings, this returns
the string itself. The difference with repr (object) is that str(object) does not always attempt to
return a string that is acceptable to eval (); its goal is to return a printable string.

tuple([sequence])
Return a tuple whose items are the same and in the same order as sequence’s items. sequence may
be a sequence, a container that supports iteration, or an iterator object. If sequence is already
a tuple, it is returned unchanged. For instance, tuple(’abc’) returns returns (’a’, ’b’, ’c’)
and tuple([1, 2, 3]) returns (1, 2, 3).

type (object)
Return the type of an object. The return value is a type object. The standard module types
defines names for all built-in types. For instance:

>>> import types
>>> if type(x) == types.StringType: print "It’s a string"

unichr(s)
Return the Unicode string of one character whose Unicode code is the integer i. For example,
unichr (97) returns the string u’a’. This is the inverse of ord() for Unicode strings. The argument
must be in the range [0..65535], inclusive. ValueError is raised otherwise. New in version 2.0.

unicode(object[, encoding[, errors]])
Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode() will decode the object which can either be an
8-bit string or a character buffer using the codec for encoding. The encoding parameter is a
string giving the name of an encoding. Error handling is done according to errors; this specifies
the treatment of characters which are invalid in the input encoding. If errors is ’strict’ (the
default), a ValueError is raised on errors, while a value of ’ignore’ causes errors to be silently
ignored, and a value of ’replace’ causes the official Unicode replacement character, U+FFFD, to

2.1. Built-in Functions 11

be used to replace input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode() will mimic the behaviour of str() except that
it returns Unicode strings instead of 8-bit strings. More precisely, if object is an Unicode string
or subclass it will return a Unicode string without any additional decoding applied. For objects
which provide a __unicode__ method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and
then converted to a Unicode string using the codec for the default encoding in ’strict’ mode.
New in version 2.0.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a
module, class or class instance object as argument (or anything else that has a __dict__ attribute),
returns a dictionary corresponding to the object’s symbol table. The returned dictionary should
not be modified: the effects on the corresponding symbol table are undefined.*

xrange([start,] stop [, step])
This function is very similar to range (), but returns an “xrange object” instead of a list. This is
an opaque sequence type which yields the same values as the corresponding list, without actually
storing them all simultaneously. The advantage of xrange() over range() is minimal (since
xrange () still has to create the values when asked for them) except when a very large range
is used on a memory-starved machine or when all of the range’s elements are never used (such as
when the loop is usually terminated with break).

4

zip(seql, ...)
This function returns a list of tuples, where the i-th tuple contains the i-th element from each of
the argument sequences. At least one sequence is required, otherwise a TypeError is raised. The
returned list is truncated in length to the length of the shortest argument sequence. When there
are multiple argument sequences which are all of the same length, zip() is similar to map() with
an initial argument of None. With a single sequence argument, it returns a list of 1-tuples. New
in version 2.0.

2.2 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the
numeric types, sequence types, and several others, including types themselves. There is no explicit
Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested
for truth value, and converted to a string (with the ‘... ¢ notation). The latter conversion is implicitly
used when an object is written by the print statement.

2.2.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

e zero of any numeric type, for example, 0, OL, 0.0, 0j.

e any empty sequence, for example, *’, (), [J.

e any empty mapping, for example, {}.

e instances of user-defined classes, if the class defines a __nonzero__() or __len__ () method,
when that method returns zero.’

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved
from other scopes (such as modules) can be. This may change.
5 Additional information on these special methods may be found in the Python Reference Manual.

12 Chapter 2. Built-in Functions, Types, and Exceptions

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 for false and 1 for true,
unless otherwise stated. (Important exception: the Boolean operations ‘or’ and ‘and’ always return one
of their operands.)

2.2.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
T or vy if z is false, then v, else (1)
z and y if z is false, then z, else y (1)

not z if x is false, then 1, else 0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not’ has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a ==
b), and a == not b is a syntax error.

2.2.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher
than that of the Boolean operations). Comparisons can be chained arbitrarily; for example, z < y <=
z is equivalent to £ < y and y <= z, except that y is evaluated only once (but in both cases z is not
evaluated at all when z < y is found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
1= not equal (1)
<> not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and != are alternate spellings for the same operator. (I couldn’t choose between ABC and C! :-)
= is the preferred spelling; <> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered
consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Further-
more, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class defines the __cmp__ () method. Refer
to the Python Reference Manual for information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names;
objects of the same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, ‘in’ and ‘not in’; are supported only by sequence
types (below).

2.2, Built-in Types 13

2.2.4 Numeric Types

There are four numeric types: plain integers, long integers, floating point numbers, and complex numbers.
Plain integers (also just called integers) are implemented using long in C, which gives them at least 32
bits of precision. Long integers have unlimited precision. Floating point numbers are implemented using
double in C. All bets on their precision are off unless you happen to know the machine you are working
with.

Complex numbers have a real and imaginary part, which are both implemented using double in C. To
extract these parts from a complex number z, use z.real and z.imag.

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including hex and octal numbers) yield plain integers. Integer literals with an ‘L’ or
‘1’ suffix yield long integers (‘L’ is preferred because ‘11’ looks too much like eleven!). Numeric literals
containing a decimal point or an exponent sign yield floating point numbers. Appending ‘j’ or ‘J’ to a
numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different
numeric types, the operand with the “smaller” type is converted to that of the other, where plain integer
is smaller than long integer is smaller than floating point is smaller than complex. Comparisons between
numbers of mixed type use the same rule. The functions int (), long(), float(), and complex() can
be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same
box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
T+ y sum of z and y
T -y difference of z and y
T *xy product of z and y
x /Yy quotient of xz and y (1)
T h vy remainder of x / y
-z z negated
+x 2 unchanged
abs(z) absolute value or magnitude of z
int (x) x converted to integer (2)
long(z) x converted to long integer (2)
float(x) z converted to floating point
complex(re,im) | a complex number with real part re, imaginary part ém. im defaults to zero.
c.conjugate() | conjugate of the complex number c
divmod(z, y) | thepair (z / y, = % y) (3)
pow(z, y) z to the power y
T kk Yy z to the power y
Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards
minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long
integer if either operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() and ceil() in the math module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

6As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similar for tuples.

14 Chapter 2. Built-in Functions, Types, and Exceptions

Plain and long integer types support additional operations that make sense only for bit-strings. Negative
numbers are treated as their 2’s complement value (for long integers, this assumes a sufficiently large
number of bits that no overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than
the comparisons; the unary operation ‘~’ has the same priority as the other unary numeric operations
(‘47 and ‘=).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have
the same priority):

Operation | Result Notes
x|y bitwise or of z and y
x "y bitwise exclusive or of x and y
T &y bitwise and of x and y
T << n z shifted left by n bits (1), (2)
T >> n z shifted right by n bits (1), (3)
"z the bits of z inverted

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division by pow(2, n) without overflow check.

2.2.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods;
these are used to allow user-defined classes to support iteration. Sequences, described below in more
detail, always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter__Q
Return an iterator object. The object is required to support the iterator protocol described be-
low. If a container supports different types of iteration, additional methods can be provided to
specifically request iterators for those iteration types. (An example of an object supporting multi-
ple forms of iteration would be a tree structure which supports both breadth-first and depth-first
traversal.) This method corresponds to the tp_iter slot of the type structure for Python objects
in the Python/C APIL

The iterator objects themselves are required to support the following two methods, which together form
the iterator protocol:

__diter__Q)
Return the iterator object itself. This is required to allow both containers and iterators to be
used with the for and in statements. This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C API.

next ()
Return the next item from the container. If there are no further items, raise the StopIteration
exception. This method corresponds to the tp_iternext slot of the type structure for Python
objects in the Python/C APIL

Python defines several iterator objects to support iteration over general and specific sequence types,
dictionaries, and other more specialized forms. The specific types are not important beyond their imple-
mentation of the iterator protocol.

2.2. Built-in Types 15

2.2.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quotes: ’xyzzy’, "frobozz". See chapter 2 of the Python
Reference Manual for more about string literals. Unicode strings are much like strings, but are specified
in the syntax using a preceeding ‘u’ character: u’abc’, u"def". Lists are constructed with square
brackets, separating items with commas: [a, b, c]. Tuples are constructed by the comma operator
(not within square brackets), with or without enclosing parentheses, but an empty tuple must have the
enclosing parentheses, e.g., a, b, c or (). A single item tuple must have a trailing comma, e.g., (d,).

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin
function buffer().. They don’t support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are
created using the xrange () function. They don’t support slicing, concatenation or repetition, and using
in, not in, min() or max() on them is inefficient.

Most sequence types support the following operations. The ‘in’ and ‘not in’ operations have the same
priorities as the comparison operations. The ‘+” and ‘*’ operations have the same priority as the corre-
sponding numeric operations.”

This table lists the sequence operations sorted in ascending priority (operations in the same box have
the same priority). In the table, s and ¢ are sequences of the same type; n, i and j are integers:

Operation Result Notes
z in s 1 if an item of s is equal to z, else 0O
z not in s | O if an item of s is equal to z, else 1
s+t the concatenation of s and ¢
s * n, n * s | nshallow copies of s concatenated (1)
s[4l i’th item of s, origin 0 (2)
sli:g] slice of s from i to j (2), (3)
len(s) length of s
min(s) smallest item of s
max(s) largest item of s

Notes:

(1) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s).
Note also that the copies are shallow; nested structures are not copied. This often haunts new
Python programmers; consider:

>>> lists = [[1] * 3
>>> lists

(a, 0, i1

>>> 1lists[0] .append(3)
>>> lists

(31, 31, 311

What has happened is that lists is a list containing three copies of the list [[1] (a one-element
list containing an empty list), but the contained list is shared by each copy. You can create a list
of different lists this way:

>>> lists = [[] for i in range(3)]
>>> 1lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

[rs1, 81, [711

"They must have since the parser can’t tell the type of the operands.

16 Chapter 2. Built-in Functions, Types, and Exceptions

(2) If i or j is negative, the index is relative to the end of the string: len(s) + i or len(s) + j is
substituted. But note that -0 is still 0.

(3) The slice of s from ¢ to j is defined as the sequence of items with index k such that i <= k < j. If
i or j is greater than len(s), use len(s). If ¢ is omitted, use 0. If j is omitted, use len(s). If i
is greater than or equal to j, the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize()
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of length width. Padding is done using spaces.

count (sub [, start [, end]])
Return the number of occurrences of substring sub in string S[start:end]. Optional arguments
start and end are interpreted as in slice notation.

decode([encoding[, errors]])
Decodes the string using the codec registered for encoding. encoding defaults to the default string
encoding. errors may be given to set a different error handling scheme. The default is *strict?,
meaning that encoding errors raise ValueError. Other possible values are > ignore’ and replace’.
New in version 2.2.

encode ([encodmg [, errors]])
Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The default for errors is
’strict’, meaning that encoding errors raise a ValueError. Other possible values are ’ignore’
and ’replace’. New in version 2.0.

endswith(sujﬁx[, start[, end]])
Return true if the string ends with the specified suffiz, otherwise return false. With optional start,
test beginning at that position. With optional end, stop comparing at that position.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are expanded using spaces. If tabsize is not
given, a tab size of 8 characters is assumed.

find (sub [, start [, end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the
range [start, end). Optional arguments start and end are interpreted as in slice notation. Return
-1 if sub is not found.

index (sub [, start [, end]])
Like £ind (), but raise ValueError when the substring is not found.

isalnum()
Return true if all characters in the string are alphanumeric and there is at least one character, false
otherwise.

isalpha()
Return true if all characters in the string are alphabetic and there is at least one character, false
otherwise.

isdigit()
Return true if there are only digit characters, false otherwise.

islower()

Return true if all cased characters in the string are lowercase and there is at least one cased
character, false otherwise.

isspace()

2.2. Built-in Types 17

Return true if there are only whitespace characters in the string and the string is not empty, false
otherwise.

istitle()
Return true if the string is a titlecased string: uppercase characters may only follow uncased
characters and lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased
character, false otherwise.

join(seq)
Return a string which is the concatenation of the strings in the sequence seq. The separator
between elements is the string providing this method.

1just (width)
Return the string left justified in a string of length width. Padding is done using spaces. The
original string is returned if width is less than len(s).

lower ()
Return a copy of the string converted to lowercase.

1strip(O
Return a copy of the string with leading whitespace removed.

replace (old, new[, maxsplit])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional
argument mazsplit is given, only the first maxsplit occurrences are replaced.

rfind (sub [,start [,end”)
Return the highest index in the string where substring sub is found, such that sub is contained
within s[start,end]. Optional arguments start and end are interpreted as in slice notation. Return
-1 on failure.

rindex(sub[, start[, end]])
Like rfind () but raises ValueError when the substring sub is not found.

rjust (width)
Return the string right justified in a string of length width. Padding is done using spaces. The
original string is returned if width is less than len(s).

rstrip()
Return a copy of the string with trailing whitespace removed.

split([sep [,maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at
most mazxsplit splits are done. If sep is not specified or None, any whitespace string is a separator.

splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included
in the resulting list unless keepends is given and true.

startswith(preﬁx[, start[, end]])
Return true if string starts with the prefix, otherwise return false. With optional start, test string
beginning at that position. With optional end, stop comparing string at that position.

strip()
Return a copy of the string with leading and trailing whitespace removed.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

title()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased
characters are lowercase.

translate (table [, deletechars])

18 Chapter 2. Built-in Functions, Types, and Exceptions

Return a copy of the string where all characters occurring in the optional argument deletechars
are removed, and the remaining characters have been mapped through the given translation table,
which must be a string of length 256.

upper ()
Return a copy of the string converted to uppercase.

String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also
known as the string formatting or interpolation operator. Given format %values (where format is a
string or Unicode object), % conversion specifications in format are replaced with zero or more elements
of walues. The effect is similar to the using sprintf () in the C language. If format is a Unicode object,
or if any of the objects being converted using the %s conversion are Unicode objects, the result will be a
Unicode object as well.

If format requires a single argument, values may be a single non-tuple object. ® Otherwise, values must
be a tuple with exactly the number of items specified by the format string, or a single mapping object
(for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must
occur in this order:

1. The ‘)’ character, which marks the start of the specifier.
Mapping key value (optional), consisting of an identifier in parentheses (for example, (somename)).

Conversion flags (optional), which affect the result of some conversion types.

Ll

Minimum field width (optional). If specified as an ‘*’ (asterisk), the actual width is read from the
next element of the tuple in values, and the object to convert comes after the minimum field width
and optional precision.

5. Precision (optional), given as a ‘.’ (dot) followed by the precision. If specified as ‘*’ (an asterisk),
the actual width is read from the next element of the tuple in walues, and the value to convert
comes after the precision.

6. Length modifier (optional).
7. Conversion type.
If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have

a parenthesized key into that dictionary inserted immediately after the ‘%’ character, and each format
formats the corresponding entry from the mapping. For example:

>>> count = 2

>>> language = ’Python’

>>> print ’%(language)s has %(count)03d quote types.’ % vars()
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘4’ | The value conversion will use the “alternate form” (where defined below).

‘0’ The conversion will be zero padded.

The converted value is left adjusted (overrides ‘-’).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.

(0

‘+’ | A sign character (‘+’ or ‘=’) will precede the conversion (overrides a ”space” flag).

8 A tuple object in this case should be a singleton.

2.2. Built-in Types 19

The length modifier may be h, 1, and L may be present, but are ignored as they are not necessary for
Python.

The conversion types are:

Conversion | Meaning
‘d’ Signed integer decimal.
‘i’ Signed integer decimal.
‘o’ Unsigned octal.
‘o’ Unsigned decimal.
‘x’ Unsigned hexidecimal (lowercase).
‘X’ Unsigned hexidecimal (uppercase).
‘e’ Floating point exponential format (lowercase).
‘B Floating point exponential format (uppercase).
‘£ Floating point decimal format.
‘P’ Floating point decimal format.
‘g’ Same as ‘e’ if exponent is greater than -4 or less than precision, ‘f’ otherwise.
‘G’ Same as ‘E’ if exponent is greater than -4 or less than precision, ‘F’ otherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object using repr()).
‘s’ String (converts any python object using str()).
A No argument is converted, results in a ‘)’ character in the result. (The complete specification is %%.)

Since Python strings have an explicit length, %s conversions do not assume that ’>\0’ is the end of the
string.

For safety reasons, floating point precisions are clipped to 50; %f conversions for numbers whose absolute
value is over 1e25 are replaced by %g conversions.? All other errors raise exceptions.

Additional string operations are defined in standard modules string and re.

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the
xrange type is that an xrange object will always take the same amount of memory, no matter the size of
the range it represents. There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing and the 1len() function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations
would be supported by other mutable sequence types (when added to the language) as well. Strings and
tuples are immutable sequence types and such objects cannot be modified once created. The following
operations are defined on mutable sequence types (where z is an arbitrary object):

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without
hampering correct use and without having to know the exact precision of floating point values on a particular machine.

20 Chapter 2. Built-in Functions, Types, and Exceptions

Operation Result Notes
slil] = item 7 of s is replaced by z

sli:jl =t slice of s from ¢ to j is replaced by ¢

del s[i:j] same as s[i:j] = []

s.append (z) same as s[len(s):len(s)] = [z] (1)

s.extend(z) same as s[len(s):len(s)] = z (2)

s.count (x) return number of i’s for which s[i] == z

s.index(x) return smallest ¢ such that s[i] == (3)

s.insert (i, z) same as s[i:4] = [zl if 4 >= 0 (4)

s.pop([i]) same as ¢ = s[i]; del s[i]; return z (5)

s.remove (z) same as del s[s.index(z)] (3)

s.reverse() reverses the items of s in place (6)
s. sort([cmpfunc]) sort the items of s in place (6), (7)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined
them into a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated
since Python 1.4.

(2) Raises an exception when z is not a list object. The extend() method is experimental and not
supported by mutable sequence types other than lists.

(3) Raises ValueError when z is not found in s.

(4) When a negative index is passed as the first parameter to the insert() method, the new element
is prepended to the sequence.

(5) The pop() method is only supported by the list and array types. The optional argument ¢ defaults
to -1, so that by default the last item is removed and returned.

(6) The sort() and reverse() methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don’t return the sorted
or reversed list.

(7) The sort () method takes an optional argument specifying a comparison function of two arguments
(list items) which should return a negative, zero or positive number depending on whether the first
argument is considered smaller than, equal to, or larger than the second argument. Note that this
slows the sorting process down considerably; e.g. to sort a list in reverse order it is much faster to
use calls to the methods sort() and reverse() than to use the built-in function sort() with a
comparison function that reverses the ordering of the elements.

2.2.7 Mapping Types

A mapping object maps values of one type (the key type) to arbitrary objects. Mappings are mutable
objects. There is currently only one standard mapping type, the dictionary. A dictionary’s keys are
almost arbitrary values. The only types of values not acceptable as keys are values containing lists or
dictionaries or other mutable types that are compared by value rather than by object identity. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g.
1 and 1.0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated list of key: walue pairs within braces, for ex-
ample: {’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’}.

The following operations are defined on mappings (where a and b are mappings, k is a key, and v and z
are arbitrary objects):

2.2. Built-in Types 21

Operation Result Notes
len(a) the number of items in a
a[k] the item of a with key & (1)
alk]l = v set a[k] tow
del alk] remove a[k] from a (1)
a.clear() remove all items from a
a.copy () a (shallow) copy of a
a.has_key (k) 1if o has a key £, else O
k in a Equivalent to a.has_key(k) (2)
k not in a Equivalent to not a.has_key(k) (2)
a.items() a copy of a’s list of (key, value) pairs (3)
a.keys() a copy of a’s list of keys (3)
a.update(b) for k in b.keys(O: alk] = b[k]
a.values() a copy of a’s list of values (3)
a.get(k[, z]) alk] if k in a, else o (4)
a.setdefault (k|, :v]) alkl if £ in a, else z (also setting it) (5)
a.popitem() remove and return an arbitrary (key, value) pair (6)
a.iteritems() return an iterator over (key, value) pairs (2)
a.iterkeys() return an iterator over the mapping’s keys (2)
a.itervalues() return an iterator over the mapping’s values (2)

Notes:

(1) Raises a KeyError exception if k is not in the map.
(2) New in version 2.2.

3) Keys and values are listed in random order. If keys() and values() are called with no intervening
y
modifications to the dictionary, the two lists will directly correspond. This allows the creation of
(value, key) pairs using zip(): ‘pairs = zip(a.values(), a.keys())’.

(4) Never raises an exception if k is not in the map, instead it returns . x is optional; when z is not
provided and k is not in the map, None is returned.

(5) setdefault() is like get (), except that if k is missing, = is both returned and inserted into the
dictionary as the value of k.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.

2.2.8 File Objects

File objects are implemented using C’s stdio package and can be created with the built-in constructor
file() described in section 2.1, “Built-in Functions.”!® They are also returned by some other built-in
functions and methods, such as os.popen() and os.fdopen() and the makefile() method of socket
objects.

When a file operation fails for an I/O-related reason, the exception I0Error is raised. This includes
situations where the operation is not defined for some reason, like seek() on a tty device or writing a
file opened for reading.

Files have the following methods:

close()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that
the file be open will raise a ValueError after the file has been closed. Calling close() more than
once is allowed.

flush (O
Flush the internal buffer, like stdio’s fflush(). This may be a no-op on some file-like objects.

10fi1e() is new in Python 2.2. The older built-in open() is an alias for file().

22 Chapter 2. Built-in Functions, Types, and Exceptions

isatty ()
Return true if the file is connected to a tty(-like) device, else false. Note: If a file-like object is
not associated with a real file, this method should not be implemented.

fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O
operations from the operating system. This can be useful for other, lower level interfaces that use
file descriptors, such as the fcntl module or os.read() and friends. Note: File-like objects which
do not have a real file descriptor should not provide this method!

read([size])
Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the
size argument is negative or omitted, read all data until EOF is reached. The bytes are returned as
a string object. An empty string is returned when EOF is encountered immediately. (For certain
files, like ttys, it makes sense to continue reading after an EOF is hit.) Note that this method may
call the underlying C function fread () more than once in an effort to acquire as close to size bytes
as possible.

readline([size])
Read one entire line from the file. A trailing newline character is kept in the string’! (but may
be absent when a file ends with an incomplete line). If the size argument is present and non-
negative, it is a maximum byte count (including the trailing newline) and an incomplete line may
be returned. An empty string is returned when EOF is hit immediately. Note: Unlike stdio’s
fgets (), the returned string contains null characters (*\0”) if they occurred in the input.

readlines([sizehint])
Read until EOF using readline() and return a list containing the lines thus read. If the optional
sizehint argument is present, instead of reading up to EOF, whole lines totalling approximately
sizehint bytes (possibly after rounding up to an internal buffer size) are read. Objects implement-
ing a file-like interface may choose to ignore sizehint if it cannot be implemented, or cannot be
implemented efficiently.

xreadlines()
Equivalent to xreadlines.xreadlines(file). (See the xreadlines module for more information.)
New in version 2.1.

seek(oﬁ'set[, whence])
Set the file’s current position, like stdio’s fseek(). The whence argument is optional and defaults
to 0 (absolute file positioning); other values are 1 (seek relative to the current position) and 2 (seek
relative to the file’s end). There is no return value. Note that if the file is opened for appending
(mode ’a’ or ’a+’), any seek() operations will be undone at the next write. If the file is only
opened for writing in append mode (mode ’a’), this method is essentially a no-op, but it remains
useful for files opened in append mode with reading enabled (mode ’a+?).

tell()
Return the file’s current position, like stdio’s ftell().

truncate([size])
Truncate the file’s size. If the optional size argument present, the file is truncated to (at most)
that size. The size defaults to the current position. Availability of this function depends on the
operating system version (for example, not all UNIX versions support this operation).

write(str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually
show up in the file until the flush() or close() method is called.

writelines (sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings,
typically a list of strings. There is no return value. (The name is intended to match readlines(Q);
writelines() does not add line separators.)

1 The advantage of leaving the newline on is that an empty string can be returned to mean EOF without being ambiguous.
Another advantage is that (in cases where it might matter, for example. if you want to make an exact copy of a file while
scanning its lines) you can tell whether the last line of a file ended in a newline or not (yes this happens!).

2.2. Built-in Types 23

Files support the iterator protocol. Each iteration returns the same result as file.readline(), and
iteration ends when the readline () method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects,
but should be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attribute; the close ()
method changes the value. It may not be available on all file-like objects.

mode
The I/0 mode for the file. If the file was created using the open () built-in function, this will be the
value of the mode parameter. This is a read-only attribute and may not be present on all file-like
objects.

name
If the file object was created using open(), the name of the file. Otherwise, some string that
indicates the source of the file object, of the form ‘<...>’. This is a read-only attribute and may
not be present on all file-like objects.

softspace

Boolean that indicates whether a space character needs to be printed before another value when
using the print statement. Classes that are trying to simulate a file object should also have
a writable softspace attribute, which should be initialized to zero. This will be automatic for
most classes implemented in Python (care may be needed for objects that override attribute access);
types implemented in C will have to provide a writable softspace attribute. Note: This attribute
is not used to control the print statement, but to allow the implementation of print to keep track
of its internal state.

2.2.9 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute access: m.name, where m is a module and name
accesses a name defined in m’s symbol table. Module attributes can be assigned to. (Note that the
import statement is not, strictly speaking, an operation on a module object; import foo does not
require a module object named foo to exist, rather it requires an (external) definition for a module
named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol
table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment
to the __dict__ attribute is not possible (you can write m.__dict__[’a’] = 1, which defines m.a
to be 1, but you can’t write m.__dict__ = {}.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a
file, they are written as <module ’os’ from ’/usr/local/lib/python2.2/os.pyc’>.

Classes and Class Instances

See chapters 3 and 7 of the Python Reference Manual for these.

Functions
Function objects are created by function definitions. The only operation on a function object is to call
it: funcCargument-list) .

There are really two flavors of function objects: built-in functions and user-defined functions. Both
support the same operation (to call the function), but the implementation is different, hence the different

24 Chapter 2. Built-in Functions, Types, and Exceptions

object types.

The implementation adds two special read-only attributes: f.func_code is a function’s code object (see
below) and f.func_globals is the dictionary used as the function’s global namespace (this is the same
as m.__dict__ where m is the module in which the function f was defined).

Function objects also support getting and setting arbitrary attributes, which can be used to, e.g. attach
metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note
that the current implementation only supports function attributes on user-defined functions. Function
attributes on built-in functions may be supported in the future.

Functions have another special attribute f.__dict__ (a.k.a. f.func_dict) which contains the names-
pace used to support function attributes. __dict__ and func_dict can be accessed directly or set to
a dictionary object. A function’s dictionary cannot be deleted.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in
methods (such as append() on lists) and class instance methods. Built-in methods are described with
the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im_self is the
object on which the method operates, and m.im_func is the function implementing the method. Call-
ing m(Carg-1, arg-2, ..., arg-n) is completely equivalent to calling m.im_func(m.im_self, arg-1,
arg-2, ..., arg-n).

Class instance methods are either bound or unbound, referring to whether the method was accessed
through an instance or a class, respectively. When a method is unbound, its im_self attribute will be
None and if called, an explicit self object must be passed as the first argument. In this case, self must
be an instance of the unbound method’s class (or a subclass of that class), otherwise a TypeError is
raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method at-
tributes are actually stored on the underlying function object (meth.im_func), setting method attributes
on either bound or unbound methods is disallowed. Attempting to set a method attribute results in a
TypeError being raised. In order to set a method attribute, you need to explicitly set it on the underlying
function object:

class C:
def method(self):
pass

c=2¢CO
c.method.im_func.whoami = ’my name is c’

See the Python Reference Manual for more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code
such as a function body. They differ from function objects because they don’t contain a reference to
their global execution environment. Code objects are returned by the built-in compile() function and
can be extracted from function objects through their func_code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement
or the built-in eval () function.

See the Python Reference Manual for more information.

2.2. Built-in Types 25

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function
type (). There are no special operations on types. The standard module types defines names for all
standard built-in types.

Types are written like this: <type ’int’>.

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name).

It is written as None.

The Ellipsis Object

This object is used by extended slice notation (see the Python Reference Manual). It supports no special
operations. There is exactly one ellipsis object, named E1lipsis (a built-in name).

It is written as E11lipsis.

Internal Objects

See the Python Reference Manual for this information. It describes stack frame objects, traceback objects,
and slice objects.

2.2.10 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are
relevant:

__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods__
Deprecated since release 2.2. Use the built-in function dir() to get a list of an object’s
attributes. This attribute is no longer available.

__members___
Deprecated since release 2.2. Use the built-in function dir() to get a list of an object’s
attributes. This attribute is no longer available.

__class__
The class to which a class instance belongs.

__bases__
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

2.3 Built-in Exceptions

Exceptions can be class objects or string objects. Though most exceptions have been string objects in
past versions of Python, in Python 1.5 and newer versions, all standard exceptions have been converted
to class objects, and users are encouraged to do the same. The exceptions are defined in the module
exceptions. This module never needs to be imported explicitly: the exceptions are provided in the
built-in namespace as well as the exceptions module.

Two distinct string objects with the same value are considered different exceptions. This is done to force
programmers to use exception names rather than their string value when specifying exception handlers.

26 Chapter 2. Built-in Functions, Types, and Exceptions

The string value of all built-in exceptions is their name, but this is not a requirement for user-defined
exceptions or exceptions defined by library modules.

For class exceptions, in a try statement with an except clause that mentions a particular class, that
clause also handles any exception classes derived from that class (but not exception classes from which
it is derived). Two exception classes that are not related via subclassing are never equivalent, even if
they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except
where mentioned, they have an “associated value” indicating the detailed cause of the error. This may
be a string or a tuple containing several items of information (e.g., an error code and a string explaining
the code). The associated value is the second argument to the raise statement. For string exceptions,
the associated value itself will be stored in the variable named as the second argument of the except
clause (if any). For class exceptions, that variable receives the exception instance. If the exception
class is derived from the standard root class Exception, the associated value is present as the exception
instance’s args attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an
error condition “just like” the situation in which the interpreter raises the same exception; but beware
that there is nothing to prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged
to at least derive new exceptions from the Exception base class. More information on defining exceptions
is available in the Python Tutorial under the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exception Exception

The root class for exceptions. All built-in exceptions are derived from this class. All user-defined
exceptions should also be derived from this class, but this is not (yet) enforced. The str () function,
when applied to an instance of this class (or most derived classes) returns the string value of the
argument or arguments, or an empty string if no arguments were given to the constructor. When
used as a sequence, this accesses the arguments given to the constructor (handy for backward
compatibility with old code). The arguments are also available on the instance’s args attribute,
as a tuple.

exception StandardError
The base class for all built-in exceptions except StopIteration and SystemExit. StandardError
itself is derived from the root class Exception.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:
OverflowError, ZeroDivisionError, FloatingPointError.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence
is invalid: IndexError, KeyError. This can be raised directly by sys.setdefaultencoding().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: I0Error, 0SError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s errno
attribute (it is assumed to be an error number), and the second item is available on the strerror
attribute (it is usually the associated error message). The tuple itself is also available on the args
attribute. New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are avail-
able as above, while the third item is available on the filename attribute. However, for backwards
compatibility, the args attribute contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The
errno and strerror attributes are also None when the instance was created with other than 2 or
3 arguments. In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError

2.3. Built-in Exceptions 27

Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute
references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (input () or raw_input()) hits an end-of-file condition
(EOF) without reading any data. (N.B.: the read() and readline () methods of file objects return
an empty string when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be
raised when Python is configured with the --with-fpectl option, or the WANT_SIGFPE_HANDLER
symbol is defined in the ‘pyconfig.h’ file.

exception I0Error
Raised when an I/O operation (such as a print statement, the built-in open() function or a
method of a file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on
exception instance attributes.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import
fails to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution,
a check for interrupts is made regularly. Interrupts typed when a built-in function input() or
raw_input()) is waiting for input also raise this exception.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting
some objects). The associated value is a string indicating what kind of (internal) operation ran out
of memory. Note that because of the underlying memory management architecture (C’s malloc()
function), the interpreter may not always be able to completely recover from this situation; it
nevertheless raises an exception so that a stack traceback can be printed, in case a run-away
program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The
associated value is the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version
1.5.2.

exception OSError
This class is derived from EnvironmentError and is used primarily as the os module’s os.error
exception. See EnvironmentError above for a description of the possible associated values. New
in version 1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot
occur for long integers (which would rather raise MemoryError than give up). Because of the lack
of standardization of floating point exception handling in C, most floating point operations also
aren’t checked. For plain integers, all operations that can overflow are checked except left shift,

28 Chapter 2. Built-in Functions, Types, and Exceptions

where typical applications prefer to drop bits than raise an exception.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref .proxy() function, is
used to access an attribute of the referent after it has been garbage collected. For more information
on weak references, see the weakref module. New in version 2.2: Previously known as the
weakref .ReferenceError exception.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated
value is a string indicating what precisely went wrong. (This exception is mostly a relic from a
previous version of the interpreter; it is not used very much any more.)

exception StopIteration
Raised by an iterator’s next () method to signal that there are no further values. This is derived
from Exception rather than StandardError, since this is not considered an error in its normal
application. New in version 2.2.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an
exec statement, in a call to the built-in function eval() or input(), or when reading the initial
script or standard input (also interactively).

Instances of this class have atttributes filename, lineno, offset and text for easier access to the
details. str() of the exception instance returns only the message.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to
cause it to abandon all hope. The associated value is a string indicating what went wrong (in
low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report
the version of the Python interpreter (sys.version; it is also printed at the start of an interactive
Python session), the exact error message (the exception’s associated value) and if possible the
source of the program that triggered the error.

exception SystemExit
This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter
exits; no stack traceback is printed. If the associated value is a plain integer, it specifies the system
exit status (passed to C’s exit () function); if it is None, the exit status is zero; if it has another
type (such as a string), the object’s value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting
to None). Also, this exception derives directly from Exception and not StandardError, since it is
not technically an error.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of
try statements) can be executed, and so that a debugger can execute a script without running the
risk of losing control. The os._exit () function can be used if it is absolutely positively necessary
to exit immediately (for example, in the child process after a call to fork()).

exception TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The
associated value is a string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been
bound to that variable. This is a subclass of NameError. New in version 2.0.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.
New in version 2.0.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but
an inappropriate value, and the situation is not described by a more precise exception such as

2.3. Built-in Exceptions 29

IndexError.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond
to an errno value. The errno and strerror values are created from the return values of the
GetLastError () and FormatMessage () functions from the Windows Platform API. This is a sub-
class of 0SError. New in version 2.0.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value
is a string indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

30 Chapter 2. Built-in Functions, Types, and Exceptions

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter
and its interaction with its environment. Here’s an overview:

sys
gc

weakref
fpectl
atexit
types
UserDict
UserList
UserString
operator
inspect
traceback
linecache
pickle
cPickle

copy_reg
shelve

copy
marshal
warnings
imp
code
codeop
pprint
repr
new
site
user

__builtin__

__main_ _

Access system-specific parameters and functions.

Interface to the cycle-detecting garbage collector.

Support for weak references and weak dictionaries.

Provide control for floating point exception handling.
Register and execute cleanup functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.
Extract information and source code from live objects.
Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version of pickle, but not subclassable.

Register pickle support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Issue warning messages and control their disposition.
Access the implementation of the import statement.

Base classes for interactive Python interpreters.

Compile (possibly incomplete) Python code.

Data pretty printer

Alternate repr () implementation with size limits.

Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions
that interact strongly with the interpreter. It is always available.

argv

The list of command line arguments passed to a Python script. argv[0] is the script name (it is
operating system dependent whether this is a full pathname or not). If the command was executed
using the -c command line option to the interpreter, argv[0] is set to the string >-c’. If no script
name was passed to the Python interpreter, argv has zero length.

31

byteorder

An indicator of the native byte order. This will have the value ’big’ on big-endian (most-
signigicant byte first) platforms, and ’1ittle’ on little-endian (least-significant byte first) plat-
forms. New in version 2.0.

builtin_module_names

A tuple of strings giving the names of all modules that are compiled into this Python interpreter.
(This information is not available in any other way — modules.keys() only lists the imported
modules.)

copyright

A string containing the copyright pertaining to the Python interpreter.

dllhandle

Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value)

If walue is not None, this function prints it to sys.stdout, and saves it in __builtin__._.

sys.displayhook is called on the result of evaluating an expression entered in an interactive
Python session. The display of these values can be customized by assigning another one-argument
function to sys.displayhook.

excepthook (type, value, traceback)

This function prints out a given traceback and exception to sys.stderr.

When an exception is raised and uncaught, the interpreter calls sys.excepthook with three argu-
ments, the exception class, exception instance, and a traceback object. In an interactive session
this happens just before control is returned to the prompt; in a Python program this happens just
before the program exits. The handling of such top-level exceptions can be customized by assigning
another three-argument function to sys.excepthook.

__displayhook__
__excepthook__

These objects contain the original values of displayhook and excepthook at the start of the
program. They are saved so that displayhook and excepthook can be restored in case they
happen to get replaced with broken objects.

exc_info()

This function returns a tuple of three values that give information about the exception that is
currently being handled. The information returned is specific both to the current thread and to
the current stack frame. If the current stack frame is not handling an exception, the information
is taken from the calling stack frame, or its caller, and so on until a stack frame is found that is
handling an exception. Here, “handling an exception” is defined as “executing or having executed
an except clause.” For any stack frame, only information about the most recently handled exception
is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is
returned. Otherwise, the values returned are (type, wvalue, traceback). Their meaning is: type
gets the exception type of the exception being handled (a string or class object); value gets the
exception parameter (its associated value or the second argument to raise, which is always a class
instance if the exception type is a class object); traceback gets a traceback object (see the Reference
Manual) which encapsulates the call stack at the point where the exception originally occurred.

Warning: Assigning the traceback return value to a local variable in a function that is handling an
exception will cause a circular reference. This will prevent anything referenced by a local variable
in the same function or by the traceback from being garbage collected. Since most functions
don’t need access to the traceback, the best solution is to use something like exctype, value =
sys.exc_info () [:2] to extract only the exception type and value. If you do need the traceback,
make sure to delete it after use (best done with a try ... finally statement) or to call exc_info ()
in a function that does not itself handle an exception. Note: Beginning with Python 2.2, such
cycles are automatically reclaimed when garbage collection is enabled and they become unreachable,
but it remains more efficient to avoid creating cycles.

exc_type

32

Chapter 3. Python Runtime Services

exc_value
exc_traceback
Deprecated since release 1.5. Use exc_info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe
in a multi-threaded program. When no exception is being handled, exc_type is set to None and
the other two are undefined.

exec_prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are in-
stalled; by default, this is also ’ /usr/local’. This can be set at build time with the --exec-prefix
argument to the configure script. Specifically, all configuration files (e.g. the ‘pyconfig.h’ header
file) are installed in the directory exec_prefix + ’/lib/pythonuversion/config’, and shared li-
brary modules are installed in exec_prefix + ’/1lib/pythonversion/lib-dynload’, where ver-
ston is equal to version[:3].

executable
A string giving the name of the executable binary for the Python interpreter, on systems where
this makes sense.

exit([arg])

Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions
specified by finally clauses of try statements are honored, and it is possible to intercept the exit
attempt at an outer level. The optional argument arg can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an integer, zero is considered “successful
termination” and any nonzero value is considered “abnormal termination” by shells and the like.
Most systems require it to be in the range 0-127, and produce undefined results otherwise. Some
systems have a convention for assigning specific meanings to specific exit codes, but these are
generally underdeveloped; UNIX programs generally use 2 for command line syntax errors and 1
for all other kind of errors. If another type of object is passed, None is equivalent to passing zero,
and any other object is printed to sys.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to
specify a clean-up action at program exit. When set, it should be a parameterless function. This
function will be called when the interpreter exits. Only one function may be installed in this way;
to allow multiple functions which will be called at termination, use the atexit module. Note:
The exit function is not called when the program is killed by a signal, when a Python fatal internal
error is detected, or when os._exit () is called.

getdefaultencoding()
Return the name of the current default string encoding used by the Unicode implementation. New
in version 2.0.

getdlopenflags ()
Return the current value of the flags that are used for dlopen() calls. The flag constants are
defined in the d1 and DLFCN modules. Availability: UNIX. New in version 2.2.

getrefcount (object)
Return the reference count of the object. The count returned is generally one higher than you
might expect, because it includes the (temporary) reference as an argument to getrefcount ().

getrecursionlimit ()
Return the current value of the recursion limit, the maximum depth of the Python interpreter
stack. This limit prevents infinite recursion from causing an overflow of the C stack and crashing
Python. It can be set by setrecursionlimit().

_getframe([depth])
Return a frame object from the call stack. If optional integer depth is given, return the frame
object that many calls below the top of the stack. If that is deeper than the call stack, ValueError
is raised. The default for depth is zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

3.1. sys — System-specific parameters and functions 33

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each ver-
sion, including proper support for non-production releases. For example, to test that the Python
interpreter is at least version 1.5.2, use:

if sys.hexversion >= 0x010502F0:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called ‘hexversion’ since it only really looks meaningful when viewed as the result of passing
it to the built-in hex() function. The version_info value may be used for a more human-friendly
encoding of the same information. New in version 1.5.2.

last_type

last_value

last_traceback
These three variables are not always defined; they are set when an exception is not handled and
the interpreter prints an error message and a stack traceback. Their intended use is to allow
an interactive user to import a debugger module and engage in post-mortem debugging without
having to re-execute the command that caused the error. (Typical use is ‘import pdb; pdb.pm()’
to enter the post-mortem debugger; see chapter 9, “The Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return values from exc_info() above.
(Since there is only one interactive thread, thread-safety is not a concern for these variables, unlike
for exc_type etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2*¥*31-1.
The largest negative integer is -maxint-1 — the asymmetry results from the use of 2’s complement
binary arithmetic.

maxunicode
An integer giving the largest supported code point for a Unicode character. The value of this
depends on the configuration option that specifies whether Unicode characters are stored as UCS-2
or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This
can be manipulated to force reloading of modules and other tricks. Note that removing a module
from this dictionary is not the same as calling reload () on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, or an installation-dependent default.

The first item of this list, path[0], is the directory containing the script that was used to invoke
the Python interpreter. If the script directory is not available (e.g. if the interpreter is invoked
interactively or if the script is read from standard input), path[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is
inserted before the entries inserted as a result of PYTHONPATH.

platform
This string contains a platform identifier, e.g. >sunos5’ or ’linux1’. This can be used to append
platform-specific components to path, for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are
installed; by default, this is the string ’/usr/local’. This can be set at build time with the
--prefix argument to the configure script. The main collection of Python library modules is
installed in the directory prefix + ’/1lib/pythonversion’ while the platform independent header

34 Chapter 3. Python Runtime Services

files (all except ‘pyconfig.h’) are stored in prefix + ’/include/pythonuversion’, where version is
equal to version[:3].

psi

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if
the interpreter is in interactive mode. Their initial values in this case are >>>> ? and ’... . If
a non-string object is assigned to either variable, its str() is re-evaluated each time the interpreter
prepares to read a new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter
checks for periodic things such as thread switches and signal handlers. The default is 10, meaning
the check is performed every 10 Python virtual instructions. Setting it to a larger value may
increase performance for programs using threads. Setting it to a value <= 0 checks every virtual
instruction, maximizing responsiveness as well as overhead.

setdefaultencoding(name)
Set the current default string encoding used by the Unicode implementation. If name does not
match any available encoding, LookupError is raised. This function is only intended to be used by
the site module implementation and, where needed, by sitecustomize. Once used by the site
module, it is removed from the sys module’s namespace. New in version 2.0.

setdlopenflags(n)

Set the flags used by the interpreter for dlopen() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a
module, if called as sys.setdlopenflags(0). To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD_NOW | d1.RTLD_GLOBAL). Symbolic names for the flag modules
can be either found in the d1 module, or in the DLFCN module. If DLFCN is not available, it can be
generated from °/usr/include/dlfcn.h’ using the h2py script. Availability: UNIX. New in version
2.2.

setprofile(profilefunc)

Set the system’s profile function, which allows you to implement a Python source code profiler
in Python. See chapter 10 for more information on the Python profiler. The system’s profile
function is called similarly to the system’s trace function (see settrace()), but it isn’t called for
each executed line of code (only on call and return, but the return event is reported even when
an exception has been set). The function is thread-specific, but there is no way for the profiler to
know about context switches between threads, so it does not make sense to use this in the presence
of multiple threads. Also, its return value is not used, so it can simply return None.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stack to limit. This limit prevents infinite
recursion from causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when
she has a program that requires deep recursion and a platform that supports a higher limit. This
should be done with care, because a too-high limit can lead to a crash.

settrace (tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in
Python. See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is
thread-specific; for a debugger to support multiple threads, it must be registered using settrace()
for each thread being debugged.

stdin

stdout

stderr
File objects corresponding to the interpreter’s standard input, output and error streams. stdin is
used for all interpreter input except for scripts but including calls to input() and raw_input().
stdout is used for the output of print and expression statements and for the prompts of input ()
and raw_input (). The interpreter’s own prompts and (almost all of) its error messages go to
stderr. stdout and stderr needn’t be built-in file objects: any object is acceptable as long as it

3.1. sys — System-specific parameters and functions 35

has a write() method that takes a string argument. (Changing these objects doesn’t affect the
standard I/O streams of processes executed by os.popen(), os.system() or the exec*() family
of functions in the os module.)

__stdin__

__stdout__

__stderr__
These objects contain the original values of stdin, stderr and stdout at the start of the program.
They are used during finalization, and could be useful to restore the actual files to known working
file objects in case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of
traceback information printed when an unhandled exception occurs. The default is 1000. When
set to 0 or less, all traceback information is suppressed and only the exception type and value are
printed.

version
A string containing the version number of the Python interpreter plus additional information
on the build number and compiler used. It has a value of the form ’wversion #build_number,
build_date, build_time) [compiler]’. The first three characters are used to identify the version
in the installation directories (where appropriate on each platform). An example:

>>> import sys
>>> sys.version
’1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

version_info
A tuple containing the five components of the version number: major, minor, micro, release-
level, and serial. All values except releaselevel are integers; the release level is >alpha’, ’beta’,
’candidate’, or final’. The version_info value corresponding to the Python version 2.0 is
(2, 0, 0, ’final’, 0). New in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to
the warnings module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string
resource 1000 in the Python DLL. The value is normally the first three characters of version. It
is provided in the sys module for informational purposes; modifying this value has no effect on the
registry keys used by Python. Availability: Windows.

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector
(enabled by default). If this was not enabled, an ImportError is raised by attempts to import this
module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the
collector, tune the collection frequency, and set debugging options. It also provides access to unreachable
objects that the collector found but cannot free. Since the collector supplements the reference counting
already used in Python, you can disable the collector if you are sure your program does not create
reference cycles. Automatic collection can be disabled by calling gc.disable(). To debug a leaking
program call gc.set_debug(gc.DEBUG_LEAK).

The gc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable()

36 Chapter 3. Python Runtime Services

Disable automatic garbage collection.

isenabled()
Returns true if automatic collection is enabled.

collect()
Run a full collection. All generations are examined and the number of unreachable objects found
is returned.

set_debug(flags)
Set the garbage collection debugging flags. Debugging information will be written to sys.stderr.
See below for a list of debugging flags which can be combined using bit operations to control
debugging.

get_debug()
Return the debugging flags currently set.

setfthreshold(thresholdO[, threshold1 [, threshold?]])
Set the garbage collection thresholds (the collection frequency). Setting threshold0 to zero disables
collection.

The GC classifies objects into three generations depending on how many collection sweeps they
have survived. New objects are placed in the youngest generation (generation 0). If an object
survives a collection it is moved into the next older generation. Since generation 2 is the oldest
generation, objects in that generation remain there after a collection. In order to decide when
to run, the collector keeps track of the number object allocations and deallocations since the last
collection. When the number of allocations minus the number of deallocations exceeds threshold0,
collection starts. Initially only generation O is examined. If generation O has been examined more
than threshold1 times since generation 1 has been examined, then generation 1 is examined as well.
Similarly, threshold2 controls the number of collections of generation 1 before collecting generation
2.

get_threshold()
Return the current collection thresholds as a tuple of (threshold0, thresholdl, threshold2).

get_referrers(*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those
containers which support garbage collection; extension types which do refer to other objects but
do not support garbage collection will not be found. New in version 2.2.

The following variable is provided for read-only access (you can mutate its value but should not rebind
it):

garbage

A list of objects which the collector found to be unreachable but could not be freed (uncollectable
objects). By default, this list contains only objects with __del__() methods.! Objects that
have __del__ () methods and are part of a reference cycle cause the entire reference cycle to be
uncollectable, including objects not necessarily in the cycle but reachable only from it. Python
doesn’t collect such cycles automatically because, in general, it isn’t possible for Python to guess
a safe order in which to run the __del__ () methods. If you know a safe order, you can force the
issue by examining the garbage list, and explicitly breaking cycles due to your objects within the
list. Note that these objects are kept alive even so by virtue of being in the garbage list, so they
should be removed from garbage too. For example, after breaking cycles, do del gc.garbagel[:]
to empty the list. It’s generally better to avoid the issue by not creating cycles containing objects
with __del__() methods, and garbage can be examined in that case to verify that no such cycles
are being created.

If DEBUG_SAVEALL is set, then all unreachable objects will be added to this list rather than freed.
The following constants are provided for use with set_debug():

DEBUG_STATS
Print statistics during collection. This information can be useful when tuning the collection fre-

1Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only those with __del__()
methods.

3.2. gc — Garbage Collector interface 37

quency.

DEBUG_COLLECTABLE
Print information on collectable objects found.

DEBUG_UNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be
freed by the collector). These objects will be added to the garbage list.

DEBUG_INSTANCES
‘When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTABLE is set, print information about instance ob-
jects found.

DEBUG_OBJECTS
‘When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTABLE is set, print information about objects other
than instance objects found.

DEBUG_SAVEALL
When set, all unreachable objects found will be appended to garbage rather than being freed. This
can be useful for debugging a leaking program.

DEBUG_LEAK
The debugging flags necessary for the collector to print information about a leak-
ing program (equal to DEBUG_COLLECTABLE | DEBUG_UNCOLLECTABLE | DEBUG_INSTANCES |
DEBUG_OBJECTS | DEBUG_SAVEALL).

3.3 weakref — Weak references

New in version 2.1.
The weakref module allows the Python programmer to create weak references to objects.

In the discussion which follows, the term referent means the object which is referred to by a weak
reference.

XXX — need to say more here!

Not all objects can be weakly referenced; those objects which do include class instances, functions
written in Python (but not in C), and methods (both bound and unbound). Extension types can easily
be made to support weak references; see section 3.3.3, “Weak References in Extension Types,” for more
information.

ref (object [, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference
object if the referent is still alive; if the referent is no longer alive, calling the reference object will
cause None to be returned. If callback is provided, it will be called when the object is about to
be finalized; the weak reference object will be passed as the only parameter to the callback; the
referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered
for each weak reference will be called from the most recently registered callback to the oldest
registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propa-
gated; they are handled in exactly the same way as exceptions raised from an object’s __del__ ()
method.

Weak references are hashable if the object is hashable. They will maintain their hash value even
after the object was deleted. If hash() is called the first time only after the object was deleted, the
call will raise TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two
references have the same equality relationship as their referents (regardless of the callback). If
either referent has been deleted, the references are equal only if the reference objects are the same
object.

38 Chapter 3. Python Runtime Services

proxy(object[, callback])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most
contexts instead of requiring the explicit dereferencing used with weak reference objects. The
returned object will have a type of either ProxyType or CallableProxyType, depending on whether
object is callable. Proxy objects are not hashable regardless of the referent; this avoids a number of
problems related to their fundamentally mutable nature, and prevent their use as dictionary keys.
callback is the same as the parameter of the same name to the ref () function.

getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class WeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there
is no longer a strong reference to the key. This can be used to associate additional data with an
object owned by other parts of an application without adding attributes to those objects. This can
be especially useful with objects that override attribute accesses.

class WeakValueDictionary([dz’ct])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no
strong reference to the value exists any more.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object
is a proxy without being dependent on naming both proxy types.

exception ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This
is the same as the standard ReferenceError exception.

See Also:

PEP 0205, “Weak References’
The proposal and rationale for this feature, including links to earlier implementations and infor-
mation about similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still
exists, by calling it:

>>> import weakref
>>> class Object:
pass

>>> o = Object()

>>> r = weakref.ref (o)
>>> 02 = r()

>>> o0 is 02

1

If the referent no longer exists, calling the reference object returns None:

3.3. weakref — Weak references 39

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expression ref () is not None.
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o=10
if o is None:
referent has been garbage collected
print "Object has been allocated; can’t frobmnicate."
else:
print "Object is still live!"
o.do_something_useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can
cause a weak reference to become invalidated before the weak reference is called; the idiom shown above
is safe in threaded applications as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen
before. The IDs of the objects can then be used in other data structures without forcing the objects to
remain alive, but the objects can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember (obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism
without incurring the overhead on those objects which do not benefit by weak referencing (such as
numbers).

For an object to be weakly referencable, the extension must include a PyObject* field in the instance
structure for the use of the weak reference mechanism; it must be initialized to NULL by the object’s
constructor. It must also set the tp_weaklistoffset field of the corresponding type object to the offset
of the field. For example, the instance type is defined with the following structure:

typedef struct {
PyObject_HEAD

PyClassObject *in_class; /* The class object */
PyObject xin_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PyInstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject PyInstance_Type = {

40 Chapter 3. Python Runtime Services

PyObject_HEAD_INIT (&PyType_Type)
0,
"module.instance",

/* Lots of stuff omitted for brevity... */

offsetof (PyInstanceObject, in_weakreflist) /* tp_weaklistoffset */
};

The only further addition is that the destructor needs to call the weak reference manager to clear any
weak references. This should be done before any other parts of the destruction have occurred, but is
only required if the weak reference list is non-NULL:

static void
instance_dealloc(PyInstanceObject *inst)

{
/* Allocate temporaries if needed, but do not begin
destruction just yet.
*/
if (inst->in_weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) inst);
/* Proceed with object destruction normally. */
}

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard.
On any real computer, some floating point operations produce results that cannot be expressed as a
normal floating point value. For example, try

>>> import math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) ”Inf” is a special,
non-numeric value in IEEE-754 that stands for ”infinity”, and "nan” means "not a number.” Note that,
other than the non-numeric results, nothing special happened when you asked Python to carry out those
calculations. That is in fact the default behaviour prescribed in the IEEE-754 standard, and if it works
for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where
the faulty operation was attempted. The fpectl module is for use in that situation. It provides control
over floating point units from several hardware manufacturers, allowing the user to turn on the generation
of SIGFPE whenever any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation
occurs. In tandem with a pair of wrapper macros that are inserted into the C code comprising your
python system, SIGFPE is trapped and converted into the Python FloatingPointError exception.

The fpectl module defines the following functions and may raise the given exception:

turnon_sigfpe()
Turn on the generation of SIGFPE, and set up an appropriate signal handler.

turnoff_sigfpe()
Reset default handling of floating point exceptions.

exception FloatingPointError
After turnon_sigfpe() has been executed, a floating point operation that raises one of the IEEE-

3.4. fpectl — Floating point exception control 41

754 exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard
Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operation of the fpectl module.

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0O PASS
FloatingPointError: Division by zero
[more output from test elided]

>>> import math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in 7

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a
per-architecture basis. You may have to modify fpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECT and PyFPE_END_PROTECT be inserted into your code in an appropriate fash-
ion. Python itself has been modified to support the fpectl module, but many other codes of interest to
numerical analysts have not.

The fpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module op-
erates. The include file ‘Include/pyfpe.h’ discusses the implementation of this module at some length.
‘Modules/fpetestmodule.c’ gives several examples of use. Many additional examples can be found in
‘Objects/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

The atexit module defines a single function to register cleanup functions. Functions thus registered are
automatically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal,
when a Python fatal internal error is detected, or when os._exit () is called.

This is an alternate interface to the functionality provided by the sys.exitfunc variable.

Note: This module is unlikely to work correctly when used with other code that sets sys.exitfunc.
In particular, other core Python modules are free to use atexit without the programmer’s knowledge.
Authors who use sys.exitfunc should convert their code to use atexit instead. The simplest way to
convert code that sets sys.exitfunc is to import atexit and register the function that had been bound
to sys.exitfunc.

42 Chapter 3. Python Runtime Services

register(func[, *args[, **kargs”)

Register func as a function to be executed at termination. Any optional arguments that are to be

passed to func must be passed as arguments to register().

At normal program termination (for instance, if sys.exit() is called or the main module’s exe-
cution completes), all functions registered are called in last in, first out order. The assumption is
that lower level modules will normally be imported before higher level modules and thus must be

cleaned up later.
See Also:

Module readline (section 7.16):
Useful example of atexit to read and write readline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it
is imported and save the counter’s updated value automatically when the program terminates without

relying on the application making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter").read())
except IOError:

_count = 0

def incrcounter(n):
global _count

_count = _count + n

def savecounter():
open("/tmp/counter", "w").write("}d" % _count)

import atexit
atexit.register(savecounter)

3.6 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but
not for the types defined by various extension modules. It is safe to use ‘from types import *’ — the
module does not export any names besides the ones listed here. New names exported by future versions

of this module will all end in ‘Type’.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type of None.

TypeType
The type of type objects (such as returned by type()).

IntType
The type of integers (e.g. 1).

3.6. types — Names for all built-in types

43

LongType
The type of long integers (e.g. 1L).

FloatType

The type of floating point numbers (e.g. 1.0).
ComplexType

The type of complex numbers (e.g. 1.0j).
StringType

The type of character strings (e.g. ’Spam’).
UnicodeType

The type of Unicode character strings (e.g. u’Spam’).
TupleType

The type of tuples (e.g. (1, 2, 3, ’Spam’)).
ListType

The type of lists (e.g. [0, 1, 2, 3]).
DictType

The type of dictionaries (e.g. {’Bacon’: 1, ’Ham’: 0}).
DictionaryType

An alternate name for DictType.
FunctionType

The type of user-defined functions and lambdas.
LambdaType

An alternate name for FunctionType.
GeneratorType

The type of generator-iterator objects, produced by calling a generator function.

2.2.
CodeType

The type for code objects such as returned by compile().

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name for MethodType.

BuiltinFunctionType
The type of built-in functions like len() or sys.exit ().

BuiltinMethodType
An alternate name for BuiltinFunction.

ModuleType
The type of modules.

FileType
The type of open file objects such as sys.stdout.

XRangeType
The type of range objects returned by xrange ().

SliceType
The type of objects returned by slice().

New in version

44 Chapter 3. Python Runtime Services

EllipsisType
The type of Ellipsis.

TracebackType
The type of traceback objects such as found in sys.exc_traceback.

FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

BufferType
The type of buffer objects created by the buffer () function.

StringTypes
A list containing StringType and UnicodeType used to facilitate easier checking for any string
object, e.g. s in types.StringTypes.

3.7 UserDict — Class wrapper for dictionary objects

Note: This module is available for backward compatibility only. If you are writing code that does not
need to work with versions of Python earlier than Python 2.2, please consider subclassing directly from
the built-in dictionary type.

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class
for your own dictionary-like classes, which can inherit from them and override existing methods or add
new ones. In this way one can add new behaviors to dictionaries.

The UserDict module defines the UserDict class:

class UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is
accessible via the data attribute of UserDict instances. If initialdata is provided, data is initialized
with its contents; note that a reference to initialdata will not be kept, allowing it be used used for
other purposes.

In addition to supporting the methods and operations of mappings (see section 2.2.7), UserDict instances
provide the following attribute:

data
A real dictionary used to store the contents of the UserDict class.

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not
need to work with versions of Python earlier than Python 2.2, please consider subclassing directly from
the built-in 1ist type.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your
own list-like classes, which can inherit from them and override existing methods or add new ones. In
this way one can add new behaviors to lists.

The UserList module defines the UserList class:

class UserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible
via the data attribute of UserList instances. The instance’s contents are initially set to a copy
of list, defaulting to the empty list [1. list can be either a regular Python list, or an instance of
UserList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see section 2.2.6), UserList
instances provide the following attribute:

data

3.7. UserDict — Class wrapper for dictionary objects 45

A real Python list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be
called with either no arguments or one argument. List operations which return a new sequence attempt
to create an instance of the actual implementation class. To do so, it assumes that the constructor can
be called with a single parameter, which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported
by this class will need to be overridden; please consult the sources for information about the methods
which need to be provided in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with
no parameters, and offer a mutable data attribute. Earlier versions of Python did not attempt to create
instances of the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you
are writing code that does not need to work with versions of Python earlier than Python 2.2, please
consider subclassing directly from the built-in str type instead of using UserString (there is no built-in
equivalent to MutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your
own string-like classes, which can inherit from them and override existing methods or add new ones. In
this way one can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects;
this is especially the case for MutableString.

The UserString module defines the following classes:

class UserString([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular
string or Unicode string object, which is accessible via the data attribute of UserString instances.
The instance’s contents are initially set to a copy of sequence. sequence can be either a regular
Python string or Unicode string, an instance of UserString (or a subclass) or an arbitrary sequence
which can be converted into a string using the built-in str() function.

class MutableString([sequence])
This class is derived from the UserString above and redefines strings to be mutable. Mutable
strings can’t be used as dictionary keys, because dictionaries require immutable objects as keys.
The main intention of this class is to serve as an educational example for inheritance and necessity
to remove (override) the __hash__ () method in order to trap attempts to use a mutable object
as dictionary key, which would be otherwise very error prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.2.6,
“String Methods”), UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content of the UserString class.

3.10 operator — Standard operators as functions.

The operator module exports a set of functions implemented in C corresponding to the intrinsic oper-
ators of Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function
names are those used for special class methods; variants without leading and trailing ‘__’ are also
provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical
operations, sequence operations, and abstract type tests.

46 Chapter 3. Python Runtime Services

The object comparison functions are useful for all objects, and are named after the rich comparison
operators they support:

1t(a, b)

le(a, b)

eq(a, b)

ne(a, b)

ge(a, b)

gt(a, b)

__1t__(a, b)

__le__(a, b)

__eq—_C(a, b)

__mne__(a, b)

__ge__(a, b)

__gt__C(a, b)
Perform “rich comparisons” between a and b. Specifically, 1t (a, b) is equivalent to a < b, le(a,
b) is equivalent to a <= b, eq(a, b) is equivalent to a == b, ne(a, b) is equivalent to a !=
b, gt(a, b) is equivalent to a > b and ge(a, b) is equivalent to a >= b. Note that unlike the
built-in cmp (), these functions can return any value, which may or may not be interpretable as a
Boolean value. See the Python Reference Manual for more informations about rich comparisons.
New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests and Boolean
operations:

not_(o)

__not__(o)
Return the outcome of not o. (Note that there is no __not__ () method for object instances;
only the interpreter core defines this operation. The result is affected by the __nonzero__ () and
__len__() methods.)

truth(o)
Return 1 if o is true, and 0 otherwise.

The mathematical and bitwise operations are the most numerous:

abs (0)
__abs__(o0)
Return the absolute value of o.

add(a, b)
__add__(a, b)
Return a + b, for a and b numbers.

and_(a, b)
__and__(a, b)
Return the bitwise and of a and b.

div(a, b)

__div__(a, b)
Return a / b when __future__.division is not in effect. This is also known as “classic” division.

floordiv(a, b)
__floordiv__(a, b)
Return a // b. New in version 2.2.

inv (o)
invert (o)
__inv__(o)

__invert__(o)
Return the bitwise inverse of the number o. This is equivalent to “o. The names invert() and
__invert__() were added in Python 2.0.

1shift(a, b)

3.10. operator — Standard operators as functions. 47

__1shift__(a, b)
Return a shifted left by b.

mod(a, b)
__mod__{(a, b)
Return a % b.

mul (a, b)
__mul__(a, b)
Return a * b, for a and b numbers.

neg(o)
__neg__ (o)
Return o negated.

or_(a, b)
__or__(a, b)
Return the bitwise or of a and b.

pos (o)
__pos__(o)
Return o positive.

rshift(a, b)
__rshift__C(a, b)
Return a shifted right by b.

sub(a, b)
__sub__C(a, b)
Return a - b.

truediv(a, b)

__truediv__(a, b)
Return a / b when __future__ .division is in effect. This is also known as division. New in
version 2.2.

xor (a, b)
__xor__C(a, b)
Return the bitwise exclusive or of a and b.

Operations which work with sequences include:

concat(a, b)
__concat__C(a, b)
Return a + b for a¢ and b sequences.

contains(a, b)

__contains__(a, b)
Return the outcome of the test b in a. Note the reversed operands. The name __contains__ ()
was added in Python 2.0.

countOf (a, b)
Return the number of occurrences of b in a.

delitem(a, b)
__delitem__(a, b)
Remove the value of a at index b.

delslice(a, b, ¢)
__delslice__(a, b, ¢)
Delete the slice of a from index b to index ¢-1.

getitem(a, b)
__getitem__(a, b)
Return the value of a at index b.

getslice(a, b, ¢)

48 Chapter 3. Python Runtime Services

__getslice__(a, b, ©)
Return the slice of @ from index b to index c-1.

index0f (a, b)
Return the index of the first of occurrence of b in a.

repeat(a, b)
__repeat__(a, b)
Return a * b where a is a sequence and b is an integer.

sequenceIncludes(...)
Deprecated since release 2.0. Use contains() instead.

Alias for contains().

setitem(a, b, c)
__setitem__(a, b, ¢)
Set the value of a at index b to c.

setslice(a, b, ¢, v)
__setslice__(a, b, ¢, v)
Set the slice of a from index b to index c¢-1 to the sequence v.

The operator module also defines a few predicates to test the type of objects. Note: Be careful not
to misinterpret the results of these functions; only isCallable() has any measure of reliability with
instance objects. For example:

>>> class C:
pass

>>> import operator

>>> o0 = CQ)

>>> operator.isMappingType (o)
1

isCallable(o0)
Deprecated since release 2.0. Use the callable() built-in function instead.

Returns true if the object o can be called like a function, otherwise it returns false. True is returned
for functions, bound and unbound methods, class objects, and instance objects which support the
__call__ () method.

isMappingType (0)
Returns true if the object o supports the mapping interface. This is true for dictionaries and all
instance objects. Warning: There is no reliable way to test if an instance supports the complete
mapping protocol since the interface itself is ill-defined. This makes this test less useful than it
otherwise might be.

isNumberType (0)
Returns true if the object o represents a number. This is true for all numeric types implemented in
C, and for all instance objects. Warning: There is no reliable way to test if an instance supports
the complete numeric interface since the interface itself is ill-defined. This makes this test less
useful than it otherwise might be.

isSequenceType(0)
Returns true if the object o supports the sequence protocol. This returns true for all objects which
define sequence methods in C, and for all instance objects. Warning: There is no reliable way to
test if an instance supports the complete sequence interface since the interface itself is ill-defined.
This makes this test less useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals from 0 to 256 to their character equivalents.

>>> import operator
>>> d = {}
>>> keys = range(256)

3.10. operator — Standard operators as functions. 49

>>> vals = map(chr, keys)
>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the
functions in the operator module.

Operation Syntax Function
Addition a+ b add(a, b)
Concatenation seql + seq? concat (seql, seq?2)
Containment Test 0 in seq contains(seq, o)
Division a/ b div(a, b) # without __future__.division
Division a /b truediv(a, b) # with __future__.division
Division a// b floordiv(a, b)
Bitwise And a &b and_C(a, b)
Bitwise Exclusive Or a b xor(a, b)
Bitwise Inversion T a invert(a)
Bitwise Or a |l b or_(a, b)
Indexed Assignment olk]l = v setitem(o, k, v)
Indexed Deletion del olk] delitem(o, k)
Indexing ol[k] getitem(o, k)
Left Shift a << b 1shift(a, b)
Modulo a%b mod(a, b)
Multiplication a * b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not_(a)
Right Shift a > b rshift(a, b)
Sequence Repitition seq * 1 repeat(seq, %)
Slice Assignment seqli:j] = values | setslice(seq, i, j, values)
Slice Deletion del seqli:j] delslice(seq, 7, j)
Slicing seqli:j] getslice(seq, 7, j)
String Formatting sh o mod (s, 0)
Subtraction a-b sub(a, b)
Truth Test 0 truth(o)
Ordering a < b 1t(a, b)
Ordering a <=0 le(a, b)
Equality a ==b eq(a, b)
Difference a '=b ne(a, b)
Ordering a >=b geCa, b)
Ordering a > b gt(a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

The inspect module provides several useful functions to help get information about live objects such as
modules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can
help you examine the contents of a class, retrieve the source code of a method, extract and format the
argument list for a function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code,
inspecting classes and functions, and examining the interpreter stack.

50 Chapter 3. Python Runtime Services

3.11.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The nine
functions whose names begin with “is” are mainly provided as convenient choices for the second argument

to getmembers ().

They also help you determine when you can expect to find the following special

attributes:
Type Attribute Description Notes
module | __doc__ documentation string
__file_ filename (missing for built-in modules)
class __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object that asked for this method (1)
im_func function object containing implementation of method
im_self instance to which this method is bound, or None
function | __doc__ documentation string
__name__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as __doc__)
func_globals global namespace in which this function was defined
func_name (same as __name__)
traceback | tb_frame frame object at this level
th_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
th_next next inner traceback object (called by this level)
frame f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback | traceback if raised in this frame, or None
f_exc_type exception type if raised in this frame, or None
f_exc_value exception value if raised in this frame, or None
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, or None
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
co_Inotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound, or None
Note:
3.11. inspect — Inspect live objects 51

(1) Changed in version 2.2: im_class used to refer to the class that defined the method.

getmembers (object [, predicate])
Return all the members of an object in a list of (name, value) pairs sorted by name. If the optional
predicate argument is supplied, only members for which the predicate returns a true value are
included.

getmoduleinfo (path)

Return a tuple of values that describe how Python will interpret the file identified by path if it is
a module, or None if it would not be identified as a module. The return tuple is (name, suffiz,
mode, mitype), where name is the name of the module without the name of any enclosing package,
suffiz is the trailing part of the file name (which may not be a dot-delimited extension), mode is
the open() mode that would be used (’r’ or ’rb’), and mtype is an integer giving the type of
the module. mtype will have a value which can be compared to the constants defined in the imp
module; see the documentation for that module for more information on module types.

getmodulename (path)
Return the name of the module named by the file path, without including the names of enclosing
packages. This uses the same algortihm as the interpreter uses when searching for modules. If the
name cannot be matched according to the interpreter’s rules, None is returned.

ismodule (object)
Return true if the object is a module.

isclass (object)
Return true if the object is a class.

ismethod (object)
Return true if the object is a method.

isfunction(object)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (object)
Return true if the object is a traceback.

isframe (object)
Return true if the object is a frame.

iscode (object)
Return true if the object is a code.

isbuiltin(object)
Return true if the object is a built-in function.

isroutine (object)
Return true if the object is a user-defined or built-in function or method.

3.11.2 Retrieving source code

getdoc (object)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings
that are indented to line up with blocks of code, any whitespace than can be uniformly removed
from the second line onwards is removed.

getcomments (object)
Return in a single string any lines of comments immediately preceding the object’s source code (for
a class, function, or method), or at the top of the Python source file (if the object is a module).

getfile(object)
Return the name of the (text or binary) file in which an object was defined. This will fail with a
TypeError if the object is a built-in module, class, or function.

getmodule (object)
Try to guess which module an object was defined in.

52 Chapter 3. Python Runtime Services

getsourcefile(object)
Return the name of the Python source file in which an object was defined. This will fail with a
TypeError if the object is a built-in module, class, or function.

getsourcelines (object)
Return a list of source lines and starting line number for an object. The argument may be a
module, class, method, function, traceback, frame, or code object. The source code is returned as
a list of the lines corresponding to the object and the line number indicates where in the original
source file the first line of code was found. An IOError is raised if the source code cannot be
retrieved.

getsource (object)
Return the text of the source code for an object. The argument may be a module, class, method,
function, traceback, frame, or code object. The source code is returned as a single string. An
I0Error is raised if the source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree(classes [, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it
contains classes derived from the class whose entry immediately precedes the list. Each entry is a
2-tuple containing a class and a tuple of its base classes. If the unique argument is true, exactly
one entry appears in the returned structure for each class in the given list. Otherwise, classes using
multiple inheritance and their descendants will appear multiple times.

getargspec (func)
Get the names and default values of a function’s arguments. A tuple of four things is returned:
(args, warargs, varkw, defaults). args is a list of the argument names (it may contain nested
lists). warargs and varkw are the names of the * and ** arguments or None. defaults is a tuple of
default argument values; if this tuple has n elements, they correspond to the last n elements listed
in args.

getargvalues (frame)
Get information about arguments passed into a particular frame. A tuple of four things is returned:
Cargs, warargs, varkw, locals). args is a list of the argument names (it may contain nested lists).
varargs and varkw are the names of the * and ** arguments or None. locals is the locals dictionary
of the given frame.

formatargspec(args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultformat])
Format a pretty argument spec from the four values returned by getargspec(). The other four
arguments are the corresponding optional formatting functions that are called to turn names and
values into strings.

formatargvalues (args [, varargs, varkw, locals, argformat, varargsformat, varkwformat, valueformat])
Format a pretty argument spec from the four values returned by getargvalues(). The other four
arguments are the corresponding optional formatting functions that are called to turn names and
values into strings.

getmro(cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears
more than once in this tuple. Note that the method resolution order depends on cls’s type. Unless
a very peculiar user-defined metatype is in use, cls will be the first element of the tuple.

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame
object, the filename, the line number of the current line, the function name, a list of lines of context
from the source code, and the index of the current line within that list. The optional context argument
specifies the number of lines of context to return, which are centered around the current line.

3.11. inspect — Inspect live objects 53

Warning: Keeping references to frame objects, as found in the first element of the frame records these
functions return, can cause your program to create reference cycles. Once a reference cycle has been
created, the lifespan of all objects which can be accessed from the objects which form the cycle can
become much longer even if Python’s optional cycle detector is enabled. If such cycles must be created,
it is important to ensure they are explicitly broken to avoid the delayed destruction of objects and
increased memory consumption which occurs.

getframeinfo (frame [, contemt])
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of
the frame’s frame record. The optional second argument specifies the number of lines of context
to return, which are centered around the current line.

getouterframes (frame [, context])
Get a list of frame records for a frame and all higher (calling) frames.

getinnerframes (traceback [, context])
Get a list of frame records for a traceback’s frame and all lower frames.

currentframe ()
Return the frame object for the caller’s stack frame.

stack([contea:t])
Return a list of frame records for the stack above the caller’s frame.

trace([context])
Return a list of frame records for the stack below the current exception.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs.
It exactly mimics the behavior of the Python interpreter when it prints a stack trace. This is useful
when you want to print stack traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the wvariables
sys.exc_traceback and sys.last_traceback and returned as the third item from sys.exc_info().

The module defines the following functions:

printftb(tmceback[, limit [, ﬁle]])
Print up to limit stack trace entries from traceback. If limit is omitted or None, all entries are
printed. If file is omitted or None, the output goes to sys.stderr; otherwise it should be an open
file or file-like object to receive the output.

print_exception(type, value, tmceback[, limit[, ﬁle]])
Print exception information and up to limit stack trace entries from traceback to file. This differs
from print_tb() in the following ways: (1) if traceback is not None, it prints a header ‘Traceback
(most recent call last):’; (2) it prints the exception type and value after the stack trace; (3)
if type is SyntaxError and walue has the appropriate format, it prints the line where the syntax
error occurred with a caret indicating the approximate position of the error.

print_exc([limit [, ﬁle]])
This is a shorthand for ‘print_exception(sys.exc_type, sys.exc_value,
sys.exc_traceback, limit, file)’. (In fact, it uses sys.exc_info() to retrieve the same
information in a thread-safe way.)

print_last([limit[, ﬁle]])
This is a shorthand for ‘print_exception(sys.last_type, sys.last_value,
sys.last_traceback, limit, file)’.

print_stack([f [, limit [, ﬁle]]])
This function prints a stack trace from its invocation point. The optional f argument can be used
to specify an alternate stack frame to start. The optional limit and file arguments have the same

54 Chapter 3. Python Runtime Services

meaning as for print_exception().

extract_tb (traceback [, limit])
Return a list of up to limit “pre-processed” stack trace entries extracted from the traceback object
traceback. It is useful for alternate formatting of stack traces. If limit is omitted or None, all entries
are extracted. A “pre-processed” stack trace entry is a quadruple (filename, line number, function
name, text) representing the information that is usually printed for a stack trace. The text is a
string with leading and trailing whitespace stripped; if the source is not available it is None.

extract_stack([f [, limit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract_tb(). The optional f and limit arguments have the same meaning as for print_stack().

format_list (list)
Given a list of tuples as returned by extract_tb() or extract_stack(), return a list of strings
ready for printing. Each string in the resulting list corresponds to the item with the same index
in the argument list. Each string ends in a newline; the strings may contain internal newlines as
well, for those items whose source text line is not None.

format_exception_only (type, value)
Format the exception part of a traceback. The arguments are the exception type and value such as
given by sys.last_type and sys.last_value. The return value is a list of strings, each ending
in a newline. Normally, the list contains a single string; however, for SyntaxError exceptions,
it contains several lines that (when printed) display detailed information about where the syntax
error occurred. The message indicating which exception occurred is the always last string in the
list.

format_exception (type, value, tb[, limit])
Format a stack trace and the exception information. The arguments have the same meaning as
the corresponding arguments to print_exception(). The return value is a list of strings, each
ending in a newline and some containing internal newlines. When these lines are concatenated and
printed, exactly the same text is printed as does print_exception().

formatftb(tb[, limit])
A shorthand for format_list (extract_tb(tb, limit)).

format_stack([f [, limit]])
A shorthand for format_list(extract_stack(f, limit)).

tb_lineno (th)
This function returns the current line number set in the traceback object. This is normally the
same as the tb.tb_lineno field of the object, but when optimization is used (the -O flag) this field
is not updated correctly; this function calculates the correct value.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard
Python interactive interpreter loop. For a more complete implementation of the interpreter loop, refer
to the code module.

import sys, traceback

def run_user_code(envdir) :

source = raw_input(">>> ")

try:
exec source in envdir

except:
print "Exception in user code:"
print ’-’*60
traceback.print_exc(file=sys.stdout)
print ’-’*60

3.12. traceback — Print or retrieve a stack traceback 55

envdir = {}
while 1:
run_user_code (envdir)

3.13 1linecache — Random access to text lines

The linecache module allows one to get any line from any file, while attempting to optimize internally,
using a cache, the common case where many lines are read from a single file. This is used by the
traceback module to retrieve source lines for inclusion in the formatted traceback.

The linecache module defines the following functions:

getline (filename, lineno)
Get line lineno from file named filename. This function will never throw an exception — it will
return ’”’ on errors (the terminating newline character will be included for lines that are found).

If a file named filename is not found, the function will look for it in the module search path,
sys.path.

clearcache()
Clear the cache. Use this function if you no longer need lines from files previously read using
getline().

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and
you require the updated version.

Example:

>>> import linecache
>>> linecache.getline(’/etc/passwd’, 4)
’sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing
a Python object structure. “Pickling” is the process whereby a Python object hierarchy is converted into
a byte stream, and “unpickling” is the inverse operation, whereby a byte stream is converted back into
an object hierarchy. Pickling (and unpickling) is alternatively known as “serialization”, “marshalling,”?
or “flattening”, however the preferred term used here is “pickling” and “unpickling” to avoid confusing.

This documentation describes both the pickle module and the cPickle module.

3.14.1 Relationship to other Python modules

The pickle module has an optimized cousin called the cPickle module. As its name implies, cPickle is
written in C, so it can be up to 1000 times faster than pickle. However it does not support subclassing
of the Pickler () and Unpickler() classes, because in cPickle these are functions, not classes. Most
applications have no need for this functionality, and can benefit from the improved performance of
cPickle. Other than that, the interfaces of the two modules are nearly identical; the common interface
is described in this manual and differences are pointed out where necessary. In the following discussions,
we use the term “pickle” to collectively describe the pickle and cPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

2Don’t confuse this with the marshal module

56 Chapter 3. Python Runtime Services

Python has a more primitive serialization module called marshal, but in general pickle should always
be the preferred way to serialize Python objects. marshal exists primarily to support Python’s ‘.pyc’
files.

The pickle module differs from marshal several significant ways:

e The pickle module keeps track of the objects it has already serialized, so that later references to
the same object won’t be serialized again. marshal doesn’t do this.

This has implications both for recursive objects and object sharing. Recursive objects are objects
that contain references to themselves. These are not handled by marshal, and in fact, attempting
to marshal recursive objects will crash your Python interpreter. Object sharing happens when
there are multiple references to the same object in different places in the object hierarchy being
serialized. pickle stores such objects only once, and ensures that all other references point to the
master copy. Shared objects remain shared, which can be very important for mutable objects.

e marshal cannot be used to serialize user-defined classes and their instances. pickle can save and
restore class instances transparently, however the class definition must be importable and live in
the same module as when the object was stored.

e The marshal serialization format is not guaranteed to be portable across Python versions. Because
its primary job in life is to support ‘.pyc’ files, the Python implementers reserve the right to change
the serialization format in non-backwards compatible ways should the need arise. The pickle
serialization format is guaranteed to be backwards compatible across Python releases.

e The pickle module doesn’t handle code objects, which the marshal module does. This avoids the
possibility of smuggling Trojan horses into a program through the pickle module®.

Note that serialization is a more primitive notion than persistence; although pickle reads and writes
file objects, it does not handle the issue of naming persistent objects, nor the (even more complicated)
issue of concurrent access to persistent objects. The pickle module can transform a complex object
into a byte stream and it can transform the byte stream into an object with the same internal structure.
Perhaps the most obvious thing to do with these byte streams is to write them onto a file, but it is also
conceivable to send them across a network or store them in a database. The module shelve provides a
simple interface to pickle and unpickle objects on DBM-style database files.

3.14.2 Data stream format

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions
imposed by external standards such as XDR (which can’t represent pointer sharing); however it means
that non-Python programs may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a printable ASCII representation. This is slightly more volu-
minous than a binary representation. The big advantage of using printable Ascil (and of some other
characteristics of pickle’s representation) is that for debugging or recovery purposes it is possible for a
human to read the pickled file with a standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a true value for the bin
argument to the Pickler constructor or the dump() and dumps() functions.

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the pickler’s dump () method. To
de-serialize a data stream, you first create an unpickler, then you call the unpickler’s 1load () method.
The pickle module provides the following functions to make this process more convenient:

3This doesn’t necessarily imply that pickle is inherently secure. See section 3.14.6 for a more detailed discussion on
pickle module security. Besides, it’s possible that pickle will eventually support serializing code objects.

3.14. pickle — Python object serialization 57

dump object, file|, bin|)
Write a pickled representation of object to the open file object file. This is equivalent to
Pickler(file, bin).dump(object). If the optional bin argument is true, the binary pickle for-
mat is used; otherwise the (less efficient) text pickle format is used (for backwards compatibility,
this is the default).

file must have a write () method that accepts a single string argument. It can thus be a file object
opened for writing, a StringI0 object, or any other custom object that meets this interface.

load (file)
Read a string from the open file object file and interpret it as a pickle data stream, reconstructing
and returning the original object hierarchy. This is equivalent to Unpickler (file) .load ().

file must have two methods, a read() method that takes an integer argument, and a readline ()
method that requires no arguments. Both methods should return a string. Thus file can be a file
object opened for reading, a StringI0 object, or any other custom object that meets this interface.

This function automatically determines whether the data stream was written in binary mode or
not.

dumps(object[, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the
optional bin argument is true, the binary pickle format is used; otherwise the (less efficient) text
pickle format is used (this is the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s
representation are ignored.

The pickle module also defines three exceptions:

exception PickleError
A common base class for the other exceptions defined below. This inherits from Exception.

exception PicklingError
This exception is raised when an unpicklable object is passed to the dump () method.

exception UnpicklingError
This exception is raised when there is a problem unpickling an object, such as a security violation.
Note that other exceptions may also be raised during unpickling, including (but not necessarily
limited to) AttributeError and ImportError.

The pickle module also exports two callables*, Pickler and Unpickler:

class Pickler (file|, bin|)
This takes a file-like object to which it will write a pickle data stream. Optional bin if true, tells
the pickler to use the more efficient binary pickle format, otherwise the Ascit format is used (this
is the default).

file must have a write() method that accepts a single string argument. It can thus be an open
file object, a StringI0 object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump (object)
Write a pickled representation of object to the open file object given in the constructor. Either
the binary or Ascil format will be used, depending on the value of the bin flag passed to the
constructor.

clear_memo ()
Clears the pickler’s “memo”. The memo is the data structure that remembers which objects the
pickler has already seen, so that shared or recursive objects pickled by reference and not by value.
This method is useful when re-using picklers.

Note: clear_memo() is only available on the picklers created by cPickle. In the pickle module,

4In the pickle module these callables are classes, which you could subclass to customize the behavior. However, in the
cPickle modules these callables are factory functions and so cannot be subclassed. One of the common reasons to subclass
is to control what objects can actually be unpickled. See section 3.14.6 for more details on security concerns.

58 Chapter 3. Python Runtime Services

picklers have an instance variable called memo which is a Python dictionary. So to clear the memo
for a pickle module pickler, you could do the following:

mypickler.memo.clear()

It is possible to make multiple calls to the dump () method of the same Pickler instance. These must
then be matched to the same number of calls to the load() method of the corresponding Unpickler
instance. If the same object is pickled by multiple dump() calls, the load() will all yield references to
the same object®.

Unpickler objects are defined as:

class Unpickler(file)
This takes a file-like object from which it will read a pickle data stream. This class automatically
determines whether the data stream was written in binary mode or not, so it does not need a flag
as in the Pickler factory.

file must have two methods, a read() method that takes an integer argument, and a readline()
method that requires no arguments. Both methods should return a string. Thus file can be a file
object opened for reading, a StringI0 object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load()
Read a pickled object representation from the open file object given in the constructor, and return
the reconstituted object hierarchy specified therein.

noload()
This is just like 1load () except that it doesn’t actually create any objects. This is useful primarily
for finding what’s called “persistent ids” that may be referenced in a pickle data stream. See
section 3.14.5 below for more details.

Note: the noload() method is currently only available on Unpickler objects created with the
cPickle module. pickle module Unpicklers do not have the noload() method.

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

e None

e integers, long integers, floating point numbers, complex numbers

e normal and Unicode strings

e tuples, lists, and dictionaries containing only picklable objects

e functions defined at the top level of a module

e built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

e instances of such classes whose __dict__ or __setstate__() is picklable (see section 3.14.5 for

details)

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an
unspecified number of bytes may have already been written to the underlying file.

5 Warning: this is intended for pickling multiple objects without intervening modifications to the objects or their parts.
If you modify an object and then pickle it again using the same Pickler instance, the object is not pickled again — a
reference to it is pickled and the Unpickler will return the old value, not the modified one. There are two problems here:
(1) detecting changes, and (2) marshalling a minimal set of changes. Garbage Collection may also become a problem here.

3.14. pickle — Python object serialization 59

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by
value. This means that only the function name is pickled, along with the name of module the function is
defined in. Neither the function’s code, nor any of its function attributes are pickled. Thus the defining
module must be importable in the unpickling environment, and the module must contain the named
object, otherwise an exception will be raised®.

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment
apply. Note that none of the class’s code or data is pickled, so in the following example the class attribute
attr is not restored in the unpickling environment:

class Foo:
attr = ’a class attr’

picklestring = pickle.dumps(Foo)
These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them.
Only the instance data are pickled. This is done on purpose, so you can fix bugs in a class or add
methods to the class and still load objects that were created with an earlier version of the class. If you
plan to have long-lived objects that will see many versions of a class, it may be worthwhile to put a
version number in the objects so that suitable conversions can be made by the class’s __setstate__()
method.

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler /unpickler
and the objects that are being serialized. This protocol provides a standard way for you to define,
customize, and control how your objects are serialized and de-serialized. The description in this section
doesn’t cover specific customizations that you can employ to make the unpickling environment safer from
untrusted pickle data streams; see section 3.14.6 for more details.

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, its __init__ () method is normally not invoked. If
it is desirable that the __init__ () method be called on unpickling, a class can define a method
__getinitargs__ (), which should return a tuple containing the arguments to be passed to the class
constructor (i.e. __init__()). The __getinitargs__ () method is called at pickle time; the tuple it
returns is incorporated in the pickle for the instance.

Classes can further influence how their instances are pickled; if the class defines the method
__getstate__(), it is called and the return state is pickled as the contents for the instance, instead
of the contents of the instance’s dictionary. If there is no __getstate__() method, the instance’s
__dict__ is pickled.

Upon unpickling, if the class also defines the method __setstate__ (), it is called with the unpickled
state”. If there is no __setstate__() method, the pickled object must be a dictionary and its items are
assigned to the new instance’s dictionary. If a class defines both __getstate__ () and __setstate__(Q),
the state object needn’t be a dictionary and these methods can do what they want®.

Pickling and unpickling extension types

When the Pickler encounters an object of a type it knows nothing about — such as an extension type
— it looks in two places for a hint of how to pickle it. One alternative is for the object to implement a

6The exception raised will likely be an ImportError or an AttributeError but it could be something else.
7These methods can also be used to implement copying class instances.
8This protocol is also used by the shallow and deep copying operations defined in the copy module.

60 Chapter 3. Python Runtime Services

__reduce__() method. If provided, at pickling time __reduce__() will be called with no arguments,
and it must return either a string or a tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. When a tuple is
returned, it must be of length two or three, with the following semantics:

e A callable object, which in the unpickling environment must be either a class, a callable registered
as a “safe constructor” (see below), or it must have an attribute __safe_for_unpickling _ with
a true value. Otherwise, an UnpicklingError will be raised in the unpickling environment. Note
that as usual, the callable itself is pickled by name.

e A tuple of arguments for the callable object, or None.

e Optionally, the object’s state, which will be passed to the object’s __setstate__() method as
described in section 3.14.5. If the object has no __setstate__() method, then, as above, the
value must be a dictionary and it will be added to the object’s __dict__.

Upon unpickling, the callable will be called (provided that it meets the above criteria), passing in the
tuple of arguments; it should return the unpickled object. If the second item was None, then instead of
calling the callable directly, its __basicnew__() method is called without arguments. It should also
return the unpickled object.

An alternative to implementing a __reduce__ () method on the object to be pickled, is to register
the callable with the copy_reg module. This module provides a way for programs to register “reduc-
tion functions” and constructors for user-defined types. Reduction functions have the same semantics
and interface as the __reduce__ () method described above, except that they are called with a single
argument, the object to be pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

Pickling and unpickling external objects

For the benefit of object persistence, the pickle module supports the notion of a reference to an object
outside the pickled data stream. Such objects are referenced by a “persistent id”, which is just an
arbitrary string of printable ASCII characters. The resolution of such names is not defined by the pickle
module; it will delegate this resolution to user defined functions on the pickler and unpickler®.

To define external persistent id resolution, you need to set the persistent_id attribute of the pickler
object and the persistent_load attribute of the unpickler object.

To pickle objects that have an external persistent id, the pickler must have a custom persistent_id()
method that takes an object as an argument and returns either None or the persistent id for that object.
When None is returned, the pickler simply pickles the object as normal. When a persistent id string is
returned, the pickler will pickle that string, along with a marker so that the unpickler will recognize the
string as a persistent id.

To unpickle external objects, the unpickler must have a custom persistent_load() function that takes
a persistent id string and returns the referenced object.

Here’s a silly example that might shed more light:
import pickle
from cStringI0 import StringIO

src = StringI0()
p = pickle.Pickler(src)

def persistent_id(obj):

9The actual mechanism for associating these user defined functions is slightly different for pickle and cPickle. The
description given here works the same for both implementations. Users of the pickle module could also use subclassing to
effect the same results, overriding the persistent_id() and persistent_load() methods in the derived classes.

3.14. pickle — Python object serialization 61

if hasattr(obj, ’x’):

return ’the value %d’ J obj.x
else:

return None

p.persistent_id = persistent_id

class Integer:
def __init__(self, x):
self.x = x
def __str__(self):
return ’My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump (i)

datastream = src.getvalue()
print repr(datastream)
dst = StringIO(datastream)

up = pickle.Unpickler(dst)

class FancyInteger(Integer):
def __str__(self):
return ’I am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith(’the value ’):
value = int(persid.split()[2])
return Fancylnteger(value)
else:
raise pickle.UnpicklingError, ’Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j

In the cPickle module, the unpickler’s persistent_load attribute can also be set to a Python list, in
which case, when the unpickler reaches a persistent id, the persistent id string will simply be appended
to this list. This functionality exists so that a pickle data stream can be “sniffed” for object references
without actually instantiating all the objects in a pickle!®. Setting persistent_load to a list is usually
used in conjunction with the noload() method on the Unpickler.

3.14.6 Security

Most of the security issues surrounding the pickle and cPickle module involve unpickling. There are
no known security vulnerabilities related to pickling because you (the programmer) control the objects
that pickle will interact with, and all it produces is a string.

However, for unpickling, it is never a good idea to unpickle an untrusted string whose origins are dubious,
for example, strings read from a socket. This is because unpickling can create unexpected objects and
even potentially run methods of those objects, such as their class constructor or destructor!?.

You can defend against this by customizing your unpickler so that you can control exactly what gets
unpickled and what gets called. Unfortunately, exactly how you do this is different depending on whether

10We’ll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.

1A special note of caution is worth raising about the Cookie module. By default, the Cookie.Cookie class is an alias
for the Cookie.SmartCookie class, which “helpfully” attempts to unpickle any cookie data string it is passed. This is a
huge security hole because cookie data typically comes from an untrusted source. You should either explicitly use the
Cookie.SimpleCookie class — which doesn’t attempt to unpickle its string — or you should implement the defensive
programming steps described later on in this section.

62 Chapter 3. Python Runtime Services

you’re using pickle or cPickle.

One common feature that both modules implement is the __safe_for_unpickling _ attribute. Be-
fore calling a callable which is not a class, the unpickler will check to make sure that the callable
has either been registered as a safe callable via the copy_reg module, or that it has an attribute
__safe_for_unpickling _ with a true value. This prevents the unpickling environment from being
tricked into doing evil things like call os.unlink() with an arbitrary file name. See section 3.14.5 for
more details.

For safely unpickling class instances, you need to control exactly which classes will get created. Be aware
that a class’s constructor could be called (if the pickler found a __getinitargs__ () method) and the
the class’s destructor (i.e. its __del__ () method) might get called when the object is garbage collected.
Depending on the class, it isn’t very heard to trick either method into doing bad things, such as removing
a file. The way to control the classes that are safe to instantiate differs in pickle and cPickle!Z.

In the pickle module, you need to derive a subclass from Unpickler, overriding the load_global()
method. load_global() should read two lines from the pickle data stream where the first line will the
the name of the module containing the class and the second line will be the name of the instance’s class.
It then look up the class, possibly importing the module and digging out the attribute, then it appends
what it finds to the unpickler’s stack. Later on, this class will be assigned to the __class__ attribute
of an empty class, as a way of magically creating an instance without calling its class’s __init__ ().
You job (should you choose to accept it), would be to have load_global() push onto the unpickler’s
stack, a known safe version of any class you deem safe to unpickle. It is up to you to produce such a
class. Or you could raise an error if you want to disallow all unpickling of instances. If this sounds like
a hack, you're right. UTSL.

Things are a little cleaner with cPickle, but not by much. To control what gets unpickled, you can set
the unpickler’s find_global attribute to a function or None. If it is None then any attempts to unpickle
instances will raise an UnpicklingError. If it is a function, then it should accept a module name and a
class name, and return the corresponding class object. It is responsible for looking up the class, again
performing any necessary imports, and it may raise an error to prevent instances of the class from being
unpickled.

The moral of the story is that you should be really careful about the source of the strings your application
unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. The TextReader class opens a
text file, and returns the line number and line contents each time its readline () method is called. If a
TextReader instance is pickled, all attributes ezcept the file object member are saved. When the instance
is unpickled, the file is reopened, and reading resumes from the last location. The __setstate__() and
__getstate__() methods are used to implement this behavior.

class TextReader:
"""Print and number lines in a text file."""
def __init__(self, file):
self.file = file
self.fh = open(file)
self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):

12A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change
in future versions of Python. We intend to someday provide a common interface for controlling this behavior, which will
work in either pickle or cPickle.

3.14. pickle — Python object serialization 63

line = line[:-1]
return "%d: %s" % (self.lineno, line)

def __getstate__(self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict[’fh’] # remove filehandle entry
return odict

def __setstate__(self,dict):

fh = open(dict[’file’]) # reopen file
count = dict[’lineno’] # read from file...
while count: # until line count is restored

fh.readline()

count = count - 1
self.__dict__.update(dict) # update attributes
self.fh = fh # save the file object

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader ("TextReader.py")

>>> obj.readline()

’1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)
. obj.readline()

’7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open(’save.p’,’w’))

If you want to see that pickle works across Python processes, start another Python session, before
continuing. What follows can happen from either the same process or a new process.

>>> import pickle

>>> reader = pickle.load(open(’save.p’))

>>> reader.readline()

’8: "Print and number lines in a text file."’

See Also:

Module copy_reg (section 3.16):
Pickle interface constructor registration for extension types.

Module shelve (section 3.17):
Indexed databases of objects; uses pickle.

Module copy (section 3.18):
Shallow and deep object copying.

Module marshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — A faster pickle

The cPickle module supports serialization and de-serialization of Python objects, providing an inter-
face and functionality nearly identical to the pickle module. There are several differences, the most
important being performance and subclassability.

First, cPickle can be up to 1000 times faster than pickle because the former is implemented in C.
Second, in the cPickle module the callables Pickler () and Unpickler () are functions, not classes. This
means that you cannot use them to derive custom pickling and unpickling subclasses. Most applications
have no need for this functionality and should benefit from the greatly improved performance of the
cPickle module.

64 Chapter 3. Python Runtime Services

The pickle data stream produced by pickle and cPickle are identical, so it is possible to use pickle
and cPickle interchangeably with existing pickles!?.

There are additional minor differences in API between cPickle and pickle, however for most applica-
tions, they are interchangable. More documentation is provided in the pickle module documentation,
which includes a list of the documented differences.

3.16 copy_reg — Register pickle support functions

The copy_reg module provides support for the pickle and cPickle modules. The copy module is likely
to use this in the future as well. It provides configuration information about object constructors which
are not classes. Such constructors may be factory functions or class instances.

constructor (object)
Declares object to be a valid constructor. If object is not callable (and hence not valid as a
constructor), raises TypeError.

pickle (type, function[, constructor])
Declares that function should be used as a “reduction” function for objects of type type; type must
not be a “classic” class object. (Classic classes are handled differently; see the documentation for
the pickle module for details.) function should return either a string or a tuple containing two or
three elements.

The optional constructor parameter, if provided, is a callable object which can be used to recon-
struct the object when called with the tuple of arguments returned by function at pickling time.
TypeError will be raised if object is a class or constructor is not callable.

See the pickle module for more details on the interface expected of function and constructor.

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values
(not the keys!) in a shelf can be essentially arbitrary Python objects — anything that the pickle module
can handle. This includes most class instances, recursive data types, and objects containing lots of shared
sub-objects. The keys are ordinary strings.

To summarize the interface (key is a string, data is an arbitrary object):

import shelve
d = shelve.open(filename) # open, with (g)dbm filename -- no suffix
d[key] = data # store data at key (overwrites old data if
using an existing key)
data = d[key] # retrieve data at key (raise KeyError if no
such key)

#

delete data stored at key (raises KeyError
if no such key)

del dlkey]

flag = d.has_key(key) # true if the key exists
list = d.keys() # a list of all existing keys (slow!)
d.close() # close it

Restrictions:

e The choice of which database package will be used (e.g. dbm or gdbm) depends on which interface
is available. Therefore it is not safe to open the database directly using dbm. The database is

13Since the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the
encodings of certain objects, it is possible that the two modules produce different data streams for the same input objects.
However it is guaranteed that they will always be able to read each other’s data streams.

3.16. copy_reg — Register pickle support functions 65

also (unfortunately) subject to the limitations of dbm, if it is used — this means that (the pickled
representation of) the objects stored in the database should be fairly small, and in rare cases key
collisions may cause the database to refuse updates.

e Dependent on the implementation, closing a persistent dictionary may or may not be necessary to
flush changes to disk.

e The shelve module does not support concurrent read/write access to shelved objects. (Multiple
simultaneous read accesses are safe.) When a program has a shelf open for writing, no other
program should have it open for reading or writing. UNIX file locking can be used to solve this,
but this differs across UNIX versions and requires knowledge about the database implementation
used.

See Also:

Module anydbm (section 7.8):
Generic interface to dbm-style databases.

Module dbhash (section 7.10):
BSD db database interface.

Module dbm (section 8.6):
Standard UNIX database interface.

Module dumbdbm (section 7.9):
Portable implementation of the dbm interface.

Module gdbm (section 8.7):
GNU database interface, based on the dbm interface.

Module pickle (section 3.14):
Object serialization used by shelve.

Module cPickle (section 3.15):
High-performance version of pickle.

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

x = copy.copy(y) # make a shallow copy of y
x = copy.deepcopy(y) # make a deep copy of y

For module specific errors, copy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that
contain other objects, like lists or class instances):

e A shallow copy constructs a new compound object and then (to the extent possible) inserts refer-
ences into it to the objects found in the original.

e A deep copy constructs a new compound object and then, recursively, inserts copies into it of the
objects found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves)
may cause a recursive loop.

66 Chapter 3. Python Runtime Services

e Because deep copy copies everything it may copy too much, e.g., administrative data structures
that should be shared even between copies.

The deepcopy () function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file,
socket, window, array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define
methods called __getinitargs__ (), __getstate__() and __setstate__(). See the description
of module pickle for information on these methods. The copy module does not use the copy_reg
registration module.

In order for a class to define its own copy implementation, it can define special methods __copy__()
and __deepcopy__(). The former is called to implement the shallow copy operation; no additional
arguments are passed. The latter is called to implement the deep copy operation; it is passed one
argument, the memo dictionary. If the __deepcopy__() implementation needs to make a deep copy
of a component, it should call the deepcopy () function with the component as first argument and the
memo dictionary as second argument.

See Also:

Module pickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format
is specific to Python, but independent of machine architecture issues (e.g., you can write a Python
value to a file on a PC, transport the file to a Sun, and read it back there). Details of the format are
undocumented on purpose; it may change between Python versions (although it rarely does).'*

This is not a general “persistence” module. For general persistence and transfer of Python objects
through RPC calls, see the modules pickle and shelve. The marshal module exists mainly to support
reading and writing the “pseudo-compiled” code for Python modules of ‘.pyc’ files. Therefore, the Python
maintainers reserve the right to modify the marshal format in backward incompatible ways should the
need arise. If you're serializing and de-serializing Python objects, use the pickle module. There may
also be unknown security problems with marshall'®.

Not all Python object types are supported; in general, only objects whose value is independent from
a particular invocation of Python can be written and read by this module. The following types are
supported: None, integers, long integers, floating point numbers, strings, Unicode objects, tuples, lists,
dictionaries, and code objects, where it should be understood that tuples, lists and dictionaries are only
supported as long as the values contained therein are themselves supported; and recursive lists and
dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where C’s long int type has more than 32 bits (such as the DEC Alpha), it is
possible to create plain Python integers that are longer than 32 bits. If such an integer is marshaled
and read back in on a machine where C’s long int type has only 32 bits, a Python long integer object
is returned instead. While of a different type, the numeric value is the same. (This behavior is new in
Python 2.2. In earlier versions, all but the least-significant 32 bits of the value were lost, and a warning
message was printed.)

MThe name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who
use the term “marshalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means
to convert some data from internal to external form (in an RPC buffer for instance) and “unmarshalling” for the reverse
process.

15 As opposed to the known security issues in the pickle module!

3.19. marshal — Internal Python object serialization 67

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump (value, file)
Write the value on the open file. The value must be a supported type. The file must be an open
file object such as sys.stdout or returned by open() or posix.popen(). It must be opened in
binary mode (*wb’ or ’w+b’).

If the value has (or contains an object that has) an unsupported type, a ValueError exception is
raised — but garbage data will also be written to the file. The object will not be properly read
back by load ().

load (file)
Read one value from the open file and return it. If no valid value is read, raise EOFError,
ValueError or TypeError. The file must be an open file object opened in binary mode (’rb’
or ’r+b’).
Warning: If an object containing an unsupported type was marshalled with dump (), load () will
substitute None for the unmarshallable type.

dumps (value)
Return the string that would be written to a file by dump(value, file). The value must be a
supported type. Raise a ValueError exception if value has (or contains an object that has) an
unsupported type.

loads(string)
Convert the string to a value. If no valid value is found, raise EOFError, ValueError or TypeError.
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition
in a program, where that condition (normally) doesn’t warrant raising an exception and terminating the
program. For example, one might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by calling the warn() function defined in this module. (C program-
mers use PyErr_Warn(); see the Python/C API Reference Manual for details).

Warning messages are normally written to sys.stderr, but their disposition can be changed flexibly,
from ignoring all warnings to turning them into exceptions. The disposition of warnings can vary based
on the warning category (see below), the text of the warning message, and the source location where it
is issued. Repetitions of a particular warning for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made
whether a message should be issued or not; next, if a message is to be issued, it is formatted and printed
using a user-settable hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a
sequence of matching rules and actions. Rules can be added to the filter by calling filterwarnings ()
and reset to its default state by calling resetwarnings().

The printing of warning messages is done by calling showwarning(), which may be overidden; the default
implementation of this function formats the message by calling formatwarning (), which is also available
for use by custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful
to be able to filter out groups of warnings. The following warnings category classes are currently defined:

63 Chapter 3. Python Runtime Services

Class Description

Warning This is the base class of all warning category classes. It is a subclass of Exception.
UserWarning The default category for warn().

DeprecationWarning | Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.

RuntimeWarning Base category for warnings about dubious runtime features.

While these are technically built-in exceptions, they are documented here, because conceptually they
belong to the warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories.
A warning category must always be a subclass of the Warning class.

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an
exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is
matched against each filter specification in the list in turn until a match is found; the match determines
the disposition of the match. Each entry is a tuple of the form (action, message, category, module,
lineno), where:

e action is one of the following strings:

Value Disposition

"error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default" | print the first occurrence of matching warnings for each location where the warning is issued
"module" print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

e message is a compiled regular expression that the warning message must match (the match is
case-insensitive)

e category is a class (a subclass of Warning) of which the warning category must be a subclass in
order to match

e module is a compiled regular expression that the module name must match

e [ineno is an integer that the line number where the warning occurred must match, or 0 to match
all line numbers

Since the Warning class is derived from the built-in Exception class, to turn a warning into an error we
simply raise category(message).

The warnings filter is initialized by -W options passed to the Python interpreter command line. The
interpreter saves the arguments for all -W options without interpretation in sys.warnoptions; the
warnings module parses these when it is first imported (invalid options are ignored, after printing a
message to sys.stderr).

3.20.3 Available Functions

warn(message[, category[, stacklevel]])
Issue a warning, or maybe ignore it or raise an exception. The category argument, if given, must be
a warning category class (see above); it defaults to UserWarning. This function raises an exception
if the particular warning issued is changed into an error by the warnings filter see above. The
stacklevel argument can be used by wrapper functions written in Python, like this:

3.20. warnings — Warning control 69

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

This makes the warning refer to deprecation()’s caller, rather than to the source of
deprecation() itself (since the latter would defeat the purpose of the warning message).

warn_explicit(message, category, filename, lineno[, module [, registry]])
This is a low-level interface to the functionality of warn(), passing in explicitly the message,
category, filename and line number, and optionally the module name and the registry (which
should be the __warningregistry__ dictionary of the module). The module name defaults to
the filename with .py stripped; if no registry is passed, the warning is never suppressed.

showwarning(message, category, filename, lineno[, ﬁle])
Write a warning to a file. The default implementation calls showwarning(message, category,
filename, lineno) and writes the resulting string to file, which defaults to sys.stderr. You may
replace this function with an alternative implementation by assigning to warnings.showwarning.

formatwarning(message, category, filename, lineno)
Format a warning the standard way. This returns a string which may contain embedded newlines
and ends in a newline.

filterwarnings(action[, message [, category[, module[, lineno[, append]]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by default; if
append is true, it is inserted at the end. This checks the types of the arguments, compiles the
message and module regular expressions, and inserts them as a tuple in front of the warnings filter.
Entries inserted later override entries inserted earlier, if both match a particular warning. Omitted
arguments default to a value that matches everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous calls to filterwarnings(),
including that of the -W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implement the import statement. It defines
the following constants and functions:

get_magic()
Return the magic string value used to recognize byte-compiled code files (‘.pyc’ files). (This value
may be different for each Python version.)

get_suffixes()
Return a list of triples, each describing a particular type of module. Each triple has the form
(suffix, mode, type), where suffix is a string to be appended to the module name to form the
filename to search for, mode is the mode string to pass to the built-in open() function to open the
file (this can be >z’ for text files or rb’ for binary files), and type is the file type, which has one
of the values PY_SOURCE, PY_COMPILED, or C_EXTENSION, described below.

find_module(name [, path])

Try to find the module name on the search path path. If path is a list of directory names, each
directory is searched for files with any of the suffixes returned by get_suffixes() above. Invalid
names in the list are silently ignored (but all list items must be strings). If path is omitted or
None, the list of directory names given by sys.path is searched, but first it searches a few special
places: it tries to find a built-in module with the given name (C_BUILTIN), then a frozen module
(PY_FROZEN), and on some systems some other places are looked in as well (on the Mac, it looks
for a resource (PY_RESOURCE); on Windows, it looks in the registry which may point to a specific
file).

If search is successful, the return value is a triple (file, pathname, description) where file is an
open file object positioned at the beginning, pathname is the pathname of the file found, and
description is a triple as contained in the list returned by get_suffixes() describing the kind of

70 Chapter 3. Python Runtime Services

module found. If the module does not live in a file, the returned file is None, filename is the empty
string, and the description tuple contains empty strings for its suffix and mode; the module type
is as indicate in parentheses above. If the search is unsuccessful, ImportError is raised. Other
exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In order to find
P.M, that is, submodule M of package P, use find_module() and load_module() to find and
load package P, and then use find_module () with the path argument set to P.__path__. When
P itself has a dotted name, apply this recipe recursively.

load_module (name, file, filename, description)

Load a module that was previously found by find_module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module
was already imported, it is equivalent to a reload ()! The name argument indicates the full module
name (including the package name, if this is a submodule of a package). The file argument is an
open file, and filename is the corresponding file name; these can be None and ’’, respectively,
when the module is not being loaded from a file. The description argument is a tuple, as would be
returned by get_suffixes(), describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually
ImportError) is raised.

Important: the caller is responsible for closing the file argument, if it was not None, even when
an exception is raised. This is best done using a try ... finally statement.

new_module (name)
Return a new empty module object called name. This object is not inserted in sys.modules.

lock_held()
Return 1 if the import lock is currently held, else 0. On platforms without threads, always return
0.

On platforms with threads, a thread executing an import holds an internal lock until the import is
complete. This lock blocks other threads from doing an import until the original import completes,
which in turn prevents other threads from seeing incomplete module objects constructed by the
original thread while in the process of completing its import (and the imports, if any, triggered by
that).

The following constants with integer values, defined in this module, are used to indicate the search result
of find_module().

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.

PY_FROZEN
The module was found as a frozen module (see init_frozen()).

The following constant and functions are obsolete; their functionality is available through find_module ()
or load_module(). They are kept around for backward compatibility:

SEARCH_ERROR
Unused.

3.21. imp — Access the import internals 71

init_builtin(name)
Initialize the built-in module called name and return its module object. If the module was already
initialized, it will be initialized again. A few modules cannot be initialized twice — attempting
to initialize these again will raise an ImportError exception. If there is no built-in module called
name, None is returned.

init_frozen(name)
Initialize the frozen module called name and return its module object. If the module was already
initialized, it will be initialized again. If there is no frozen module called name, None is returned.
(Frozen modules are modules written in Python whose compiled byte-code object is incorporated
into a custom-built Python interpreter by Python’s freeze utility. See ‘Tools/freeze/’ for now.)

is_builtin(name)
Return 1 if there is a built-in module called name which can be initialized again. Return -1 if
there is a built-in module called name which cannot be initialized again (see init_builtin()).
Return 0 if there is no built-in module called name.

is_frozen(name)
Return 1 if there is a frozen module (see init_frozen()) called name, or 0 if there is no such
module.

load_compiled(name, pathname, file)
Load and initialize a module implemented as a byte-compiled code file and return its module
object. If the module was already initialized, it will be initialized again. The name argument is
used to create or access a module object. The pathname argument points to the byte-compiled
code file. The file argument is the byte-compiled code file, open for reading in binary mode, from
the beginning. It must currently be a real file object, not a user-defined class emulating a file.

load_dynamic(name, pathname [, file])

Load and initialize a module implemented as a dynamically loadable shared library and return its
module object. If the module was already initialized, it will be initialized again. Some modules
don’t like that and may raise an exception. The pathname argument must point to the shared
library. The mame argument is used to construct the name of the initialization function: an
external C function called ‘initname()’ in the shared library is called. The optional file argument
is ignored. (Note: using shared libraries is highly system dependent, and not all systems support
it.)

load_source (name, pathname, file)
Load and initialize a module implemented as a Python source file and return its module object. If
the module was already initialized, it will be initialized again. The name argument is used to create
or access a module object. The pathname argument points to the source file. The file argument is
the source file, open for reading as text, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file. Note that if a properly matching byte-compiled file (with
suffix ‘.pyc’ or ‘.pyo’) exists, it will be used instead of parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierar-
chical module names). (This implementation wouldn’t work in that version, since find_module() has
been extended and load_module () has been added in 1.4.)

import imp
import sys
def __import__(name, globals=None, locals=None, fromlist=None) :
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

72 Chapter 3. Python Runtime Services

If any of the following calls raises an exception,
there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and includes a reload () function
can be found in the module knee.

3.22 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and
convenience functions are included which can be used to build applications which provide an interactive
interpreter prompt.

class InteractiveInterpreter([locals])
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with
input buffering or prompting or input file naming (the filename is always passed in explicitly). The
optional locals argument specifies the dictionary in which code will be executed; it defaults to a
newly created dictionary with key >__name__’ set to ’__console__’ and key ’__doc__"’ set
to None.

class InteractiveConsole([locals[, ﬁlename]])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
InteractiveInterpreter and adds prompting using the familiar sys.ps1 and sys.ps2, and input
buffering.

interact([banner[, readfunc[, local]]])
Convenience function to run a read-eval-print loop. This creates a new instance of
InteractiveConsole and sets readfunc to be used as the raw_input () method, if provided. If
local is provided, it is passed to the InteractiveConsole constructor for use as the default names-
pace for the interpreter loop. The interact() method of the instance is then run with banner
passed as the banner to use, if provided. The console object is discarded after use.

compile,command(wurce[, ﬁlename[, symbol]])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a.
the read-eval-print loop). The tricky part is to determine when the user has entered an incomplete
command that can be completed by entering more text (as opposed to a complete command or a
syntax error). This function almost always makes the same decision as the real interpreter main
loop.

source is the source string; filename is the optional filename from which source was read, defaulting
to ’<input>’; and symbol is the optional grammar start symbol, which should be either ’single’
(the default) or ’eval’.

Returns a code object (the same as compile(source, filename, symbol)) if the command is com-
plete and valid; None if the command is incomplete; raises SyntaxError if the command is complete
and contains a syntax error, or raises OverflowError or ValueError if the command cotains an
invalid literal.

3.22. code — Interpreter base classes 73

3.22.1 Interactive Interpreter Objects

runsource(source[, ﬁlename[, symbol]])
Compile and run some source in the interpreter. Arguments are the same as for
compile_command(); the default for filename is ’<input>’, and for symbol is ’single’. One
several things can happen:

eThe input is incorrect; compile_command() raised an exception (SyntaxError or
OverflowError). A syntax traceback will be printed by calling the showsyntaxerror ()
method. runsource() returns 0.

eThe input is incomplete, and more input is required; compile_command() returned None.
runsource () returns 1.

eThe input is complete; compile_command() returned a code object. The code is executed
by calling the runcode () (which also handles run-time exceptions, except for SystemExit).
runsource () returns 0.

The return value can be used to decide whether to use sys.psl or sys.ps2 to prompt the next
line.

runcode (code)
Execute a code object. When an exception occurs, showtraceback() is called to display a trace-
back. All exceptions are caught except SystemExit, which is allowed to propagate.

A note about KeyboardInterrupt: this exception may occur elsewhere in this code, and may not
always be caught. The caller should be prepared to deal with it.

showsyntaxerror([ﬁlename])
Display the syntax error that just occurred. This does not display a stack trace because there isn’t
one for syntax errors. If filename is given, it is stuffed into the exception instead of the default
filename provided by Python’s parser, because it always uses ’<string>’ when reading from a
string. The output is written by the write () method.

showtraceback()
Display the exception that just occurred. We remove the first stack item because it is within the
interpreter object implementation. The output is written by the write () method.

write(data)
Write a string to the standard error stream (sys.stderr). Derived classes should override this to
provide the appropriate output handling as needed.

3.22.2 Interactive Console Objects

The InteractiveConsole class is a subclass of InteractiveInterpreter, and so offers all the methods
of the interpreter objects as well as the following additions.

interact([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner
to print before the first interaction; by default it prints a banner similar to the one printed by the
standard Python interpreter, followed by the class name of the console object in parentheses (so
as not to confuse this with the real interpreter — since it’s so closel!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may
have internal newlines. The line is appended to a buffer and the interpreter’s runsource () method
is called with the concatenated contents of the buffer as source. If this indicates that the command
was executed or invalid, the buffer is reset; otherwise, the command is incomplete, and the buffer
is left as it was after the line was appended. The return value is 1 if more input is required, 0 if
the line was dealt with in some way (this is the same as runsource()).

resetbuffer()
Remove any unhandled source text from the input buffer.

74 Chapter 3. Python Runtime Services

raw_input ([pmmpt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the
user enters the EOF key sequence, EOFError is raised. The base implementation uses the built-in
function raw_input (); a subclass may replace this with a different implementation.

3.23 codeop — Compile Python code

The codeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is
done in the code module. As a result, you probably don’t want to use the module directly; if you want
to include such a loop in your program you probably want to use the code module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to print
‘>>> or ‘... ’ next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled
with these in effect.

The codeop module provides a way of doing each of these things, and a way of doing them both.

To do just the former:

compilefcommand(source[, ﬁlename[, symbol]])
Tries to compile source, which should be a string of Python code and return a code object if source
is valid Python code. In that case, the filename attribute of the code object will be filename, which
defaults to ><input>’. Returns None if source is not valid Python code, but is a prefix of valid
Python code.

If there is a problem with source, an exception will be raised. SyntaxError is raised if there is
invalid Python syntax, and OverflowError or ValueError if there is an invalid literal.

The symbol argument determines whether source is compiled as a statement (’single’, the default)
or as an expression (’eval’). Any other value will cause ValueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome
before reaching the end of the source; in this case, trailing symbols may be ignored instead of
causing an error. For example, a backslash followed by two newlines may be followed by arbitrary
garbage. This will be fixed once the API for the parser is better.

class Compile()
Instances of this class have __call__() methods indentical in signature to the built-in func-
tion compile(), but with the difference that if the instance compiles program text containing a
__future__ statement, the instance 'remembers’ and compiles all subsequent program texts with
the statement in force.

class CommandCompiler ()
Instances of this class have __call__ () methods identical in signature to compile_command();
the difference is that if the instance compiles program text containing a __future__ statement,
the instance 'remembers’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: the Compile and CommandCompiler are new in Python 2.2. If you want
to enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of
Python you can either write

try:
from codeop import CommandCompiler
compile_command = CommandCompiler ()
del CommandCompiler

except ImportError:
from codeop import compile_command

3.23. codeop — Compile Python code 75

which is a low-impact change, but introduces possibly unwanted global state into your program, or you
can write:

try:
from codeop import CommandCompiler
except ImportError:
def CommandCompiler():
from codeop import compile_command
return compile_comamnd

and then call CommandCompiler every time you need a fresh compiler object.

3.24 pprint — Data pretty printer

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form
which can be used as input to the interpreter. If the formatted structures include objects which are not
fundamental Python types, the representation may not be loadable. This may be the case if objects such
as files, sockets, classes, or instances are included, as well as many other builtin objects which are not
representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines
if they don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to
adjust the width constraint.

The pprint module defines one class:

class PrettyPrinter(...)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters.
An output stream may be set using the stream keyword; the only method used on the stream object
is the file protocol’s write() method. If not specified, the PrettyPrinter adopts sys.stdout.
Three additional parameters may be used to control the formatted representation. The keywords
are indent, depth, and width. The amount of indentation added for each recursive level is specified
by indent; the default is one. Other values can cause output to look a little odd, but can make
nesting easier to spot. The number of levels which may be printed is controlled by depth; if the
data structure being printed is too deep, the next contained level is replaced by . ..’. By default,
there is no constraint on the depth of the objects being formatted. The desired output width is
constrained using the width parameter; the default is eighty characters. If a structure cannot be
formatted within the constrained width, a best effort will be made.

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuffl[:])

>>> pp = pprint.PrettyPrinter(indent=4)

>>> pp.pprint (stuff)

t r o,
’/usr/local/lib/pythonl.5’,
’/usr/local/lib/pythonl.5/test’,
’/usr/local/lib/pythonl.5/sunos5’,
’/usr/local/lib/pythonl.5/sharedmodules’,
’/usr/local/lib/pythonl.5/tkinter’],

1)
3

’/usr/local/lib/pythonl.5’,
’/usr/local/lib/pythonl.5/test’,
’/usr/local/lib/pythonl.5/sunos5’,
’/usr/local/lib/pythonl.5/sharedmodules’,
> /usr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

76 Chapter 3. Python Runtime Services

parser.suite(open(’pprint.py’).read())) [1][1] [1]
>>> pp = pprint.PrettyPrinter(depth=6)
>>> pp.pprint (tup)
(266, (267, (307, (287, (288, (...))))))

The PrettyPrinter class supports several derivative functions:

pformat (object)
Return the formatted representation of object as a string. The default parameters for formatting
are used.

pprint (object [, stream])
Prints the formatted representation of object on stream, followed by a newline. If stream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of a print statement
for inspecting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

2

’>/usr/local/lib/pythonl.5’,

> /usr/local/lib/pythonl.5/test’,

> /usr/local/lib/pythonl.5/sunos5’,
’/usr/local/lib/pythonl.5/sharedmodules’,
> /usr/local/lib/pythoni.5/tkinter’]

isreadable (object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct
the value using eval (). This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

isrecursive (object)
Determine if object requires a recursive representation.

One more support function is also defined:

saferepr (object)
Return a string representation of object, protected against recursive data structures. If the represen-
tation of object exposes a recursive entry, the recursive reference will be represented as ‘<Recursion
on typename with id=number>’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with i1d=682968>, ’’, ’/usr/local/lib/python1.5’, ’/usr/loca
1/1ib/pythoni.5/test’, ’/usr/local/lib/pythonl.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/pythonl.5/tkinter’]"

3.24.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (object)
Return the formatted representation of object. This takes into Account the options passed to the
PrettyPrinter constructor.

pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names.
Using these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t

3.24. pprint — Data pretty printer 7

need to be created.

isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct
the value using eval(). Note that this returns false for recursive objects. If the depth parameter
of the PrettyPrinter is set and the object is deeper than allowed, this returns false.

isrecursive (object)
Determine if the object requires a recursive representation.

3.25 repr — Alternate repr() implementation

The repr module provides a means for producing object representations with limits on the size of the
resulting strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class Repr ()
Class which provides formatting services useful in implementing functions similar to the built-in
repr (); size limits for different object types are added to avoid the generation of representations
which are excessively long.

aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing
the attributes of this object will affect the size limits used by repr() and the Python debugger.

repr (obj)
This is the repr() method of aRepr. It returns a string similar to that returned by the built-in
function of the same name, but with limits on most sizes.

3.25.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations
of different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is 6.

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The default for maxdict
is 4, for the others, 6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from
the middle. The default is 40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal”
representation of the string is used as the character source: if escape sequences are needed in the
representation, these may be mangled when the representation is shortened. The default is 30.

maxother
This limit is used to control the size of object types for which no specific formatting method is
available on the Repr object. It is applied in a similar manner as maxstring. The default is 20.

repr (obj)
The equivalent to the built-in repr() that uses the formatting imposed by the instance.
reprl(obj, level)

Recursive implementation used by repr (). This uses the type of 0bj to determine which formatting
method to call, passing it obj and level. The type-specific methods should call repr1() to perform

78 Chapter 3. Python Runtime Services

recursive formatting, with level - 1 for the value of level in the recursive call.

repr_type (obj, level)
Formatting methods for specific types are implemented as methods with a
name based on the type name. In the method name, type is replaced by
string. join(string.split(type(obj).__name__, ’_’). Dispatch to these methods is
handled by repr1(). Type-specific methods which need to recursively format a value should call
‘self .reprl(subobj, level - 1)’

3.25.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.repri () allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how
special support for file objects could be added:

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’]:
return obj.name
else:
return ‘obj¢

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints ’<stdin>’

3.26 new — Creation of runtime internal objects

The new module allows an interface to the interpreter object creation functions. This is for use primarily
in marshal-type functions, when a new object needs to be created “magically” and not by using the
regular creation functions. This module provides a low-level interface to the interpreter, so care must be
exercised when using this module.

The new module defines the following functions:

instance(class[, dz’ct])
This function creates an instance of class with dictionary dict without calling the __init__ (O
constructor. If dict is omitted or None, a new, empty dictionary is created for the new instance.
Note that there are no guarantees that the object will be in a consistent state.

instancemethod (function, instance, class)
This function will return a method object, bound to instance, or unbound if instance is None.
function must be callable.

function(code, globals[, name [, argdefs]])
Returns a (Python) function with the given code and globals. If name is given, it must be a string
or None. If it is a string, the function will have the given name, otherwise the function name will
be taken from code.co_name. If argdefs is given, it must be a tuple and will be used to determine
the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Inotab)
This function is an interface to the PyCode_New() C function.

module (name)
This function returns a new module object with name name. name must be a string.

classobj(name, baseclasses, dict)
This function returns a new class object, with name name, derived from baseclasses (which should

3.26. new — Creation of runtime internal objects 79

be a tuple of classes) and with namespace dict.

3.27 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-
specific modules would place ‘import site’ somewhere near the top of their code. This is no longer
necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head part, it uses
sys.prefix and sys.exec_prefix; empty heads are skipped. For the tail part, it uses the empty string
(on Macintosh or Windows) or it uses first ‘lib/python2.2/site-packages’ and then ‘lib/site-python’ (on UNIX).
For each of the distinct head-tail combinations, it sees if it refers to an existing directory, and if so, adds
to sys.path, and also inspects the path for configuration files.

A path configuration file is a file whose name has the form ‘package.pth’; its contents are additional items
(one per line) to be added to sys.path. Non-existing items are never added to sys.path, but no check
is made that the item refers to a directory (rather than a file). No item is added to sys.path more than
once. Blank lines and lines beginning with # are skipped. Lines starting with import are executed.

For example, suppose sys.prefix and sys.exec_prefix are set to ‘/usr/local’. The Python 2.2.1 library
is then installed in ‘/usr/local/lib/python2.2” (where only the first three characters of sys.version are used
to form the installation path name). Suppose this has a subdirectory ¢/usr/local/lib/python2.2/site-packages’
with three subsubdirectories, ‘foo’, ‘bar’ and ‘spam’, and two path configuration files, ‘foo.pth’ and ‘bar.pth’.
Assume ‘foo.pth’ contains the following:

foo package configuration

foo
bar
bletch

and ‘bar.pth’ contains:

bar package configuration

bar

Then the following directories are added to sys.path, in this order:

/usr/local/lib/python2.2/site-packages/bar
/usr/local/lib/python2.2/site-packages/foo

Note that ‘bletch’ is omitted because it doesn’t exist; the ‘bar’ directory precedes the ‘foo’ directory
because ‘bar.pth’ comes alphabetically before ‘foo.pth’; and ‘spam’ is omitted because it is not mentioned
in either path configuration file.

After these path manipulations, an attempt is made to import a module named sitecustomize, which
can perform arbitrary site-specific customizations. If this import fails with an ImportError exception,
it is silently ignored.

Note that for some non-UNIX systems, sys.prefix and sys.exec_prefix are empty, and the path
manipulations are skipped; however the import of sitecustomize is still attempted.

80 Chapter 3. Python Runtime Services

3.28 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Ounly interactive
sessions execute the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization
file, which gets run when a program requests it. This module implements such a mechanism. A program
that wishes to use the mechanism must execute the statement

import user

The user module looks for a file ‘.pythonrc.py’ in the user’s home directory and if it can be opened,
executes it (using execfile()) in its own (the module user’s) global namespace. Errors during this
phase are not caught; that’s up to the program that imports the user module, if it wishes. The home
directory is assumed to be named by the HOME environment variable; if this is not set, the current
directory is used.

The user’s ‘.pythonrc.py’ could conceivably test for sys.version if it wishes to do different things de-
pending on the Python version.

A warning to users: be very conservative in what you place in your ‘.pythonrc.py’ file. Since you don’t
know which programs will use it, changing the behavior of standard modules or functions is generally
not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options
for your package is to have them define variables in their ‘.pythonrc.py’ file that you test in your module.
For example, a module spam that has a verbosity level can look for a variable user.spam_verbose, as
follows:

import user
try:

verbose = user.spam_verbose # user’s verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization

file.

Programs with security or privacy concerns should not import this module; a user can easily break into
a program by placing arbitrary code in the ‘.pythonrc.py’ file.

Modules for general use should not import this module; it may interfere with the operation of the
importing program.

See Also:

Module site (section 3.27):
Site-wide customization mechanism.

3.29 _ builtin__ — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.g. __builtin__.open is the
full name for the built-in function open(). See section 2.1, “Built-in Functions.”

330 __main _ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program exe-
cutes — commands read either from standard input, from a script file, or from an interactive prompt.
It is this environment in which the idiomatic “conditional script” stanza causes a script to run:

3.28. user — User-specific configuration hook 81

if __name__ == "__main__":
main()

Chapter 3. Python Runtime Services

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s
an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.

fpformat General floating point formatting functions.

StringIO Read and write strings as if they were files.

cStringI0 Faster version of StringI0, but not subclassable.

codecs Encode and decode data and streams.

unicodedata Access the Unicode Database.

Information on the methods of string objects can be found in section 2.2.6, “String Methods.”

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions.
See the module re for string functions based on regular expressions.

The constants defined in this module are:

ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below.
This value is not locale-dependent.

ascii_lowercase
The lowercase letters ’abcdefghijklmnopqrstuvwxyz’. This value is not locale-dependent and
will not change.

ascii_uppercase
The uppercase letters > ABCDEFGHIJKLMNOPQRSTUVWXYZ’. This value is not locale-dependent and
will not change.
digits
The string >0123456789°.
hexdigits
The string >0123456789abcdef ABCDEF’.

letters
The concatenation of the strings lowercase and uppercase described below. The specific value is
locale-dependent, and will be updated when locale.setlocale() is called.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this
is the string ’abcdefghijklmnopqrstuvwxyz’. Do not change its definition — the effect on the
routines upper () and swapcase () is undefined. The specific value is locale-dependent, and will be

83

updated when locale.setlocale() is called.

octdigits
The string >01234567°.

punctuation
String of ASCII characters which are considered punctuation characters in the ‘C’ locale.

printable
String of characters which are considered printable. This is a combination of digits, letters,
punctuation, and whitespace.

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this
is the string ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. Do not change its definition — the effect on the
routines lower () and swapcase () is undefined. The specific value is locale-dependent, and will be
updated when locale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes
the characters space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition
— the effect on the routines strip() and split() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects;
see “String Methods” (section 2.2.6) for more information on those. The functions defined in this module
are:

atof (s)
Deprecated since release 2.0. Use the float () built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a
floating point literal in Python, optionally preceded by a sign (‘+’ or ‘=’). Note that this behaves
identical to the built-in function float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

atoi(s[, base])
Deprecated since release 2.0. Use the int () built-in function.

Convert string s to an integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (‘+’ or ‘=’). The base defaults to 10. If it is 0, a default base is chosen
depending on the leading characters of the string (after stripping the sign): ‘0x’ or ‘0X’ means 16,
‘0’ means 8, anything else means 10. If base is 16, a leading ‘0x’ or ‘0X’ is always accepted, though
not required. This behaves identically to the built-in function int () when passed a string. (Also
note: for a more flexible interpretation of numeric literals, use the built-in function eval().)

atol(s[, base])
Deprecated since release 2.0. Use the long() built-in function.

Convert string s to a long integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (‘+’ or ‘=’). The base argument has the same meaning as for atoi().
A trailing ‘1’ or ‘L’ is not allowed, except if the base is 0. Note that when invoked without base or
with base set to 10, this behaves identical to the built-in function long() when passed a string.

capitalize(word)
Capitalize the first character of the argument.

capwords(s)
Split the argument into words using split (), capitalize each word using capitalize(), and join
the capitalized words using join(). Note that this replaces runs of whitespace characters by a
single space, and removes leading and trailing whitespace.

expandtabs (s [, tabsize])
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column
and the given tab size. The column number is reset to zero after each newline occurring in the

84 Chapter 4. String Services

string. This doesn’t understand other non-printing characters or escape sequences. The tab size
defaults to 8.

find (s, sub[, start[,end]])
Return the lowest index in s where the substring sub is found such that sub is wholly contained
in s[start:end]. Return -1 on failure. Defaults for start and end and interpretation of negative
values is the same as for slices.

rfind(s, sub[, start[, end]])
Like £ind () but find the highest index.

index (s, sub[, start[, end]])
Like find () but raise ValueError when the substring is not found.

rindex (s, sub[, start[, end]])
Like rfind () but raise ValueError when the substring is not found.

count (s, sub[, start[, end]])
Return the number of (non-overlapping) occurrences of substring sub in string s [start:end]. De-
faults for start and end and interpretation of negative values are the same as for slices.

lower(s)
Return a copy of s, but with upper case letters converted to lower case.

maketrans (from, to)
Return a translation table suitable for passing to translate() or regex.compile(), that will map
each character in from into the character at the same position in to; from and to must have the
same length.

Warning: Don’t use strings derived from lowercase and uppercase as arguments; in some locales,
these don’t have the same length. For case conversions, always use lower () and upper().

split(s[, sep [, ma:rsplit]])

Return a list of the words of the string s. If the optional second argument sep is absent or None,
the words are separated by arbitrary strings of whitespace characters (space, tab, newline, return,
formfeed). If the second argument sep is present and not None, it specifies a string to be used as the
word separator. The returned list will then have one more item than the number of non-overlapping
occurrences of the separator in the string. The optional third argument mazsplit defaults to 0. If
it is nonzero, at most maxsplit number of splits occur, and the remainder of the string is returned
as the final element of the list (thus, the list will have at most mazsplit+1 elements).

splitfields(s[, sep [, maxsplit]])
This function behaves identically to split(). (In the past, split() was only used with one
argument, while splitfields() was only used with two arguments.)

join(words [, sep])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep
is a single space character. It is always true that ‘string.join(string.split(s, sep), sep)’
equals s.

joinfields (words [, sep])
This function behaves identical to join(). (In the past, join() was only used with one argument,
while joinfields() was only used with two arguments.)

lstrip(s)
Return a copy of s but without leading whitespace characters.

rstrip(s)
Return a copy of s but without trailing whitespace characters.

strip(s)
Return a copy of s without leading or trailing whitespace.

swapcase(s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

4.1. string — Common string operations 85

translate(s, table[, deletechars])
Delete all characters from s that are in deletechars (if present), and then translate the characters
using table, which must be a 256-character string giving the translation for each character value,
indexed by its ordinal.

upper (s)
Return a copy of s, but with lower case letters converted to upper case.

ljust (s, width)

rjust (s, width)

center (s, width)
These functions respectively left-justify, right-justify and center a string in a field of given width.
They return a string that is at least width characters wide, created by padding the string s with
spaces until the given width on the right, left or both sides. The string is never truncated.

zfill (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting
with a sign are handled correctly.

replace(str, old, new[, maxsplit])
Return a copy of string str with all occurrences of substring old replaced by new. If the optional
argument mazsplit is given, the first maxsplit occurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular
expression pattern strings may not contain null bytes, but can specify the null byte using the \number
notation. Both patterns and strings to be searched can be Unicode strings as well as 8-bit strings. The
re module is always available.

Regular expressions use the backslash character (‘\’) to indicate special forms or to allow special char-
acters to be used without invoking their special meaning. This collides with Python’s usage of the same
character for the same purpose in string literals; for example, to match a literal backslash, one might have
to write >\\\\’ as the pattern string, because the regular expression must be ‘\\’, and each backslash
must be expressed as ‘\\’ inside a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are
not handled in any special way in a string literal prefixed with ‘r’. So r"\n" is a two-character string
containing ‘\’ and ‘n’, while "\n" is a one-character string containing a newline. Usually patterns will
be expressed in Python code using this raw string notation.

Implementation note: The re module has two distinct implementations: sre is the default imple-
mentation and includes Unicode support, but may run into stack limitations for some patterns. Though
this will be fixed for a future release of Python, the older implementation (without Unicode support) is
still available as the pre module.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The Python material in this
book dates from before the re module, but it covers writing good regular expression patterns in
great detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you
check if a particular string matches a given regular expression (or if a given regular expression matches
a particular string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular
expressions, then AB is also a regular expression. If a string p matches A and another string ¢ matches

86 Chapter 4. String Services

B, the string pq will match AB if A and B do no specify boundary conditions that are no longer satisfied
by pg. Thus, complex expressions can easily be constructed from simpler primitive expressions like the
ones described here. For details of the theory and implementation of regular expressions, consult the
Friedl book referenced below, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler
presentation, consult the Regular Expression HOWTO, accessible from http://www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like
‘A’)‘a’, or ‘0’ are the simplest regular expressions; they simply match themselves. You can concatenate
ordinary characters, so last) matches the string ’last’. (In the rest of this section, we’ll write RE’s in
'this special stylej, usually without quotes, and strings to be matched ’in single quotes’.)
Some characters, like ‘|’ or ‘(’, are special. Special characters either stand for classes of ordinary
characters, or affect how the regular expressions around them are interpreted.

The special characters are:

¢.” (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag
has been specified, this matches any character including a newline.

‘~? (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately
after each newline.

‘$’ Matches the end of the string or just before the newline at the end of the string, and in
MULTILINE mode also matches before a newline. 'foo; matches both foo’ and ’foobar’, while
the regular expression 'foo$ matches only foo’. More interestingly, searching for foo.$ in
"fool\nfoo2\n” matches 'foo2’ normally, but 'fool’ in MULTILINE mode.

‘*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many
repetitions as are possible. 'ab% will match ’a’, ’ab’, or ’a’ followed by any number of "b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. 'ab+ will match
‘a’ followed by any non-zero number of 'b’s; it will not match just ’a’.

“?2” Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. 'ab?, will match
either ’a’ or ’ab’.

*?7 +7,. 77 The ‘¥’ ‘4’ and ‘?’" qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE <.*> is matched against ’<H1>title</H1>’, it will
match the entire string, and not just ><H1>’. Adding ‘?’ after the qualifier makes it perform
the match in non-greedy or minimal fashion; as few characters as possible will be matched.
Using . #7) in the previous expression will match only ’<H1>.

{m3} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause
the entire RE not to match. For example, 'a{6} will match exactly six ‘a’ characters, but
not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting
to match as many repetitions as possible. For example, 'a{3,5} will match from 3 to 5 ‘a’
characters. Omitting n specifies an infinite upper bound; you can’t omit m. As an example,
a{4,}b) will match aaaab, a thousand ‘a’ characters followed by a b, but not aaab. The
comma may not be omitted or the modifier would be confused with the previously described
form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to
match as few repetitions as possible. This is the non-greedy version of the previous qualifier.
For example, on the 6-character string ’aaaaaa’, 'a{3,53} will match 5 ‘a’ characters, while
a{3,5}7 will only match 3 characters.

<

Either escapes special characters (permitting you to match characters like ‘*’; 7’ and so
forth), or signals a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the
backslash as an escape sequence in string literals; if the escape sequence isn’t recognized by

4.2. re — Regular expression operations 87

Python’s parser, the backslash and subsequent character are included in the resulting string.
However, if Python would recognize the resulting sequence, the backslash should be repeated
twice. This is complicated and hard to understand, so it’s highly recommended that you use
raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. Characters can be listed individually, or a range of
characters can be indicated by giving two characters and separating them by a ‘-’. Special
characters are not active inside sets. For example, [akm$]; will match any of the characters
‘a’, ‘k’, ‘m’, or ‘$’; "[a-z], will match any lowercase letter, and [a-zA-Z0-9] matches any
letter or digit. Character classes such as \w or \S (defined below) are also acceptable inside a
range. If you want to include a ‘]’ or a ‘-’ inside a set, precede it with a backslash, or place
it as the first character. The pattern [1]) will match ’]°, for example.

You can match the characters not within a range by complementing the set. This is indicated
by including a ‘~’ as the first character of the set; elsewhere will simply match the
character. For example, '[~5]; will match any character except ‘5°, and '[~~]; will match any
character except ‘.

() (~

A|B, where A and B can be arbitrary REs, creates a regular expression that will match either
A or B. An arbitrary number of REs can be separated by the ‘|’ in this way. This can be
used inside groups (see below) as well. REs separated by ‘|’ are tried from left to right, and
the first one that allows the complete pattern to match is considered the accepted branch.
This means that if A matches, B will never be tested, even if it would produce a longer overall
match. In other words, the ‘|’ operator is never greedy. To match a literal ‘|’, use \ |}, or
enclose it inside a character class, as in [|]).

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and
end of a group; the contents of a group can be retrieved after a match has been performed,
and can be matched later in the string with the \number, special sequence, described below.
To match the literals ‘CC or ©)’, use \(or \)j, or enclose them inside a character class: "[(]

DI1.

(?7...) This is an extension notation (a ‘?’ following a ‘(’ is not meaningful otherwise). The first
character after the ‘?’ determines what the meaning and further syntax of the construct is.
Extensions usually do not create a new group; '(?P<name>. . .);is the only exception to this
rule. Following are the currently supported extensions.

)

(?ilmsux) (Ome or more letters from the set ‘i’, ‘L', ‘m’, ‘s’, ‘u’, ‘x’.) The group matches the empty
string; the letters set the corresponding flags (re.I, re.L, re.M, re.S, re.U, re.X) for the
entire regular expression. This is useful if you wish to include the flags as part of the regular
expression, instead of passing a flag argument to the compile () function.

Note that the '(?x), flag changes how the expression is parsed. It should be used first in the
expression string, or after one or more whitespace characters. If there are non-whitespace
characters before the flag, the results are undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside
the parentheses, but the substring matched by the group cannot be retrieved after performing
a match or referenced later in the pattern.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible via
the symbolic group name name. Group names must be valid Python identifiers, and each
group name must be defined only once within a regular expression. A symbolic group is also
a numbered group, just as if the group were not named. So the group named ’id’ in the
example above can also be referenced as the numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_]\w%),, the group can be referenced by its
name in arguments to methods of match objects, such as m.group(’id’) or m.end(’id’),
and also by name in pattern text (for example, '(?P=id))) and replacement text (such as
\g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.

(?#...) A comment; the contents of the parentheses are simply ignored.

88 Chapter 4. String Services

(7=...)

(7<1..))

Matches if '. . .; matches next, but doesn’t consume any of the string. This is called a looka-
head assertion. For example, Tsaac (?=Asimov); will match ’Isaac ’ only if it’s followed
by ’Asimov’.

Matches if ... doesn’t match next. This is a negative lookahead assertion. For example,
MTsaac (?!Asimov); will match ’Isaac ’ only if it’s not followed by ’Asimov’.

Matches if the current position in the string is preceded by a match for I. . .; that ends at the
current position. This is called a positive lookbehind assertion. '(?<=abc)def;will find a match
in ‘abcdef’, since the lookbehind will back up 3 characters and check if the contained pattern
matches. The contained pattern must only match strings of some fixed length, meaning that
fabc) or 'alby are allowed, but 'ax and 'a{3,4} are not. Note that patterns which start with
positive lookbehind assertions will never match at the beginning of the string being searched;
you will most likely want to use the search() function rather than the match() function:

>>> import re

>>> m = re.search(’ (?<=abc)def’, ’abcdef’)
>>> m.group(0)
’def’

This example looks for a word following a hyphen:

>>> m = re.search(’ (7<=-)\w+’, ’spam-egg’)
>>> m.group(0)
Iegg)
Matches if the current position in the string is not preceded by a match for This is

called a negative lookbehind assertion. Similar to positive lookbehind assertions, the contained
pattern must only match strings of some fixed length. Patterns which start with negative
lookbehind assertions may match at the beginning of the string being searched.

The special sequences consist of ‘\’ and a character from the list below. If the ordinary character is
not on the list, then the resulting RE will match the second character. For example, \$; matches the
character ‘$’.

\number

\A
\b

\B
\d
\D
\s
\S

Matches the contents of the group of the same number. Groups are numbered starting from 1.
For example, '(.+) \1 matches the the’ or ’55 55, but not ’the end’ (note the space
after the group). This special sequence can only be used to match one of the first 99 groups.
If the first digit of number is 0, or number is 3 octal digits long, it will not be interpreted as
a group match, but as the character with octal value number. (There is a group 0, which is
the entire matched pattern, but it can’t be referenced with \0j; instead, use \g<0>;.) Inside
the ‘[’ and ‘]’ of a character class, all numeric escapes are treated as characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined
as a sequence of alphanumeric characters, so the end of a word is indicated by whitespace
or a non-alphanumeric character. Inside a character range, \b represents the backspace
character, for compatibility with Python’s string literals.

Matches the empty string, but only when it is not at the beginning or end of a word.
Matches any decimal digit; this is equivalent to the set [0-9],.

Matches any non-digit character; this is equivalent to the set [~0-9].

Matches any whitespace character; this is equivalent to the set T \t\n\r\f\v].

Matches any non-whitespace character; this is equivalent to the set [~ \t\n\r\f\v].

4.2. re — Regular expression operations 89

\w When the LOCALE and UNICODE flags are not specified, matches any alphanumeric character;
this is equivalent to the set [a-zA-Z0-9_1. With LOCALE, it will match the set "[0-9_1,
plus whatever characters are defined as letters for the current locale. If UNICODE is set, this
will match the characters '[0-9_] plus whatever is classified as alphanumeric in the Unicode
character properties database.

\W When the LOCALE and UNICODE flags are not specified, matches any non-alphanumeric char-
acter; this is equivalent to the set [~a-zA-Z0-9_]. With LOCALE, it will match any character
not in the set [0-9_1), and not defined as a letter for the current locale. If UNICODE is set,
this will match anything other than '[0-9_]1, and characters marked at alphanumeric in the
Unicode character properties database.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular
expression parser:

\a \b \f \n
\r \t \v \x
\\

Note that octal escapes are not included. While the parser can attempt to determine whether a character
is being specified by it’s ordinal value expressed in octal, doing so yields an expression which is relatively
difficult to maintain, as the same syntax is used to refer to numbered groups.

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you
are accustomed to Perl’s semantics, the search operation is what you’re looking for. See the search()
function and corresponding method of compiled regular expression objects.

[l

Note that match may differ from search using a regular expression beginning with ‘~’: matches only
at the start of the string, or in MULTILINE mode also immediately following a newline. The “match”
operation succeeds only if the pattern matches at the start of the string regardless of mode, or at the
starting position given by the optional pos argument regardless of whether a newline precedes it.

re.compile("a") .match("ba", 1) # succeeds
re.compile("~a").search("ba", 1) # fails; ’a’ not at start
re.compile("~a").search("\na", 1) # fails; ’a’ not at start
re.compile("~a", re.M).search("\na", 1) # succeeds

#

re.compile("~a", re.M).search("ba", 1) fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (pattern [, flags])
Compile a regular expression pattern into a regular expression object, which can be used for
matching using its match() and search() methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the
following variables, combined using bitwise OR. (the | operator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

90 Chapter 4. String Services

result = re.match(pat, str)

but the version using compile() is more efficient when the expression will be used several times
in a single program.

I

IGNORECASE
Perform case-insensitive matching; expressions like "[A-Z]; will match lowercase letters, too. This
is not affected by the current locale.

L

LOCALE
Make N\w;, \W, \bj, and \B, dependent on the current locale.

M

MULTILINE
When specified, the pattern character ‘~’ matches at the beginning of the string and at the beginning
of each line (immediately following each newline); and the pattern character ‘¢’ matches at the
end of the string and at the end of each line (immediately preceding each newline). By default, ‘*’
matches only at the beginning of the string, and ‘$’ only at the end of the string and immediately
before the newline (if any) at the end of the string.

S

DOTALL
Make the ‘.’ special character match any character at all, including a newline; without this flag,
.7 will match anything except a newline.

U

UNICODE
Make \w, \W, \b, and \B; dependent on the Unicode character properties database. ~New in
version 2.0.

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is
ignored, except when in a character class or preceded by an unescaped backslash, and, when a line
contains a ‘#’ neither in a character class or preceded by an unescaped backslash, all characters
from the leftmost such ‘# through the end of the line are ignored.

search (pattern, string[, flags])
Scan through string looking for a location where the regular expression pattern produces a match,
and return a corresponding MatchObject instance. Return None if no position in the string matches
the pattern; note that this is different from finding a zero-length match at some point in the string.

match (pattern, string [, flags])
If zero or more characters at the beginning of string match the regular expression pattern, return a
corresponding MatchObject instance. Return None if the string does not match the pattern; note
that this is different from a zero-length match.

Note: If you want to locate a match anywhere in string, use search() instead.

split (pattern, string[, mazxsplit = 0])
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the
text of all groups in the pattern are also returned as part of the resulting list. If mazsplit is nonzero,
at most mazxsplit splits occur, and the remainder of the string is returned as the final element of
the list. (Incompatibility note: in the original Python 1.5 release, mazsplit was ignored. This has
been fixed in later releases.)

>>> re.split(’\W+’, ’Words, words, words.’)
[’Words’, ’words’, ’words’, ’’]

>>> re.split(’ (\W+)’, ’Words, words, words.’)
[’Words’, ’, ’, ’words’, ’, ’, ’words’, ’.’, ’’]

4.2. re — Regular expression operations 91

>>> re.split(’\W+’, ’Words, words, words.’, 1)
[’Words’, ’words, words.’]

This function combines and extends the functionality of the old regsub.split() and
regsub.splitx().

findall (pattern, string)
Return a list of all non-overlapping matches of pattern in string. If one or more groups are present
in the pattern, return a list of groups; this will be a list of tuples if the pattern has more than one
group. Empty matches are included in the result. New in version 1.5.2.

finditer (pattern, string)
Return an iterator over all non-overlapping matches for the RE pattern in string. For each match,
the iterator returns a match object. Empty matches are included in the result. New in version
2.2.

sub (pattern, repl, stm’ng[, count])
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in
string by the replacement repl. If the pattern isn’t found, string is returned unchanged. repl can
be a string or a function; if it is a string, any backslash escapes in it are processed. That is, ‘\n’
is converted to a single newline character, ‘\r’ is converted to a linefeed, and so forth. Unknown
escapes such as ‘\j’ are left alone. Backreferences, such as ‘\6’, are replaced with the substring
matched by group 6 in the pattern. For example:

>>> re.sub(r’def\s+([a-zA-Z_] [a-zA-Z_0-9]*)\s*\ (\s*\):’,
r’static PyObject*\npy_\1(void)\n{’,

cee ’def myfunc():’)

’static PyObject*\npy_myfunc(void)\n{’

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes
a single match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == ’-’: return °’ ’
else: return ’-’
>>> re.sub(’-{1,2}’, dashrepl, ’pro----gram-files’)
’pro--gram files’
The pattern may be a string or an RE object; if you need to specify regular expression flags, you
must use a RE object, or use embedded modifiers in a pattern; for example, ‘sub(" (?1)b+", "x",
"bbbb BBBB")’ returns ’x x’.

The optional argument count is the maximum number of pattern occurrences to be replaced;
count must be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty
matches for the pattern are replaced only when not adjacent to a previous match, so ‘sub(’x*’,
’=> Jabc’)’ returns ’-a-b-c-’.

In addition to character escapes and backreferences as described above, ‘\g<name>’ will use the sub-
string matched by the group named ‘name’, as defined by the (?P<name>. . .) syntax. ‘\g<number>’
uses the corresponding group number; ‘\g<2>’ is therefore equivalent to ‘\2’, but isn’t ambiguous
in a replacement such as ‘\g<2>0’. ‘\20’ would be interpreted as a reference to group 20, not a
reference to group 2 followed by the literal character ‘0’. The backreference ‘\g<0>’ substitutes in
the entire substring matched by the RE.

subn (pattern, repl, strmg[, count])
Perform the same operation as sub(), but return a tuple (new_string, number_of_subs_made).

escape (string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an
arbitrary literal string that may have regular expression metacharacters in it.

exception error
Exception raised when a string passed to one of the functions here is not a valid regular expression

92 Chapter 4. String Services

(for example, it might contain unmatched parentheses) or when some other error occurs during

compilation or matching. It is never an error if a string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search (string [, pos[, endpos]])

Scan through string looking for a location where this regular expression produces a match, and
return a corresponding MatchObject instance. Return None if no position in the string matches
the pattern; note that this is different from finding a zero-length match at some point in the string.

The optional pos and endpos parameters have the same meaning as for the match() method.

match(stm'ng[, pos[, endpos]])

If zero or more characters at the beginning of string match this regular expression, return a
corresponding MatchObject instance. Return None if the string does not match the pattern; note
that this is different from a zero-length match.

Note: If you want to locate a match anywhere in string, use search() instead.

The optional second parameter pos gives an index in the string where the search is to start; it
defaults to 0. This is not completely equivalent to slicing the string; the ’>~’ pattern character
matches at the real beginning of the string and at positions just after a newline, but not necessarily
at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string
is endpos characters long, so only the characters from pos to endpos will be searched for a match.

split(string [, mazxsplit = 0])
Identical to the split () function, using the compiled pattern.

findall (string)
Identical to the findall() function, using the compiled pattern.

finditer (string)
Identical to the finditer () function, using the compiled pattern.

sub (repl, string[, count = 0])
Identical to the sub() function, using the compiled pattern.

subn (repl, string [, count = 0])
Identical to the subn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compiled, or 0 if no flags were provided.

groupindex

A dictionary mapping any symbolic group names defined by '(?P<id>); to group numbers.

dictionary is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

425 Match Objects

MatchObject instances support the following methods and attributes:

expand (template)

The

Return the string obtained by doing backslash substitution on the template string template, as
done by the sub() method. Escapes such as ‘\n’ are converted to the appropriate characters, and
numeric backreferences (‘\1’, ‘\2’) and named backreferences (‘\g<1>’, ‘\g<name>’) are replaced
by the contents of the corresponding group.

4.2. re — Regular expression operations 93

group([gmup],])

Returns one or more subgroups of the match. If there is a single argument, the result is a single
string; if there are multiple arguments, the result is a tuple with one item per argument. Without
arguments, group! defaults to zero (the whole match is returned). If a groupN argument is zero,
the corresponding return value is the entire matching string; if it is in the inclusive range [1..99], it
is the string matching the the corresponding parenthesized group. If a group number is negative
or larger than the number of groups defined in the pattern, an IndexError exception is raised. If
a group is contained in a part of the pattern that did not match, the corresponding result is None.
If a group is contained in a part of the pattern that matched multiple times, the last match is
returned.

If the regular expression uses the '(?P<name>...)| syntax, the groupN arguments may also be
strings identifying groups by their group name. If a string argument is not used as a group name
in the pattern, an IndexError exception is raised.

A moderately complicated example:

m = re.match(r" (?P<int>\d+)\.(\d*)", ’3.14’)
After performing this match, m.group(1) is ’3’, as ism.group(’int’), and m.group(2) is *14°.

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are
in the pattern. The default argument is used for groups that did not participate in the match; it
defaults to None. (Incompatibility note: in the original Python 1.5 release, if the tuple was one
element long, a string would be returned instead. In later versions (from 1.5.1 on), a singleton
tuple is returned in such cases.)

groupdict([default])
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name.
The default argument is used for groups that did not participate in the match; it defaults to None.

start([gmup])

end ([gmup])
Return the indices of the start and end of the substring matched by group; group defaults to zero
(meaning the whole matched substring). Return -1 if group exists but did not contribute to the
match. For a match object m, and a group ¢ that did contribute to the match, the substring
matched by group ¢ (equivalent to m.group(g)) is

m.string[m.start(g) :m.end(g)]

Note that m.start (group) will equal m.end (group) if group matched a null string. For example,
after m = re.search(’b(c?)’, ’cba’), m.start(0) is 1, m.end(0) is 2, m.start(1) and
m.end (1) are both 2, and m.start(2) raises an IndexError exception.

span ([gmup])
For MatchObject m, return the 2-tuple (m.start(group), m.end(group)). Note that if group
did not contribute to the match, this is (-1, -1). Again, group defaults to zero.

pos
The value of pos which was passed to the search() or match() function. This is the index into
the string at which the RE engine started looking for a match.

endpos
The value of endpos which was passed to the search() or match() function. This is the index into
the string beyond which the RE engine will not go.

lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no
group was matched at all.

lastindex

The integer index of the last matched capturing group, or None if no group was matched at all.

94 Chapter 4. String Services

re
The regular expression object whose match() or search() method produced this MatchObject
instance.

string
The string passed to match() or search().

4.2.6 Examples

Simulating scanf ()

Python does not currently have an equivalent to scanf(). Regular expressions are generally more
powerful, though also more verbose, than scanf () format strings. The table below offers some more-or-
less equivalent mappings between scanf () format tokens and regular expressions.

scanf () Token | Regular Expression

he N

%5c {5}

%d MT-+1\d+

e, hE, %L, hg T-+1 (\a+(\ . \d*) 7| \d*\.\d+) ([eE]\d+) 7
hi T-+1 (0[xX] [\dA-Fa-£]+|0[0-7]1*|\d+),
ho 0[0-71%

%s NS+

hu Nd+

%x, %X '0 [xX] [\dA-Fa-f],

To extract the filename and numbers from a string like

/usr/sbin/sendmail - O errors, 4 warnings

you would use a scanf () format like

%s - %d errors, ’%d warnings

The equivalent regular expression would be

([*\sl+) - (\d+) errors, (\d+) warnings

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings.
It uses format strings (explained below) as compact descriptions of the lay-out of the C structs and the
intended conversion to/from Python values. This can be used in handling binary data stored in files or
from network connections, among other sources.

The module defines the following exception and functions:

exception error
Exception raised on various occasions; argument is a string describing what is wrong.

pack(fmt, vi, v2, ...)
Return a string containing the values v1, v2, ... packed according to the given format. The
arguments must match the values required by the format exactly.

unpack (fmt, string)
Unpack the string (presumably packed by pack(fmt, ...)) according to the given format. The
result is a tuple even if it contains exactly one item. The string must contain exactly the amount
of data required by the format (len(string) must equal calcsize(fmt)).

4.3. struct — Interpret strings as packed binary data 95

calcsize(fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be
obvious given their types:

Format | C Type Python Notes
‘x’ pad byte no value
‘c’ char string of length 1
‘D’ signed char integer
‘B’ unsigned char integer
‘h’ short integer
‘" unsigned short integer
‘i’ int integer
‘T unsigned int long
‘v long integer
‘v unsigned long long
‘q’ long long long (1)
‘Q unsigned long long | long (1)
£’ float float
‘a’ double float
‘s’ char (] string
‘p’ char (] string
‘P’ void * integer

Notes:

(1) The ‘q’ and ‘Q’ conversion codes are available in native mode only if the platform C compiler supports
C long long, or, on Windows, __int64. They are always available in standard modes. New in
version 2.2.

A format character may be preceded by an integral repeat count. For example, the format string ’4h’
means exactly the same as *hhhh’.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace
though.

For the ‘s’ format character, the count is interpreted as the size of the string, not a repeat count like for
the other format characters; for example, >10s’ means a single 10-byte string, while >10c’ means 10
characters. For packing, the string is truncated or padded with null bytes as appropriate to make it fit.
For unpacking, the resulting string always has exactly the specified number of bytes. As a special case,
’0s’ means a single, empty string (while ’0c’ means 0 characters).

The ‘p’ format character encodes a ”Pascal string”, meaning a short variable-length string stored in a
fixed number of bytes. The count is the total number of bytes stored. The first byte stored is the length
of the string, or 255, whichever is smaller. The bytes of the string follow. If the string passed in to
pack() is too long (longer than the count minus 1), only the leading count-1 bytes of the string are
stored. If the string is shorter than count-1, it is padded with null bytes so that exactly count bytes in
all are used. Note that for unpack(), the ‘p’ format character consumes count bytes, but that the string
returned can never contain more than 255 characters.

For the ‘T’, ‘L’ ‘q’ and ‘Q’ format characters, the return value is a Python long integer.

For the ‘P’ format character, the return value is a Python integer or long integer, depending on the size
needed to hold a pointer when it has been cast to an integer type. A NULL pointer will always be returned
as the Python integer 0. When packing pointer-sized values, Python integer or long integer objects may
be used. For example, the Alpha and Merced processors use 64-bit pointer values, meaning a Python
long integer will be used to hold the pointer; other platforms use 32-bit pointers and will use a Python
integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly
aligned by skipping pad bytes if necessary (according to the rules used by the C compiler).

96 Chapter 4. String Services

Alternatively, the first character of the format string can be used to indicate the byte order, size and
alignment of the packed data, according to the following table:

Character | Byte order Size and alignment
‘@’ native native
‘=’ native standard
<’ little-endian standard
>’ big-endian standard
o’ network (= big-endian) | standard

If the first character is not one of these, ‘@ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola
and Sun processors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always
combined with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use
pad bytes); short is 2 bytes; int and long are 4 bytes; long long (__int64 on Windows) is 8 bytes;
float and double are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference between ‘@’ and ‘=": both use native byte order, but the size and alignment of the
latter is standardized.

The form ‘!’ is available for those poor souls who claim they can’t remember whether network byte
order is big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of
L<7 or 4>’.

The ‘P’ format character is only available for the native byte ordering (selected as the default or with the
‘@ byte order character). The byte order character ‘=" chooses to use little- or big-endian ordering based
on the host system. The struct module does not interpret this as native ordering, so the ‘P’ format is
not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(’hhl’, 1, 2, 3)
’\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack(’hhl’, ’\x00\x01\x00\x02\x00\x00\x00\x03’)

(1, 2, 3)
>>> calcsize(’hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format
with the code for that type with a repeat count of zero. For example, the format >11h01’ specifies two
pad bytes at the end, assuming longs are aligned on 4-byte boundaries. This only works when native
size and alignment are in effect; standard size and alignment does not enforce any alignment.

See Also:

Module array (section 5.9):
Packed binary storage of homogeneous data.

Module xdrlib (section 12.17):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

4.4, difflib — Helpers for computing deltas 97

class SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence
elements are hashable. The basic algorithm predates, and is a little fancier than, an algorithm
published in the late 1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern
matching.” The idea is to find the longest contiguous matching subsequence that contains no
“junk” elements (the Ratcliff and Obershelp algorithm doesn’t address junk). The same idea is
then applied recursively to the pieces of the sequences to the left and to the right of the matching
subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time
in the expected case. SequenceMatcher is quadratic time for the worst case and has expected-case
behavior dependent in a complicated way on how many elements the sequences have in common;
best case time is linear.

class Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences
of characters within similar (near-matching) lines.

Each line of a Differ delta begins with a two-letter code:

Code ‘ Meaning

- line unique to sequence 1

T+ 0 line unique to sequence 2

>0 line common to both sequences

>? 7 | line not present in either input sequence

Lines beginning with ‘? ’ attempt to guide the eye to intraline differences, and were not present
in either input sequence. These lines can be confusing if the sequences contain tab characters.

get_close_matches(word, possibilities [, n[, cutoﬁ]])

Return a list of the best “good enough” matches. word is a sequence for which close matches are
desired (typically a string), and possibilities is a list of sequences against which to match word
(typically a list of strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be
greater than 0.

Optional argument cutoff (default 0.6) is a float in the range [0, 1]. Possibilities that don’t score
at least that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity
score, most similar first.

>>> get_close_matches(’appel’, [’ape’, ’apple’, ’peach’, ’puppy’l)
[’apple’, ’ape’]

>>> import keyword

>>> get_close_matches(’wheel’, keyword.kwlist)

[’while’]

>>> get_close_matches(’apple’, keyword.kwlist)
[

>>> get_close_matches(’accept’, keyword.kwlist)
[’except’]

ndiff (a, b[, linejunk [, charjunk]])

Compare a and b (lists of strings); return a Differ-style delta (a generator generating the delta
lines).

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that should accept a single string argument, and return true if the string is

junk (or false if it is not). The default is module-level function IS_LINE_JUNK(), which filters out
lines without visible characters, except for at most one pound character (‘#°).

98

Chapter 4. String Services

charjunk: A function that should accept a string of length 1. The default is module-level function
IS_CHARACTER_JUNK (), which filters out whitespace characters (a blank or tab; note: bad idea to
include newline in this!).

‘Tools/scripts/ndiff.py’ is a command-line front-end to this function.

>>> diff = ndiff (’one\ntwo\nthree\n’.splitlines(1),
cee ’ore\ntree\nemu\n’.splitlines(1)))
>>> print ’’.join(diff),

one

ore

N+ N

two
three
tree
emu

+ o4+

restore (sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare() or ndiff (), extract lines originating from file 1
or 2 (parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff (’one\ntwo\nthree\n’.splitlines(1),
ce ’ore\ntree\nemu\n’.splitlines(1))
>>> diff = 1list(diff) # materialize the generated delta into a list
>>> print ’’.join(restore(diff, 1)),

one

two

three

>>> print ’’.join(restore(diff, 2)),

ore

tree

emu

IS_LINE_JUNK (line)
Return true for ignorable lines. The line line is ignorable if line is blank or contains a single ‘#’,
otherwise it is not ignorable. Used as a default for parameter linejunk in ndiff ().

IS_CHARACTER_JUNK(ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise
it is not ignorable. Used as a default for parameter charjunk in ndiff ().

See Also:

Pattern Matching: The Gestalt Approach
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was published in
Dr. Dobb’s Journal in July, 1988.

4.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

class SequenceMatcher([isjunk[, a[, b]]])
Optional argument isjunk must be None (the default) or a one-argument function that takes a
sequence element and returns true if and only if the element is “junk” and should be ignored.
Passing None for b is equivalent to passing lambda x: 0; in other words, no elements are ignored.
For example, pass:

4.4, difflib — Helpers for computing deltas 99

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard
tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The
elements of both sequences must be hashable.

SequenceMatcher objects have the following methods:

set_seqs(a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want
to compare one sequence against many sequences, use set_seq2() to set the commonly used sequence
once and call set_seql () repeatedly, once for each of the other sequences.

set_seql(a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2(b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match(alo, ahi, blo, bhi)
Find longest matching block in a[alo: ahi] and b[blo: bhi].

If isjunk was omitted or None, get_longest_match() returns (i, j, k) such that ali:i+k] is
equal to b[j:j+k], where alo <= i <= i+k <= ahi and blo <= j <= j+k <= bhi. For all (', j’,
k’) meeting those conditions, the additional conditions k >= k’, ¢ <= ¢’ and if ¢ == ¢’ j <= j’
are also met. In other words, of all maximal matching blocks, return one that starts earliest in a,
and of all those maximal matching blocks that start earliest in @, return the one that starts earliest

in b.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(0, 4, 5)

If isjunk was provided, first the longest matching block is determined as above, but with the
additional restriction that no junk element appears in the block. Then that block is extended
as far as possible by matching (only) junk elements on both sides. So the resulting block never
matches on junk except as identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents > abcd’ from
matching the > abcd’ at the tail end of the second sequence directly. Instead only the *abcd’ can
match, and matches the leftmost >abcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(1, 0, 4)

If no blocks match, this returns (alo, blo, 0).

get_matching blocks()
Return list of triples describing matching subsequences. Each triple is of the form (i, 7, n), and
means that al[i:i+n] == b[j:j+n]. The triples are monotonically increasing in 7 and j.

The last triple is a dummy, and has the value (len(a), len(b), 0). It is the only triple with n

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
(o, o, 23, (3, 2, 2), (5, 4, 0)]

get_opcodes ()
Return list of 5-tuples describing how to turn @ into b. Each tuple is of the form (tag, i1, i2,

100 Chapter 4. String Services

j1, j2). The first tuple has i1 == jI == 0, and remaining tuples have i/ equal to the i2 from
the preceeding tuple, and, likewise, jI equal to the previous j2.

The tag values are strings, with these meanings:

Value ‘ Meaning

’replace’ | alil:42] should be replaced by b[j1:52].

’delete’ a[¢1:12] should be deleted. Note that j1 == 32 in this case.

’insert’ b[j1:72] should be inserted at a[if:41]. Note that 1 == ¢2 in this case.
’equal’ alil:42] == b[j1:52] (the sub-sequences are equal).

For example:

>>> a = "qabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)
>>> for tag, il, i2, j1, j2 in s.get_opcodes():
print ("%7s allkd:%d] (%s) blhd:%d] Chs)" %
(tag, i1, i2, ali1:i2], j1, j2, b[j1:321))
delete al0:1] (q) b[0:0] O
equal a[1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)
equal a[4:6] (cd) b[3:5] (cd)
insert a[6:6] () b[5:6] (f)

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this
is 2.0*M / T. Note that this is 1.0 if the sequences are identical, and 0.0 if they have nothing in
common.

This is expensive to compute if get_matching blocks() or get_opcodes() hasn’t already been
called, in which case you may want to try quick_ratio() or real_quick_ratio() first to get an
upper bound.

quick_ratio()
Return an upper bound on ratio() relatively quickly.

This isn’t defined beyond that it is an upper bound on ratio(), and is faster to compute.

real_quick_ratio()
Return an upper bound on ratio() very quickly.

This isn’t defined beyond that it is an upper bound on ratio(), and is faster to compute than
either ratio() or quick_ratio().

The three methods that return the ratio of matching to total characters can give different results due
to differing levels of approximation, although quick_ratio() and real_quick_ratio() are always at
least as large as ratio():

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

4.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

4.4, difflib — Helpers for computing deltas 101

>>> s = SequenceMatcher(lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio()
value over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you're only interested in where the sequences match, get_matching blocks() is handy:

>>> for block in s.get_matching_blocks():

print "a[%d] and b[/d] match for %d elements" % block
a[0] and b[0] match for 8 elements

a[8] and b[17] match for 6 elements

a[14] and b[23] match for 15 elements

a[29] and b[38] match for O elements

Note that the last tuple returned by get_matching blocks() is always a dummy, (len(a), len(d),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes():

>>> for opcode in s.get_opcodes():

. print "%6s alld:%d] bl[%d:%dl" % opcode
equal a[0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:14] b[17:23]

equal a[14:29] b[23:38]

See also the function get_close_matches() in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

4.4.3 Differ Objects

Note that Differ-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs
are often counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100
pages apart. Restricting synch points to contiguous matches preserves some notion of locality, at the
occasional cost of producing a longer diff.

The Differ class has this constructor:

class Differ([linejunk [, charjunk]])

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that should accept a single string argument, and return true if the string is
junk. The default is module-level function IS_LINE_JUNK(), which filters out lines without visible
characters, except for at most one pound character (‘#’).

charjunk: A function that should accept a string of length 1. The default is module-level function
IS_CHARACTER_JUNK(), which filters out whitespace characters (a blank or tab; note: bad idea to
include newline in this!).

Differ objects are used (deltas generated) via a single method:

compare (a, b)

Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines() method of file-like objects. The delta generated also consists
of newline-terminated strings, ready to be printed as-is via the writelines() method of a file-like
object.

102

Chapter 4. String Services

4.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings
ending with newlines (such sequences can also be obtained from the readlines() method of file-like

objects):

>>> textl = ’’’ 1. Beautiful is better than ugly.
2. Explicit is better than implicit.

4

3. Simple is better than complex.

4. Complex is better than complicated.

... 77’ . splitlines(1)
>>> len(textl)

>>> text1[0] [-1]

)\n)

>>> text2 = ’’’ 1. Beautiful is better than ugly.
Simple is better than complex.
4. Complicated is better than complex.

3.

5. Flat is better than nested.
?22 splitlines(1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating a Differ object we may pass functions to filter out line and character

“‘junk.” See the Differ () constructor for details.

Finally, we compare the two:

>>> result = list(d.compare(textl, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint
>>> pprint (result)

[)
P -
R
T+
’?
R
’?
T4
’?

'+

1.
2.
3.
3.
4. Complex is better than complicated.\

4.

5.

++

++++ 7

Flat is better than nested.\n’]

As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines(result)
Beautiful is better than ugly.

~ o+

+ 9+

1.
2. Explicit is better than implicit.
3.
3

RS

+

Simple is better than complex.
Simple is better than complex.

+

++++ 7

. Flat is better than nested.

. Complex is better than complicated.

. Complicated is better than complex.

Beautiful is better than ugly.\n’,
Explicit is better than implicit.\n’,
Simple is better than complex.\n’,

Simple is better than complex.\n’,

\n’,

n’,
\n’,

Complicated is better than complex.\n’,

\n’,

4.4, difflib — Helpers for computing deltas

103

4.5 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100%
pure Python. Note: This module is unneeded: everything here could be done via the % string interpo-
lation operator.

The fpformat module defines the following functions and an exception:

fix(z, digs)
Format z as [-]ddd.ddd with digs digits after the point and at least one digit before. If digs <=
0, the decimal point is suppressed.
x can be either a number or a string that looks like one. digs is an integer.
Return value is a string.
sci(z, digs)
Format z as [-]1d.dddE[+-]1ddd with digs digits after the point and exactly one digit before. If
digs <= 0, one digit is kept and the point is suppressed.
x can be either a real number, or a string that looks like one. digs is an integer.

Return value is a string.

exception NotANumber
Exception raised when a string passed to £ix() or sci() as the x parameter does not look like a
number. This is a subclass of ValueError when the standard exceptions are strings. The exception
value is the improperly formatted string that caused the exception to be raised.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
’1.2?

4.6 StringI0 — Read and write strings as files

This module implements a file-like class, StringI0, that reads and writes a string buffer (also known as
memory files). See the description of file objects for operations (section 2.2.8).

class StringI0([buﬁer])
When a StringI0 object is created, it can be initialized to an existing string by passing the string
to the constructor. If no string is given, the StringI0 will start empty.

The StringI0 object can accept either Unicode or 8-bit strings, but mixing the two may take some
care. If both are used, 8-bit strings that cannot be interpreted as 7-bit Asci (that use the 8th bit)
will cause a UnicodeError to be raised when getvalue() is called.

The following methods of StringI0 objects require special mention:

getvalue()
Retrieve the entire contents of the “file” at any time before the StringI0 object’s close () method
is called. See the note above for information about mixing Unicode and 8-bit strings; such mixing
can cause this method to raise UnicodeError.

close()
Free the memory buffer.

4.7 cStringI0 — Faster version of StringI0

The module cStringI0 provides an interface similar to that of the StringI0 module. Heavy use of
StringI0.StringI0 objects can be made more efficient by using the function StringI0() from this
module instead.

104 Chapter 4. String Services

Since this module provides a factory function which returns objects of built-in types, there’s no way to
build your own version using subclassing. Use the original StringI0 module in that case.

Unlike the memory files implemented by the StringI0 module, those provided by this module are not
able to accept Unicode strings that cannot be encoded as plain ASCII strings.

The following data objects are provided as well:

InputType
The type object of the objects created by calling StringI0 with a string parameter.

OutputType
The type object of the objects returned by calling StringI0 with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access
to the internal Python codec registry which manages the codec lookup process.

It defines the following functions:

register (search_function)
Register a codec search function. Search functions are expected to take one argument, the encoding
name in all lower case letters, and return a tuple of functions (encoder, decoder, stream_reader,
stream_writer) taking the following arguments:

encoder and decoder: These must be functions or methods which have the same interface as the
encode () /decode () methods of Codec instances (see Codec Interface). The functions/methods
are expected to work in a stateless mode.

stream_reader and stream_writer: These have to be factory functions providing the following
interface:

factory(stream, errors=’strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter and StreamReader, respectively. Stream codecs can maintain state.

Possible values for errors are >strict’ (raise an exception in case of an encoding error), *replace’
(replace malformed data with a suitable replacement marker, such as ‘?’) and ’ignore’ (ignore
malformed data and continue without further notice).

In case a search function cannot find a given encoding, it should return None.

lookup (encoding)
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined
above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search
functions is scanned. If no codecs tuple is found, a LookupError is raised. Otherwise, the codecs
tuple is stored in the cache and returned to the caller.

To simply access to the various codecs, the module provides these additional functions which use
lookup() for the codec lookup:

getencoder (encoding)
Lookup up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

getdecoder (encoding)
Lookup up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

getreader (encoding)
Lookup up the codec for the given encoding and return its StreamReader class or factory function.

4.8. codecs — Codec registry and base classes 105

Raises a LookupError in case the encoding cannot be found.

getwriter (encoding)
Lookup up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, mode [, encoding[, errors [, buffering]]])
Open an encoded file using the given mode and return a wrapped version providing transparent
encoding/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode
objects for most built-in codecs. Output is also codec-dependent and will usually be Unicode as
well.

encoding specifies the encoding which is to be used for the the file.

errors may be given to define the error handling. It defaults to ’strict’ which causes a
ValueError to be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open() function. It defaults to line buffered.

EncodedFile (file, input[, output[, ermrs]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the given input encoding and then
written to the original file as strings using the output encoding. The intermediate encoding will
usually be Unicode but depends on the specified codecs.

If output is not given, it defaults to input.

errors may be given to define the error handling. It defaults to >strict’, which causes ValueError
to be raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform
dependent files:

BOM

BOM_BE

BOM_LE

BOM32_BE

BOM32_LE

BOM64_BE

BOM64_LE
These constants define the byte order marks (BOM) used in data streams to indicate the byte order
used in the stream or file. BOM is either BOM_BE or BOM_LE depending on the platform’s native byte
order, while the others represent big endian (‘_BE’ suffix) and little endian (‘_LE’ suffix) byte order
using 32-bit and 64-bit encodings.

See Also:

http://sourceforge.net/projects/python-codecs/
A SourceForge project working on additional support for Asian codecs for use with Python. They
are in the early stages of development at the time of this writing — look in their FTP area for
downloadable files.

4.8.1 Codec Base Classes

The codecs defines a set of base classes which define the interface and can also be used to easily write
you own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless
decoder, stream reader and stream writer. The stream reader and writers typically reuse the stateless
encoder/decoder to implement the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

106 Chapter 4. String Services

To simplify and standardize error handling, the encode () and decode () methods may implement dif-
ferent error handling schemes by providing the errors string argument. The following string values are
defined and implemented by all standard Python codecs:

Value ‘ Meaning

’strict’ | Raise ValueError (or a subclass); this is the default.

’ignore’ Ignore the character and continue with the next.

’replace’ | Replace with a suitable replacement character; Python will use the official U+FFFD REPLACEMENT (

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder
and decoder:

encode (input [, errors])
Encodes the object input and returns a tuple (output object, length consumed).
errors defines the error handling to apply. It defaults to ’strict’ handling.

The method may not store state in the Codec instance. Use StreamCodec for codecs which have
to keep state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output
object type in this situation.

decode (input [, errors])
Decodes the object input and returns a tuple (output object, length consumed).

input must be an object which provides the bf_getreadbuf buffer slot. Python strings, buffer
objects and memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaults to ’strict’ handling.

The method may not store state in the Codec instance. Use StreamCodec for codecs which have
to keep state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output
object type in this situation.

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encodings submodules very easily. See encodings.utf_8 for an example on how this is
done.

StreamWriter Objects

The StreamWriter class is a subclass of Codec and defines the following methods which every stream
writer must define in order to be compatible to the Python codec registry.

class Strea.mWriter(stream[, errors])
Constructor for a StreamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing (binary) data.

The StreamWriter may implement different error handling schemes by providing the errors key-
word argument. These parameters are defined:

e’strict’ Raise ValueError (or a subclass); this is the default.
e’ignore’ Ignore the character and continue with the next.
e’replace’ Replace with a suitable replacement character

write (object)
Writes the object’s contents encoded to the stream.

4.8. codecs — Codec registry and base classes 107

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the write() method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows
appending of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the StreamWriter must also inherit all other methods and attribute
from the underlying stream.

StreamReader Objects

The StreamReader class is a subclass of Codec and defines the following methods which every stream
reader must define in order to be compatible to the Python codec registry.

class StreamReader(stTeam[, errors])
Constructor for a StreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providing the errors key-
word argument. These parameters are defined:

o’strict’ Raise ValueError (or a subclass); this is the default.
o’ignore’ Ignore the character and continue with the next.
e’ replace’ Replace with a suitable replacement character.
read([size])
Decodes data from the stream and returns the resulting object.

size indicates the approximate maximum number of bytes to read from the stream for decoding
purposes. The decoder can modify this setting as appropriate. The default value -1 indicates to
read and decode as much as possible. size is intended to prevent having to decode huge files in one
step.

The method should use a greedy read strategy meaning that it should read as much data as is
allowed within the definition of the encoding and the given size, e.g. if optional encoding endings
or state markers are available on the stream, these should be read too.

readline ([size])
Read one line from the input stream and return the decoded data.

Unlike the readlines () method, this method inherits the line breaking knowledge from the under-
lying stream’s readline () method — there is currently no support for line breaking using the codec
decoder due to lack of line buffering. Sublcasses should however, if possible, try to implement this
method using their own knowledge of line breaking.

size, if given, is passed as size argument to the stream’s readline () method.

readlines([sizehint])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list entries.

sizehint, if given, is passed as size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able
to recover from decoding errors.

108 Chapter 4. String Services

In addition to the above methods, the StreamReader must also inherit all other methods and attribute
from the underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but
may provide useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by the lookup() function to construct
the instance.

class StreamReaderWriter (stream, Reader, Writer, errors)
Creates a StreamReaderWriter instance. stream must be a file-like object. Reader and Writer
must be factory functions or classes providing the StreamReader and StreamWriter interface resp.
Error handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of StreamReader and StreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned by the lookup() function to construct
the instance.

class StreamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates a StreamRecoder instance which implements a two-way conversion: encode and decode
work on the frontend (the input to read() and output of write()) while Reader and Writer work
on the backend (reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
stream must be a file-like object.

encode, decode must adhere to the Codec interface, Reader, Writer must be factory functions or
classes providing objects of the the StreamReader and StreamWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend
translation. The intermediate format used is determined by the two sets of codecs, e.g. the
Unicode codecs will use Unicode as intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of StreamReader and StreamWriter classes.
They inherit all other methods and attribute from the underlying stream.

4.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for
all Unicode characters. The data in this database is based on the ‘UnicodeData.txt’ file version 3.0.0 which
is publically available from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.0.0 (see
http://www.unicode.org/Public/UNIDATA /UnicodeData.html). It defines the following functions:

lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding
Unicode character. If not found, KeyError is raised.

4.9. unicodedata — Unicode Database 109

name(um'ch'r[, default])
Returns the name assigned to the Unicode character unichr as a string. If no name is defined,
default is returned, or, if not given, ValueError is raised.

decimal Cunichr [, default])
Returns the decimal value assigned to the Unicode character unichr as integer. If no such value is
defined, default is returned, or, if not given, ValueError is raised.

digit(umchr[, default])
Returns the digit value assigned to the Unicode character unichr as integer. If no such value is
defined, default is returned, or, if not given, ValueError is raised.

numeric (unichr [, default])
Returns the numeric value assigned to the Unicode character unichr as float. If no such value is
defined, default is returned, or, if not given, ValueError is raised.

category (unichr)
Returns the general category assigned to the Unicode character unichr as string.

bidirectional (unichr)
Returns the bidirectional category assigned to the Unicode character unichr as string. If no such
value is defined, an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode character unichr as integer. Returns
0 if no combining class is defined.

mirrored (unichr)
Returns the mirrored property of assigned to the Unicode character unichr as integer. Returns 1
if the character has been identified as a “mirrored” character in bidirectional text, 0 otherwise.

decomposition(unichr)
Returns the character decomposition mapping assigned to the Unicode character unichr as string.
An empty string is returned in case no such mapping is defined.

110 Chapter 4. String Services

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python
versions. Here’s an overview:

pydoc Documentation generator and online help system.

doctest A framework for verifying examples in docstrings.

unittest Unit testing framework for Python.

math Mathematical functions (sin() etc.).

cmath Mathematical functions for complex numbers.

random Generate pseudo-random numbers with various common distributions.

whrandom Floating point pseudo-random number generator.

bisect Array bisection algorithms for binary searching.

array Efficient arrays of uniformly typed numeric values.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
xreadlines Efficient iteration over the lines of a file.

calendar Functions for working with calendars, including some emulation of the UNIX cal program.
cmd Build line-oriented command interpreters.

shlex Simple lexical analysis for UNIX shell-like languages.

5.1 pydoc — Documentation generator and online help system

New in version 2.1.

The pydoc module automatically generates documentation from Python modules. The documentation
can be presented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in function help() invokes the online help system in the interactive interpreter, which uses
pydoc to generate its documentation as text on the console. The same text documentation can also
be viewed from outside the Python interpreter by running pydoc as a script at the operating system’s
command prompt. For example, running

pydoc sys

at a shell prompt will display documentation on the sys module, in a style similar to the manual pages
shown by the UNIX man command. The argument to pydoc can be the name of a function, module, or
package, or a dotted reference to a class, method, or function within a module or module in a package.
If the argument to pydoc looks like a path (that is, it contains the path separator for your operating
system, such as a slash in UNIX), and refers to an existing Python source file, then documentation is
produced for that file.

Specifying a -w flag before the argument will cause HTML documentation to be written out to a file in
the current directory, instead of displaying text on the console.

Specifying a -k flag before the argument will search the synopsis lines of all available modules for the
keyword given as the argument, again in a manner similar to the UNIX man command. The synopsis

111

line of a module is the first line of its documentation string.

You can also use pydoc to start an HT'TP server on the local machine that will serve documentation to
visiting Web browsers. pydoc -p 1234 will start a HT'TP server on port 1234, allowing you to browse
the documentation at http://localhost:1234/ in your preferred Web browser. pydoc -g will start
the server and additionally bring up a small Tkinter-based graphical interface to help you search for
documentation pages.

When pydoc generates documentation, it uses the current environment and path to locate modules.
Thus, invoking pydoc spam documents precisely the version of the module you would get if you started
the Python interpreter and typed ‘import spam’.

5.2 doctest — Test docstrings represent reality

The doctest module searches a module’s docstrings for text that looks like an interactive Python session,
then executes all such sessions to verify they still work exactly as shown. Here’s a complete but small
example:

This is module example.
Example supplies one function, factorial. For example,

>>> factorial(5)
120

def factorial(nm):
"""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]

>>> factorial(30)
265252859812191058636308480000000L

>>> factorial (30L)
265252859812191058636308480000000L

>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are 0K, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

OverflowError: n too large
nnn

112 Chapter 5. Miscellaneous Services

import math
if not n >= 0:
raise ValueError("n must be >= 0")
if math.floor(n) != n:
raise ValueError("n must be exact integer")
if n+l == n: # e.g., 1e300
raise OverflowError("n too large")
result =1
factor = 2
while factor <= n:
try:
result *= factor
except OverflowError:
result *= long(factor)
factor += 1
return result

def _test():
import doctest, example
return doctest.testmod(example)

if __name == "__main__":

_test()

If you run ‘example.py’ directly from the command line, doctest works its magic:

$ python example.py
$

There’s no output! That’s normal, and it means all the examples worked. Pass -v to the script, and
doctest prints a detailed log of what it’s trying, and prints a summary at the end:

$ python example.py -v
Running example.__doc_
Trying: factorial(5)
Expecting: 120

ok

0 of 1 examples failed in example.__doc__
Running example.factorial.__doc__

Trying: [factorial(n) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: [factorial(long(n)) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: factorial(30)

Expecting: 265252859812191058636308480000000L
ok

And so on, eventually ending with:

Trying: factorial(1e100)
Expecting:
Traceback (most recent call last):

OverflowError: n too large
ok
0 of 8 examples failed in example.factorial.__doc_
2 items passed all tests:
1 tests in example

5.2. doctest — Test docstrings represent reality 113

8 tests in example.factorial
9 tests in 2 items.
9 passed and 0 failed.
Test passed.
$

That’s all you need to know to start making productive use of doctest! Jump in. The docstrings
in doctest.py contain detailed information about all aspects of doctest, and we’ll just cover the more
important points here.

5.2.1 Normal Usage

In normal use, end each module M with:

def _test():
import doctest, M # replace M with your module’s name
return doctest.testmod(M) # ditto

if __name == "__main__":

_test()

Then running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won’t display anything unless an example fails, in which case the failing example(s) and the cause(s)
of the failure(s) are printed to stdout, and the final line of output is *Test failed.’.

Run it with the -v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to stdout, along with assorted summaries at the
end.

You can force verbose mode by passing verbose=1 to testmod, or prohibit it by passing verbose=0. In
either of those cases, sys.argv is not examined by testmod.

In any case, testmod returns a 2-tuple of ints (f, t), where f is the number of docstring examples that
failed and ¢ is the total number of docstring examples attempted.

5.2.2 Which Docstrings Are Examined?

See ‘docstring.py’ for all the details. They’re unsurprising: the module docstring, and all function, class
and method docstrings are searched, with the exception of docstrings attached to objects with private
names. Objects imported into the module are not searched.

In addition, if M. __test__ exists and "is true”, it must be a dict, and each entry maps a (string) name to
a function object, class object, or string. Function and class object docstrings found from M. __test__
are searched even if the name is private, and strings are searched directly as if they were docstrings. In
output, a key K in M. __test__ appears with name

<name of M>.__test__.K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and
nested classes. While private names reached from M’s globals are skipped, all names reached from
M.__test__ are searched.

114 Chapter 5. Miscellaneous Services

5.2.3 What's the Execution Context?

By default, each time testmod finds a docstring to test, it uses a copy of M’s globals, so that running
tests on a module doesn’t change the module’s real globals, and so that one test in M can’t leave behind
crumbs that accidentally allow another test to work. This means examples can freely use any names
defined at top-level in M, and names defined earlier in the docstring being run.

You can force use of your own dict as the execution context by passing globs=your_dict to testmod ()
instead. Presumably this would be a copy of M. __dict__ merged with the globals from other imported
modules.

5.2.4 What About Exceptions?

No problem, as long as the only output generated by the example is the traceback itself. For example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list
>>>

Note that only the exception type and value are compared (specifically, only the last line in the traceback).
The various “File” lines in between can be left out (unless they add significantly to the documentation
value of the example).

5.2.5 Advanced Usage

testmod () actually creates a local instance of class Tester, runs appropriate methods of that class, and
merges the results into global Tester instance master.

You can create your own instances of Tester, and so build your own policies, or even run methods of
master directly. See Tester.__doc__ for details.

5.2.6 How are Docstring Examples Recognized?
In most cases a copy-and-paste of an interactive console session works fine — just make sure the leading

whitespace is rigidly consistent (you can mix tabs and spaces if you're too lazy to do it right, but doctest
is not in the business of guessing what you think a tab means).

>>> # comments are ignored

>>> x = 12

>>> x

12

>>> if x == 13:
print "yes"

. else:

print "no"
print "NO"
print "NO!!I"

no

NO

NO!!!

>>>

Any expected output must immediately follow the final >>>> 2> or ’... ’ line containing the code, and

the expected output (if any) extends to the next *>>> ? or all-whitespace line.

The fine print:

5.2. doctest — Test docstrings represent reality 115

e Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end

of expected output.

Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a
different means).

If you continue a line via backslashing in an interactive session, or for any other reason use a
backslash, you need to double the backslash in the docstring version. This is simply because you're
in a string, and so the backslash must be escaped for it to survive intact. Like:

>>> if "yes" == \\
|ly|| + \\
|leS|| .

print ’yes’
yes

The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math
>>> math.floor(1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in
the initial >>>> ’ line that triggered it.

5.2.7 Warnings

1. doctest is serious about requiring exact matches in expected output. If even a single character

doesn’t match, the test fails. This will probably surprise you a few times, as you learn exactly
what Python does and doesn’t guarantee about output. For example, when printing a dict, Python
doesn’t guarantee that the key-value pairs will be printed in any particular order, so a test like

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}
>>>

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
1
>>>

instead. Another is to do

>>> d = foo().items()

>>> d.sort()

>>> d

[(’Harry’, ’broomstick’), (’Hermione’, ’hippogryph’)]
There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>>

Floating-point numbers are also subject to small output variations across platforms, because
Python defers to the platform C library for float formatting, and C libraries vary widely in quality
here.

116

Chapter 5. Miscellaneous Services

>>> 1./7 # risky

0.14285714285714285

>>> print 1./7 # safer

0.142857142857

>>> print round(1./7, 6) # much safer
0.142857

Numbers of the form I/2.#**J are safe across all platforms, and I often contrive doctest examples
to produce numbers of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

2. Be careful if you have code that must only execute once.

If you have module-level code that must only execute once, a more foolproof definition of _test ()
is

def _test(Q):
import doctest, sys
doctest.testmod(sys.modules["__main__"])

5.2.8 Soapbox

The first word in doctest is "doc”, and that’s why the author wrote doctest: to keep documentation up
to date. It so happens that doctest makes a pleasant unit testing environment, but that’s not its primary
purpose.

Choose docstring examples with care. There’s an art to this that needs to be learned — it may not be
natural at first. Examples should add genuine value to the documentation. A good example can often
be worth many words. If possible, show just a few normal cases, show endcases, show interesting subtle
cases, and show an example of each kind of exception that can be raised. You're probably testing for
endcases and subtle cases anyway in an interactive shell: doctest wants to make it as easy as possible to
capture those sessions, and will verify they continue to work as designed forever after.

If done with care, the examples will be invaluable for your users, and will pay back the time it takes to
collect them many times over as the years go by and ”things change”. I'm still amazed at how often one
of my doctest examples stops working after a ”harmless” change.

For exhaustive testing, or testing boring cases that add no value to the docs, define a __test__ dict
instead. That’s what it’s for.

5.3 unittest — Unit testing framework

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of
JUnit, by Kent Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent’s Smalltalk testing
framework. Each is the de facto standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into
collections, and independence of the tests from the reporting framework. The unittest module provides
classes that make it easy to support these qualities for a set of tests.

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixture represents the preparation needed to perform one or more tests, and any associate
cleanup actions. This may involve, for example, creating temporary or proxy databases, directories,
or starting a server process.

5.3. unittest — Unit testing framework 117

test case
A test case is the smallest unit of testing. It checks for a specific response to a particular set of
inputs. PyUnit provides a base class, TestCase, which may be used to create new test cases.

test suite
A test suite is a collection of test cases, test suites, or both. It is used to aggregate tests that should
be executed together.

test runner
A test runner is a component which orchestrates the execution of tests and provides the outcome
to the user. The runner may use a graphical interface, a textual interface, or return a special value
to indicate the results of executing the tests.

The test case and test fixture concepts are supported through the TestCase and FunctionTestCase
classes; the former should be used when creating new tests, and the later can be used when integrating
existing test code with a PyUnit-driven framework. When building test fixtures using TestCase, the
setUp() and tearDown () methods can be overridden to provide initialization and cleanup for the fixture.
With FunctionTestCase, existing functions can be passed to the constructor for these purposes. When
the test is run, the fixture initialization is run first; if it succeeds, the cleanup method is run after the
test has been executed, regardless of the outcome of the test. Each instance of the TestCase will only
be used to run a single test method, so a new fixture is created for each test.

Test suites are implemented by the TestSuite class. This class allows individual tests and test suites to
be aggregated; when the suite is executed, all tests added directly to the suite and in “child” test suites
are run.

A test runner is an object that provides a single method, run(), which accepts a TestCase or TestSuite
object as a parameter, and returns a result object. The class TestResult is provided for use as the result
object. PyUnit provide the TextTestRunner as an example test runner which reports test results on the
standard error stream by default. Alternate runners can be implemented for other environments (such
as graphical environments) without any need to derive from a specific class.

See Also:

PyUnit Web Site
(http://pyunit.sourceforge.net/)
The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http://www.XProgramming.com /testfram.htm)
Kent Beck’s original paper on testing frameworks using the pattern shared by unittest.

5.3.1 Organizing test code

The basic building blocks of unit testing are test cases — single scenarios that must be set up and checked
for correctness. In PyUnit, test cases are represented by instances of the TestCase class in the unittest
module. To make your own test cases you must write subclasses of TestCase, or use FunctionTestCase.

An instance of a TestCase-derived class is an object that can completely run a single test method,
together with optional set-up and tidy-up code.

The testing code of a TestCase instance should be entirely self contained, such that it can be run either
in isolation or in arbitrary combination with any number of other test cases.

The simplest test case subclass will simply override the runTest () method in order to perform specific
testing code:

import unittest
class DefaultWidgetSizeTestCase(unittest.TestCase):

def runTest(self):
widget = Widget("The widget")

118 Chapter 5. Miscellaneous Services

self.failUnless(widget.size() == (50,50), ’incorrect default size’)

Note that in order to test something, we use the one of the assert*() or fail*() methods provided by
the TestCase base class. If the test fails when the test case runs, an exception will be raised, and the
testing framework will identify the test case as a failure. Other exceptions that do not arise from checks
made through the assert*() and fail*() methods are identified by the testing framework as dfnerrors.

The way to run a test case will be described later. For now, note that to construct an instance of such
a test case, we call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing
a “Widget” in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method called setUp(), which the testing
framework will automatically call for us when we run the test:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.failUnless(self.widget.size() == (50,50),
’incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
’wrong size after resize’)

If the setUp() method raises an exception while the test is running, the framework will consider the test
to have suffered an error, and the runTest () method will not be executed.

Similarly, we can provide a tearDown() method that tidies up after the runTest() method has been
run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self .widget = Widget("The widget")

def tearDown(self):
self .widget.dispose()
self.widget = None

If setUp() succeeded, the tearDown() method will be run regardless of whether or not runTest()
succeeded.

Such a working environment for the testing code is called a fizture.

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes such as DefaultWidgetSizeTestCase. This
is time-consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):

5.3. unittest — Unit testing framework 119

self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

def testDefaultSize(self):
self.failUnless(self.widget.size() == (50,50),
’incorrect default size’)

def testResize(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
’wrong size after resize’)

Here we have not provided a runTest () method, but have instead provided two different test methods.
Class instances will now each run one of the test* () methods, with self.widget created and destroyed
separately for each instance. When creating an instance we must specify the test method it is to run.
We do this by passing the method name in the constructor:

defaultSizeTestCase = WidgetTestCase("testDefaultSize")
resizeTestCase = WidgetTestCase("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mecha-
nism for this: the test suite, represented by the class TestSuite in the unittest module:

widgetTestSuite = unittest.TestSuite()
widgetTestSuite.addTest (WidgetTestCase("testDefaultSize"))
widgetTestSuite.addTest (WidgetTestCase("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a
callable object that returns a pre-built test suite:

def suite():
suite = unittest.TestSuite()
suite.addTest (WidgetTestCase("testDefaultSize"))
suite.addTest (WidgetTestCase("testResize"))
return suite

or even:

class WidgetTestSuite(unittest.TestSuite):
def __init__(self):
unittest.TestSuite.__init__(self,map(WidgetTestCase,
("testDefaultSize",
"testResize")))

(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to create a TestCase subclass with many similarly named test functions,
there is a convenience function called makeSuite () provided in the unittest module that constructs a
test suite that comprises all of the test cases in a test case class:

suite = unittest.makeSuite(WidgetTestCase,’test’)

Note that when using the makeSuite () function, the order in which the various test cases will be run
by the test suite is the order determined by sorting the test function names using the cmp() built-in
function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at
once. This is easy, since TestSuite instances can be added to a TestSuite just as TestCase instances

120 Chapter 5. Miscellaneous Services

can be added to a TestSuite:

suitel = modulel.TheTestSuite()
suite2 = module2.TheTestSuite()
alltests = unittest.TestSuite((suitel, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to
test (e.g. ‘widget.py’), but there are several advantages to placing the test code in a separate module, such
as ‘widgettests.py’:

e The test module can be run standalone from the command line.

e The test code can more easily be separated from shipped code.

e There is less temptation to change test code to fit the code. it tests without a good reason.

e Test code should be modified much less frequently than the code it tests.

e Tested code can be refactored more easily.

e Tests for modules written in C must be in separate modules anyway, so why not be consistent?

o If the testing strategy changes, there is no need to change the source code.

5.3.2 Re-using old test code

Some users will find that they have existing test code that they would like to run from PyUnit, without
converting every old test function to a TestCase subclass.

For this reason, PyUnit provides a FunctionTestCase class. This subclass of TestCase can be used to
wrap an existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
...

one can create an equivalent test case instance as follows:

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s
operation, they can also be provided:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: PyUnit supports the use of AssertionError as an indicator of test failure, but does not recom-
mend it. Future versions may treat AssertionError differently.

5.3.3 Classes and functions

class TestCase()
Instances of the TestCase class represent the smallest testable units in a set of tests. This class is
intended to be used as a base class, with specific tests being implemented by concrete subclasses.
This class implements the interface needed by the test runner to allow it to drive the test, and
methods that the test code can use to check for and report various kinds of failures.

5.3. unittest — Unit testing framework 121

class FunctionTestCase(testFunc[, setUp [, tea'rDoum[, descm’ption]]])
This class implements the portion of the TestCase interface which allows the test runner to drive
the test, but does not provide the methods which test code can use to check and report errors. This
is used to create test cases using legacy test code, allowing it to be integrated into a unittest-based
test framework.

class TestSuite([tests])
This class represents an aggregation of individual tests cases and test suites. The class presents
the interface needed by the test runner to allow it to be run as any other test case, but all the
contained tests and test suites are executed. Additional methods are provided to add test cases
and suites to the aggregation. If tests is given, it must be a sequence of individual tests that will
be added to the suite.

class TestLoader ()
This class is responsible for loading tests according to various criteria and returning them wrapped
in a TestSuite. It can load all tests within a given module or TestCase class. When loading from
a module, it considers all TestCase-derived classes. For each such class, it creates an instance for
each method with a name beginning with the string ‘test’.

defaultTestLoader
Instance of the TestLoader class which can be shared. If no customization of the TestLoader is
needed, this instance can always be used instead of creating new instances.

class TextTestRunner([stream[, descriptions [, verbosity]]])
A basic test runner implementation which prints results on standard output. It has a few con-
figurable parameters, but is essentially very simple. Graphical applications which run test suites
should provide alternate implementations.

main([module[, default Test [, argu [, testRunneT[, testRunner]]]]])
A command-line program that runs a set of tests; this is primarily for making test modules conve-
niently executable. The simplest use for this function is:

if __name__ == ’__main__"’:

unittest.main()

5.3.4 TestCase Objects

Each TestCase instance represents a single test, but each concrete subclass may be used to define multiple
tests — the concrete class represents a single test fixture. The fixture is created and cleaned up for each
test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by
the test implementation to check conditions and report failures, and some inquiry methods allowing
information about the test itself to be gathered.

Methods in the first group are:

setUp()
Method called to prepare the test fixture. This is called immediately before calling the test method;
any exception raised by this method will be considered an error rather than a test failure. The
default implementation does nothing.

tearDown ()
Method called immediately after the test method has been called and the result recorded. This is
called even if the test method raised an exception, so the implementation in subclasses may need
to be particularly careful about checking internal state. Any exception raised by this method will
be considered an error rather than a test failure. This method will only be called if the setUp()
succeeds, regardless of the outcome of the test method. The default implementation does nothing.

run([result])
Run the test, collecting the result into the test result object passed as result. If result is omitted or

122 Chapter 5. Miscellaneous Services

None, a temporary result object is created and used, but is not made available to the caller. This
is equivalent to simply calling the TestCase instance.

debug ()
Run the test without collecting the result. This allows exceptions raised by the test to be pro-
pogated to the caller, and can be used to support running tests under a debugger.

The test code can use any of the following methods to check for and report failures.

assertf(e:vpr[, msg])

failUnless(e:vpr[, msg])
Signal a test failure if expr is false; the explanation for the error will be msg if given, otherwise it
will be None.

assertEqual (first, second [, msg])

failUnlessEqual (first, second[, msg])
Test that first and second are equal. If the values do not compare equal, the test will fail with the
explanation given by msg, or None. Note that using failUnlessEqual () improves upon doing the
comparison as the first parameter to failUnless(): the default value for msg can be computed
to include representations of both first and second.

assertNotEqual (first, second[, msg])

failIfEqual (first, second [, msg])
Test that first and second are not equal. If the values do compare equal, the test will fail with
the explanation given by msg, or None. Note that using failIfEqual() improves upon doing
the comparison as the first parameter to failUnless () is that the default value for msg can be
computed to include representations of both first and second.

assertRaises (exception, callable, ...)

failUnlessRaises (exception, callable, ...)
Test that an exception is raised when callable is called with any positional or keyword arguments
that are also passed to assertRaises (). The test passes if exception is raised, is an error if another
exception is raised, or fails if no exception is raised. To catch any of a group of exceptions, a tuple
containing the exception classes may be passed as exception.

failIf(ea:pr[, msg])
The inverse of the failUnless() method is the failIf () method. This signals a test failure if
expr is true, with msg or None for the error message.

fail([msg])
Signals a test failure unconditionally, with msg or None for the error message.

failureException
This class attribute gives the exception raised by the test () method. If a test framework needs to
use a specialized exception, possibly to carry additional information, it must subclass this exception
in order to “play fair” with the framework. The initial value of this attribute is AssertionError.

Testing frameworks can use the following methods to collect information on the test:

countTestCases ()
Return the number of tests represented by the this test object. For TestCase instances, this will
always be 1, but this method is also implemented by the TestSuite class, which can return larger
values.

defaultTestResult ()
Return the default type of test result object to be used to run this test.

id0O
Return a string identifying the specific test case. This is usually the full name of the test method,
including the module and class names.

shortDescription()
Returns a one-line description of the test, or None if no description has been provided. The default
implementation of this method returns the first line of the test method’s docstring, if available, or

5.3. unittest — Unit testing framework 123

None.

5.3.5 TestSuite Objects

TestSuite objects behave much like TestCase objects, except they do not actually implement a test.
Instead, they are used to aggregate tests into groups that should be run together. Some additional
methods are available to add tests to TestSuite instances:

addTest (test)
Add a TestCase or TestSuite to the set of tests that make up the suite.

addTests (tests)
Add all the tests from a sequence of TestCase and TestSuite instances to this test suite.

The run() method is also slightly different:

run (result)
Run the tests associated with this suite, collecting the result into the test result object passed as
result. Note that unlike TestCase.run(), TestSuite.run() requires the result object to be passed
in.

In the typical usage of a TestSuite object, the run() method is invoked by a TestRunner rather than
by the end-user test harness.

5.3.6 TestResult Objects

A TestResult object stores the results of a set of tests. The TestCase and TestSuite classes ensure
that results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top of unittest may want access to the TestResult object generated by
running a set of tests for reporting purposes; a TestResult instance is returned by the TestRunner.run()
method for this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred
among those test runs. The collections contain tuples of (testcase, exceptioninfo), where exceptioninfo
is a tuple as returned by sys.exc_info().

TestResult instances have the following attributes that will be of interest when inspecting the results
of running a set of tests:

errors
A list containing pairs of TestCase instances and the sys.exc_info() results for tests which
raised an exception but did not signal a test failure.

failures
A list containing pairs of TestCase instances and the sys.exc_info() results for tests which
signalled a failure in the code under test.

testsRun
The number of tests which have been started.

wasSuccessful ()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of the TestResult class are used to maintain the internal data structures, and
mmay be extended in subclasses to support additional reporting requirements. This is particularly useful
in building tools which support interactive reporting while tests are being run.

startTest (test)
Called when the test case test is about to be run.

stopTest (test)
Called when the test case test has been executed, regardless of the outcome.

addError (test, err)

124 Chapter 5. Miscellaneous Services

Called when the test case test raises an exception without signalling a test failure. err is a tuple
of the form returned by sys.exc_info(): (type, wvalue, traceback).

addFailure (test, err)
Called when the test case test signals a failure. err is a tuple of the form returned by
sys.exc_info(): (type, value, traceback).

addSuccess (test)
This method is called for a test that does not fail; test is the test case object.

One additional method is available for TestResult objects:

stop()
This method can be called to signal that the set of tests being run should be aborted. Once this has
been called, the TestRunner object return to its caller without running any additional tests. This
is used by the TextTestRunner class to stop the test framework when the user signals an interrupt
from the keyboard. Interactive tools which provide runners can use this in a similar manner.

5.3.7 TestLoader Objects

The TestLoader class is used to create test suites from classes and modules. Normally, there is no need
to create an instance of this class; the unittest module provides an instance that can be shared as the
defaultTestLoader module attribute. Using a subclass or instance would allow customization of some
configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase (testCaseClass)
Return a suite of all tests cases contained in the TestCase-derived class testCaseClass.

loadTestsFromModule (module)
Return a suite of all tests cases contained in the given module. This method searches module for
classes derived from TestCase and creates an instance of the class for each test method defined for
the class.

Warning: While using a hierarchy of Testcase-derived classes can be convenient in sharing
fixtures and helper functions, defining test methods on base classes that are not intended to be
instantiated directly does not play well with this method. Doing so, however, can be useful when
the fixtures are different and defined in subclasses.

loadTestsFromName (name [, module])
Return a suite of all tests cases given a string specifier.

The specifier name is a “dotted name” that may resolve either to a module, a test case class, a
test method within a test case class, or a callable object which returns a TestCase or TestSuite
instance. For example, if you have a module SampleTests containing a TestCase-derived class
SampleTestCase with three test methods (test_one(), test_two(), and test_three()), the
specifier ’SampleTests.SampleTestCase’ would cause this method to return a suite which will
run all three test methods. Using the specifier SampleTests.SampleTestCase.test_two’ would
cause it to return a test suite which will run only the test_two() test method. The specifier can
refer to modules and packages which have not been imported; they will be imported as a side-effect.

The method optionally resolves name relative to a given module.
loadTestsFromNames (names [, module])

Similar to loadTestsFromName (), but takes a sequence of names rather than a single name. The
return value is a test suite which supports all the tests defined for each name.

getTestCaseNames (testCaseClass)
Return a sorted sequence of method names found within testCaseClass.

The following attributes of a TestLoader can be configured either by subclassing or assignment on an
instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default

5.3. unittest — Unit testing framework 125

value is *test’.

sortTestMethodsUsing
Function to be used to compare method names when sorting them in getTestCaseNames(). The
default value is the built-in cmp () function; it can be set to None to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object
are needed. The default value is the TestSuite class.

5.4 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C
standard.

These functions cannot be used with complex numbers; use the functions of the same name from the
cmath module if you require support for complex numbers. The distinction between functions which
support complex numbers and those which don’t is made since most users do not want to learn quite
as much mathematics as required to understand complex numbers. Receiving an exception instead of a
complex result allows earlier detection of the unexpected complex number used as a parameter, so that
the programmer can determine how and why it was generated in the first place.

The following functions provided by this module:

acos(x)
Return the arc cosine of z.

asin(zx)
Return the arc sine of z.

atan(z)
Return the arc tangent of z.

atan2(y, =)
Return atan(y /).

ceil(x)
Return the ceiling of = as a float.

cos(x)
Return the cosine of z.

cosh(z)
Return the hyperbolic cosine of z.

exp(x)
Return e**z.

fabs(z)
Return the absolute value of the floating point number z.

floor(x)
Return the floor of z as a float.

fmod (z, y)
Return fmod(z, ¥), as defined by the platform C library. Note that the Python expression = %
y may not return the same result.

frexp(z)
Return the mantissa and exponent of x as the pair (m, e). m is a float and e is an integer such
that z == m * 2%xe. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1.

hypot (z, y)

Return the Euclidean distance, sqrt (zxz + y*y).

ldexp(z,)

126 Chapter 5. Miscellaneous Services

Return z * (2%%3).

log(x)
Return the natural logarithm of z.

logl0(z)
Return the base-10 logarithm of z.

modf ()
Return the fractional and integer parts of z. Both results carry the sign of z. The integer part is
returned as a float.

pow(z, y)
Return x*x*y.

sin(z)
Return the sine of z.

sinh(z)
Return the hyperbolic sine of z.

sqrt(z)
Return the square root of z.

tan(z)
Return the tangent of z.

tanh(z)
Return the hyperbolic tangent of z.

Note that frexp() and modf () have a different call/return pattern than their C equivalents: they take
a single argument and return a pair of values, rather than returning their second return value through
an ‘output parameter’ (there is no such thing in Python).

The module also defines two mathematical constants:

pi
The mathematical constant pi.

The mathematical constant e.
See Also:

Module cmath (section 5.5):
Complex number versions of many of these functions.

5.5 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The
functions are:

acos(z)
Return the arc cosine of z. There are two branch cuts: One extends right from 1 along the real axis
to 0o, continuous from below. The other extends left from -1 along the real axis to -0o, continuous
from above.

acosh(z)
Return the hyperbolic arc cosine of z. There is one branch cut, extending left from 1 along the
real axis to -0o, continuous from above.

asin(z)
Return the arc sine of z. This has the same branch cuts as acos().

asinh(z)
Return the hyperbolic arc sine of z. There are two branch cuts, extending left from +1j to +-00j,
both continuous from above. These branch cuts should be considered a bug to be corrected in a

5.5. cmath — Mathematical functions for complex numbers 127

future release. The correct branch cuts should extend along the imaginary axis, one from 1j up to
0oj and continuous from the right, and one from -1j down to -coj and continuous from the left.

atan(z)
Return the arc tangent of z. There are two branch cuts: One extends from 1j along the imaginary
axis to 0oj, continuous from the left. The other extends from -1j along the imaginary axis to -ooj,
continuous from the left. (This should probably be changed so the upper cut becomes continuous
from the other side.)

atanh(z)
Return the hyperbolic arc tangent of z. There are two branch cuts: One extends from 1 along
the real axis to co, continuous from above. The other extends from -1 along the real axis to -oco,
continuous from above. (This should probably be changed so the right cut becomes continuous
from the other side.)

cos(z)
Return the cosine of z.

cosh(x)
Return the hyperbolic cosine of z.

exp(x)
Return the exponential value ex*z.

log(x)
Return the natural logarithm of x. There is one branch cut, from 0 along the negative real axis to
-00, continuous from above.

logl0(z)
Return the base-10 logarithm of z. This has the same branch cut as log().

sin(z)
Return the sine of z.

sinh(z)
Return the hyperbolic sine of z.

sqrt(z)
Return the square root of z. This has the same branch cut as log().

tan(z)
Return the tangent of z.

tanh(z)
Return the hyperbolic tangent of z.

The module also defines two mathematical constants:

pi
The mathematical constant pi, as a real.

The mathematical constant e, as a real.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for
having two modules is that some users aren’t interested in complex numbers, and perhaps don’t even
know what they are. They would rather have math.sqrt(-1) raise an exception than return a complex
number. Also note that the functions defined in cmath always return a complex number, even if the
answer can be expressed as a real number (in which case the complex number has an imaginary part of
7€ro).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are
a necessary feature of many complex functions. It is assumed that if you need to compute with complex
functions, you will understand about branch cuts. Consult almost any (not too elementary) book on
complex variables for enlightenment. For information of the proper choice of branch cuts for numerical
purposes, a good reference should be the following:

See Also:

128 Chapter 5. Miscellaneous Services

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothings’s sign bit. In
Iserles, A., and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987)
ppl165-211.

5.6 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions. For integers, uni-
form selection from a range. For sequences, uniform selection of a random element, and a function
to generate a random permutation of a list in-place. On the real line, there are functions to com-
pute uniform, normal (Gaussian), lognormal, negative exponential, gamma, and beta distributions. For
generating distribution of angles, the circular uniform and von Mises distributions are available.

Almost all module functions depend on the basic function random(), which generates a random float
uniformly in the semi-open range [0.0, 1.0). Python uses the standard Wichmann-Hill generator, com-
bining three pure multiplicative congruential generators of modulus 30269, 30307 and 30323. Its period
(how many numbers it generates before repeating the sequence exactly) is 6,953,607,871,644. While of
much higher quality than the rand () function supplied by most C libraries, the theoretical properties
are much the same as for a single linear congruential generator of large modulus. It is not suitable for
all purposes, and is completely unsuitable for cryptographic purposes.

The functions in this module are not threadsafe: if you want to call these functions from multiple threads,
you should explicitly serialize the calls. Else, because no critical sections are implemented internally,
calls from different threads may see the same return values.

The functions supplied by this module are actually bound methods of a hidden instance of the
random.Random class. You can instantiate your own instances of Random to get generators that don’t
share state. This is especially useful for multi-threaded programs, creating a different instance of Random
for each thread, and using the jumpahead () method to ensure that the generated sequences seen by each
thread don’t overlap (see example below).

Class Random can also be subclassed if you want to use a different basic generator of your own devising:
in that case, override the random(), seed(), getstate(), setstate() and jumpahead() methods.

Here’s one way to create threadsafe distinct and non-overlapping generators:

def create_generators(num, delta, firstseed=None):
"""Return list of num distinct generators.
Each generator has its own unique segment of delta elements
from Random.random()’s full period.
Seed the first generator with optional arg firstseed (default

is None, to seed from current time).
nnn

from random import Random

g = Random(firstseed)

result = [g]

for i in range(num - 1):
laststate = g.getstate()
g = Random()
g.setstate(laststate)
g.jumpahead(delta)
result.append(g)

return result

gens = create_generators(10, 1000000)

That creates 10 distinct generators, which can be passed out to 10 distinct threads. The generators don’t
share state so can be called safely in parallel. So long as no thread calls its g.random() more than a
million times (the second argument to create_generators(), the sequences seen by each thread will
not overlap. The period of the underlying Wichmann-Hill generator limits how far this technique can be
pushed.

5.6. random — Generate pseudo-random numbers 129

Just for fun, note that since we know the period, jumpahead() can also be used to “move backward in
time:”

>>> g = Random(42) # arbitrary

>>> g.random()

0.25420336316883324

>>> g.jumpahead(6953607871644L - 1) # move *back* one
>>> g.random()

0.25420336316883324

Bookkeeping functions:

seed ([x])
Initialize the basic random number generator. Optional argument = can be any hashable object. If
z is omitted or None, current system time is used; current system time is also used to initialize the
generator when the module is first imported. If x is not None or an int or long, hash(z) is used
instead. If x is an int or long, z is used directly. Distinct values between 0 and 27814431486575L
inclusive are guaranteed to yield distinct internal states (this guarantee is specific to the default
Wichmann-Hill generator, and may not apply to subclasses supplying their own basic generator).

whseed ([:v])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. See seed
for details. whseed does not guarantee that distinct integer arguments yield distinct internal states,
and can yield no more than about 2**24 distinct internal states in all.

getstate()
Return an object capturing the current internal state of the generator. This object can be passed
to setstate() to restore the state. New in version 2.1.

setstate(state)
state should have been obtained from a previous call to getstate(), and setstate() restores the
internal state of the generator to what it was at the time setstate() was called. New in version
2.1.

jumpahead (n)
Change the internal state to what it would be if random() were called n times, but do so quickly.
n is a non-negative integer. This is most useful in multi-threaded programs, in conjuction with
multiple instances of the Random class: setstate() or seed() can be used to force all instances
into the same internal state, and then jumpahead() can be used to force the instances’ states as
far apart as you like (up to the period of the generator). New in version 2.1.

Functions for integers:

randrange ([start,] stop [, step])
Return a randomly selected element from range(start, stop, step). This is equivalent to
choice(range(start, stop, step)), but doesn’t actually build a range object. New in version
1.5.2.

randint (a, b)
Deprecated since release 2.0. Use randrange () instead.

Return a random integer N such that a <= N <= b.
Functions for sequences:

choice(seq)
Return a random element from the non-empty sequence seq.

shuffle(x[, mndom])
Shuffle the sequence z in place. The optional argument random is a O-argument function returning
a random float in [0.0, 1.0); by default, this is the function random().

Note that for even rather small len(z), the total number of permutations of z is larger than the
period of most random number generators; this implies that most permutations of a long sequence
can never be generated.

130 Chapter 5. Miscellaneous Services

The following functions generate specific real-valued distributions. Function parameters are named after
the corresponding variables in the distribution’s equation, as used in common mathematical practice;
most of these equations can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform(a, b)
Return a random real number N such that a <= N < b.

betavariate (alpha, beta)
Beta distribution. Conditions on the parameters are alpha > -1 and beta > -1. Returned values
range between 0 and 1.

cunifvariate(mean, arc)
Circular uniform distribution. mean is the mean angle, and arc is the range of the distribution,
centered around the mean angle. Both values must be expressed in radians, and can range between
0 and pi. Returned values range between mean - arc/2 and mean + arc/2.

expovariate (lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. (The parameter would be
called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive
infinity.

gamma Calpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > -1
and beta > 0.

gauss (mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster
than the normalvariate() function defined below.

lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal
distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must
be greater than zero.

normalvariate (mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration
parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution
reduces to a uniform random angle over the range 0 to 2*pi.

paretovariate (alpha)
Pareto distribution. alpha is the shape parameter.

weibullvariate (alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

See Also:

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number
generator”, Applied Statistics 31 (1982) 188-190.

5.7 whrandom — Pseudo-random number generator

Deprecated since release 2.1. Use random instead.

Note: This module was an implementation detail of the random module in releases of Python prior to
2.1. It is no longer used. Please do not use this module directly; use random instead.

This module implements a Wichmann-Hill pseudo-random number generator class that is also named
whrandom. Instances of the whrandom class conform to the Random Number Generator interface described

5.7. whrandom — Pseudo-random number generator 131

in section ??. They also offer the following method, specific to the Wichmann-Hill algorithm:

seed([m, Y, z])
Initializes the random number generator from the integers z, y and z. When the module is first
imported, the random number is initialized using values derived from the current time. If z, y,
and z are either omitted or 0, the seed will be computed from the current system time. If one or
two of the parameters are 0, but not all three, the zero values are replaced by ones. This causes
some apparently different seeds to be equal, with the corresponding result on the pseudo-random
series produced by the generator.

choice(seq)
Chooses a random element from the non-empty sequence seq and returns it.

randint(a, b)
Returns a random integer N such that a<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed(z, y, 2)
Initializes the random number generator from the integers z, y and z. When the module is first
imported, the random number is initialized using values derived from the current time.

uniform(a, b)
Returns a random real number N such that a<=N<b.

When imported, the whrandom module also creates an instance of the whrandom class, and makes
the methods of that instance available at the module level. Therefore one can write either N =
whrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random
numbers.

See Also:

Module random (section 5.6):
Generators for various random distributions and documentation for the Random Number Generator
interface.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number
generator”, Applied Statistics 31 (1982) 188-190.

5.8 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after
each insertion. For long lists of items with expensive comparison operations, this can be an improvement
over the more common approach. The module is called bisect because it uses a basic bisection algorithm
to do its work. The source code may be most useful as a working example of the algorithm (the boundary
conditions are already right!).

The following functions are provided:

bisect_left (list, item [, lo[, hz]])
Locate the proper insertion point for item in list to maintain sorted order. The parameters lo and
hi may be used to specify a subset of the list which should be considered; by default the entire
list is used. If item is already present in list, the insertion point will be before (to the left of) any
existing entries. The return value is suitable for use as the first parameter to list.insert (). This
assumes that [ist is already sorted. New in version 2.1.

bisect_right (list, item[, lo [, hi]])

132 Chapter 5. Miscellaneous Services

Similar to bisect_left (), but returns an insertion point which comes after (to the right of) any
existing entries of item in list. New in version 2.1.

bisect(...)
Alias for bisect_right ().

insort_left (list, item[, lo[, hz]])
Insert item in list in sorted order. This is equivalent to list.insert(bisect.bisect_left (list,
item, lo, hi), item). This assumes that list is already sorted. New in version 2.1.

insort_right (list, item[, lo [, hi]])
Similar to insort_left (), but inserting item in list after any existing entries of item. New in
version 2.1.

insort(...)
Alias for insort_right ().

5.8.1 Example

The bisect () function is generally useful for categorizing numeric data. This example uses bisect ()
to look up a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and
up is an ‘A’, 75..84 is a ‘B’, etc.

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades([bisect(breakpoints, total)]

>>> grade(66)

)C’

>>> map(grade, [33, 99, 77, 44, 12, 88])
[JE,,)A,, 7B7’ ,Dl’ ,F” ,A’]

5.9 array — Efficient arrays of numeric values

This module defines a new object type which can efficiently represent an array of basic values: characters,
integers, floating point numbers. Arrays are sequence types and behave very much like lists, except that
the type of objects stored in them is constrained. The type is specified at object creation time by using
a type code, which is a single character. The following type codes are defined:

Type code | C Type Python Type | Minimum size in bytes
’c? char character 1
b’ signed char int 1
’B’ unsigned char | int 1
’h’ signed short int 2
’H? unsigned short | int 2
737 signed int int 2
I unsigned int long 2
1 signed long int 4
'L unsigned long | long 4
2 float float 4
°q° double float 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the
C implementation). The actual size can be accessed through the itemsize attribute. The values stored
for L’ and I’ items will be represented as Python long integers when retrieved, because Python’s plain
integer type cannot represent the full range of C’s unsigned (long) integers.

5.9. array — Efficient arrays of numeric values 133

The module defines the following function and type object:

array (typecode [, initializer])
Return a new array whose items are restricted by typecode, and initialized from the optional
initializer value, which must be a list or a string. The list or string is passed to the new array’s
fromlist() or fromstring() method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returned by array().

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multi-
plication. When using slice assignment, the assigned value must be an array object with the same type
code; in all other cases, TypeError is raised. Array objects also implement the buffer interface, and may
be used wherever buffer objects are supported.

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (x)
Append a new item with value z to the end of the array.

buffer_info()
Return a tuple (address, length) giving the current memory address and the length in elements of
the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array .buffer_info() [1] * array.itemsize. This is occasionally useful when working with low-
level (and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioct1()
operations. The returned numbers are valid as long as the array exists and no length-changing
operations are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make
use of this information), it makes more sense to use the buffer interface supported by array objects.
This method is maintained for backward compatibility and should be avoided in new code. The
buffer interface is documented in the Python/C API Reference Manual.

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes
in size; for other types of values, RuntimeError is raised. It is useful when reading data from a file
written on a machine with a different byte order.

count ()
Return the number of occurences of z in the array.

extend(a)
Append array items from a to the end of the array. The two arrays must have ezactly the same
type code; if not, TypeError will be raised.

fromfile(f, n)
Read n items (as machine values) from the file object f and append them to the end of the array.
If less than n items are available, EOFError is raised, but the items that were available are still
inserted into the array. f must be a real built-in file object; something else with a read () method
won’t do.

fromlist (list)
Append items from the list. This is equivalent to ‘for x in list: a.append(x)’ except that if
there is a type error, the array is unchanged.

fromstring(s)
Appends items from the string, interpreting the string as an array of machine values (as if it had
been read from a file using the fromfile () method).

index(x)
Return the smallest ¢ such that ¢ is the index of the first occurence of z in the array.

134 Chapter 5. Miscellaneous Services

insert (i, z)
Insert a new item with value x in the array before position 3.

pop([z])
Removes the item with the index ¢ from the array and returns it. The optional argument defaults
to -1, so that by default the last item is removed and returned.

read(f, n)
Deprecated since release 1.5.1. Use the fromfile() method.

Read n items (as machine values) from the file object f and append them to the end of the array.
If less than n items are available, EOFError is raised, but the items that were available are still
inserted into the array. f must be a real built-in file object; something else with a read () method
won’t do.

remove ()
Remove the first occurence of z from the array.

reverse()
Reverse the order of the items in the array.

tofile(f)
Write all items (as machine values) to the file object f.

tolist()
Convert the array to an ordinary list with the same items.

tostring()
Convert the array to an array of machine values and return the string representation (the same
sequence of bytes that would be written to a file by the tofile() method.)

write(f)
Deprecated since release 1.5.1. Use the tofile() method.

Write all items (as machine values) to the file object f.

When an array object is printed or converted to a string, it is represented as array (typecode , initializer).
The initializer is omitted if the array is empty, otherwise it is a string if the typecode is ’c’, otherwise it
is a list of numbers. The string is guaranteed to be able to be converted back to an array with the same
type and value using reverse quotes (), so long as the array () function has been imported using from
array import array. Examples:

array(’1’)

array(’c’, ’hello world’)
array(’1l’, [1, 2, 3, 4, 5])
array(’d’, [1.0, 2.0, 3.14]1)

See Also:

Module struct (section 4.3):
Packing and unpacking of heterogeneous binary data.

Module xdrlib (section 12.17):
Packing and unpacking of External Data Representation (XDR) data as used in some remote
procedure call systems.

The Numerical Python Manual

(http://numpy.sourceforge.net/numdoc/HTML /numdoc.htm)
The Numeric Python extension (NumPy) defines another array type; see
http://numpy.sourceforge.net/ for further information about Numerical Python. (A PDF ver-
sion of the NumPy manual is available at http://numpy.sourceforge.net/numdoc/numdoc.pdf.

5.10 ConfigParser — Configuration file parser

5.10. ConfigParser — Configuration file parser 135

This module defines the class ConfigParser. The ConfigParser class implements a basic configuration
file parser language which provides a structure similar to what you would find on Microsoft Windows
INT files. You can use this to write Python programs which can be customized by end users easily.

The configuration file consists of sections, lead by a ‘[section]’ header and followed by ‘name: value’
entries, with continuations in the style of RFC 822; ‘name=value’ is also accepted. Note that leading
whitespace is removed from values. The optional values can contain format strings which refer to other
values in the same section, or values in a special DEFAULT section. Additional defaults can be provided
upon initialization and retrieval. Lines beginning with ‘#’ or ‘;’ are ignored and may be used to provide
comments.

For example:

foodir: %(dir)s/whatever
dir=frob

would resolve the ‘%(dir)s’ to the value of ‘dir’ (‘frob’ in this case). All reference expansions are done
on demand.

Default values can be specified by passing them into the ConfigParser constructor as a dictionary.
Additional defaults may be passed into the get () method which will override all others.

class ConfigParser([defaults])
Return a new instance of the ConfigParser class. When defaults is given, it is initialized into the
dictionary of intrinsic defaults. The keys must be strings, and the values must be appropriate for
the ‘% () s’ string interpolation. Note that __name__ is an intrinsic default; its value is the section
name, and will override any value provided in defaults.

exception NoSectionError
Exception raised when a specified section is not found.

exception DuplicateSectionError
Exception raised when multiple sections with the same name are found, or if add_section() is
called with the name of a section that is already present.

exception NoOptionError
Exception raised when a specified option is not found in the specified section.

exception InterpolationError
Exception raised when problems occur performing string interpolation.

exception InterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations
exceeds MAX_INTERPOLATION_DEPTH.

exception MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exception ParsingError
Exception raised when errors occur attempting to parse a file.

MAX_INTERPOLATION_DEPTH
The maximum depth for recursive interpolation for get () when the raw parameter is false. Setting
this does not change the allowed recursion depth.

See Also:

Module shlex (section 5.15):
Support for a creating UNIX shell-like minilanguages which can be used as an alternate format for
application configuration files.

5.10.1 ConfigParser Objects

ConfigParser instances have the following methods:

136 Chapter 5. Miscellaneous Services

defaults()
Return a dictionary containing the instance-wide defaults.

sections()
Return a list of the sections available; DEFAULT is not included in the list.

add_section (section)
Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised.

has_section(section)
Indicates whether the named section is present in the configuration. The DEFAULT section is not
acknowledged.

options (section)
Returns a list of options available in the specified section.

has_option(section, option)
If the given section exists, and contains the given option. return 1; otherwise return 0. New in
version 1.6.

read (filenames)

Read and parse a list of filenames. If filenames is a string or Unicode string, it is treated as a
single filename. If a file named in filenames cannot be opened, that file will be ignored. This is
designed so that you can specify a list of potential configuration file locations (for example, the
current directory, the user’s home directory, and some system-wide directory), and all existing
configuration files in the list will be read. If none of the named files exist, the ConfigParser
instance will contain an empty dataset. An application which requires initial values to be loaded
from a file should load the required file or files using readfp() before calling read() for any
optional files:

import ConfigParser, os

config = ConfigParser.ConfigParser ()
config.readfp(open(’defaults.cfg’))
config.read([’site.cfg’, os.path.expanduser(’~/.myapp.cfg’)])

readfp(fp[, ﬁlename])
Read and parse configuration data from the file or file-like object in fp (only the readline()
method is used). If filename is omitted and fp has a name attribute, that is used for filename; the
default is ‘<777>’.

get (section, option[, mw[, vars]])
Get an option value for the provided section. All the ‘%’ interpolations are expanded in the return
values, based on the defaults passed into the constructor, as well as the options wars provided,
unless the raw argument is true.

getint (section, option)
A convenience method which coerces the option in the specified section to an integer.

getfloat (section, option)
A convenience method which coerces the option in the specified section to a floating point number.

getboolean (section, option)
A convenience method which coerces the option in the specified section to a Boolean value. Note
that the accepted values for the option are 1, yes, true, and on, which cause this method to return
true, and O, no, false, and off, which cause it to return false. These values are checked in a
case-insensitive manner. Any other value will cause it to raise ValueError.

set (section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise
NoSectionError. New in version 1.6.

write (fileobject)

5.10. ConfigParser — Configuration file parser 137

Write a representation of the configuration to the specified file object. This representation can be
parsed by a future read() call. New in version 1.6.

remove_option(section, option)
Remove the specified option from the specified section. If the section does not exist, raise
NoSectionError. If the option existed to be removed, return 1; otherwise return 0. New in
version 1.6.

remove_section(section)
Remove the specified section from the configuration. If the section in fact existed, return 1.
Otherwise return 0.

optionxform(option)
Transforms the option name option as found in an input file or as passed in by client code to
the form that should be used in the internal structures. The default implementation returns a
lower-case version of option; subclasses may override this or client code can set an attribute of this
name on instances to affect this behavior. Setting this to str(), for example, would make option
names case sensitive.

5.11 fileinput — lterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a
list of files.

The typical use is:

import fileinput
for line in fileinput.input(Q):
process(line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting to sys.stdin if the list is empty.
If a filename is ’-’, it is also replaced by sys.stdin. To specify an alternative list of filenames, pass it
as the first argument to input (). A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading a file, I0Error is
raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for
interactive use, or if it has been explicitly reset (e.g. using sys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is
noticeable at all is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including
the trailing newline when it is present.

The following function is the primary interface of this module:

input([ﬁles[, mplace[, backup]]])
Create an instance of the FileInput class. The instance will be used as global state for the
functions of this module, and is also returned to use during iteration. The parameters to this
function will be passed along to the constructor of the FileInput class.

The following functions use the global state created by input (); if there is no active state, RuntimeError
is raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, returns None.

lineno()
Return the cumulative line number of the line that has just been read. Before the first line has
been read, returns 0. After the last line of the last file has been read, returns the line number of
that line.

138 Chapter 5. Miscellaneous Services

filelineno()
Return the line number in the current file. Before the first line has been read, returns 0. After the
last line of the last file has been read, returns the line number of that line within the file.

isfirstline()
Returns true the line just read is the first line of its file, otherwise returns false.

isstdin()
Returns true if the last line was read from sys.stdin, otherwise returns false.

nextfile()
Close the current file so that the next iteration will read the first line from the next file (if any);
lines not read from the file will not count towards the cumulative line count. The filename is not
changed until after the first line of the next file has been read. Before the first line has been read,
this function has no effect; it cannot be used to skip the first file. After the last line of the last file
has been read, this function has no effect.

close()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing
as well:

class FileInput([ﬁles [, inplace [, backup]]])
Class FileInput is the implementation; its methods filename(), lineno(), fileline(),
isfirstline(), isstdin(), nextfile() and close() correspond to the functions of the same
name in the module. In addition it has a readline () method which returns the next input line,
and a __getitem__ () method which implements the sequence behavior. The sequence must be
accessed in strictly sequential order; random access and readline() cannot be mixed.

Optional in-place filtering: if the keyword argument inplace=1 is passed to input() or to the
FileInput constructor, the file is moved to a backup file and standard output is directed to the input
file (if a file of the same name as the backup file already exists, it will be replaced silently). This makes
it possible to write a filter that rewrites its input file in place. If the keyword argument backup=’.<some
extension>’ is also given, it specifies the extension for the backup file, and the backup file remains
around; by default, the extension is ’.bak’ and it is deleted when the output file is closed. In-place
filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 843 filesystems.

5.12 xreadlines — Efficient iteration over a file

New in version 2.1.

This module defines a new object type which can efficiently iterate over the lines of a file. An xreadlines
object is a sequence type which implements simple in-order indexing beginning at 0, as required by for
statement or the filter () function.

Thus, the code

import xreadlines, sys

for line in xreadlines.xreadlines(sys.stdin):
pass

has approximately the same speed and memory consumption as

while 1:
lines = sys.stdin.readlines(8%1024)
if not lines: break
for line in lines:
pass

5.12. xreadlines — Efficient iteration over a file 139

except the clarity of the for statement is retained in the former case.

xreadlines (fileobj)
Return a new xreadlines object which will iterate over the contents of fileobj. fileobj must have a
readlines () method that supports the sizehint parameter.

An xreadlines object s supports the following sequence operation:

Operation ‘ Result
s[i] ‘ i’th line of s

If successive values of i are not sequential starting from 0, this code will raise RuntimeError.

After the last line of the file is read, this code will raise an IndexError.

5.13 calendar — General calendar-related functions

This module allows you to output calendars like the UNIX cal program, and provides additional useful
functions related to the calendar. By default, these calendars have Monday as the first day of the week,
and Sunday as the last (the European convention). Use setfirstweekday() to set the first day of the
week to Sunday (6) or to any other weekday. Parameters that specify dates are given as integers.

setfirstweekday (weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example,
to set the first weekday to Sunday:

import calendar
calendar.setfirstweekday(calendar.SUNDAY)

firstweekday ()
Returns the current setting for the weekday to start each week.

isleap(year)
Returns 1 if year is a leap year, otherwise 0.

leapdays(yl1, y2)
Returns the number of leap years in the range [yI...y2), where yI and y2 are years.

weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).

monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specified year
and month.

monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Fach row represents a week; days outside of the
month a represented by zeros. Each week begins with Monday unless set by setfirstweekday().

prmonth (theyear, themonth [, w[, l]])
Prints a month’s calendar as returned by month().

month (theyear, themonth[, w[, l]])
Returns a month’s calendar in a multi-line string. If w is provided, it specifies the width of the
date columns, which are centered. If [is given, it specifies the number of lines that each week will
use. Depends on the first weekday as set by setfirstweekday().

prcal(year[, w[, l[c]]])
Prints the calendar for an entire year as returned by calendar().

calendar(year[, w[, l[c]]])
Returns a 3-column calendar for an entire year as a multi-line string. Optional parameters w, [,

140 Chapter 5. Miscellaneous Services

and ¢ are for date column width, lines per week, and number of spaces between month columns,
respectively. Depends on the first weekday as set by setfirstweekday(). The earliest year for
which a calendar can be generated is platform-dependent.

timegm (tuple)

An unrelated but handy function that takes a time tuple such as returned by the gmtime () function
in the time module, and returns the corresponding UNIX timestamp value, assuming an epoch of
1970, and the POSIX encoding. In fact, time.gmtime() and timegm() are each others’ inverse.

See Also:

Module time (section 6.9):

5.14

Low-level time related functions.

cmd — Support for line-oriented command interpreters

The Cmd class provides a simple framework for writing line-oriented command interpreters. These are
often useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more
sophisticated interface.

class Cmd ([completekey])

A Cmd instance or subclass instance is a line-oriented interpreter framework. There is no good
reason to instantiate Cmd itself; rather, it’s useful as a superclass of an interpreter class you define
yourself in order to inherit Cmd’s methods and encapsulate action methods.

The optional argument is the readline name of a completion key; it defaults to Tab. If completekey
is not None and readline is available, command completion is done automatically.

5.14.1 Cmd Objects

A Cmd instance has the following methods:

cmdloop ([z’ntm])

Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch
to action methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides
the intro class member).

If the readline module is loaded, input will automatically inherit bash-like history-list editing (e.g.
Control-P scrolls back to the last command, Control-N forward to the next one, Control-F moves
the cursor to the right non-destructively, Control-B moves the cursor to the left non-destructively,
etc.).

An end-of-file on input is passed back as the string *EOF’.

An interpreter instance will recognize a command name ‘foo’ if and only if it has a method
do_foo(). As a special case, a line beginning with the character ‘?’ is dispatched to the method
do_help(). As another special case, a line beginning with the character ‘!’ is dispatched to the
method do_shell () (if such a method is defined).

If completion is enabled, completing commands will be done automatically, and completing of
commands args is done by calling complete_foo() with arguments text, line, begidz, and endidz.
text is the string prefix we are attempting to match: all returned matches must begin with it. line
is the current input line with leading whitespace removed, begidx and endidz are the beginning and
ending indexes of the prefix text, which could be used to provide different completion depending
upon which position the argument is in.

All subclasses of Cmd inherit a predefined do_help(). This method, called with an argument
’bar’, invokes the corresponding method help_bar(). With no argument, do_help() lists all
available help topics (that is, all commands with corresponding help_*() methods), and also lists
any undocumented commands.

5.14.

cmd — Support for line-oriented command interpreters 141

onecmd (str)
Interpret the argument as though it had been typed in response to the prompt. This may be
overridden, but should not normally need to be; see the precmd() and postcmd() methods for
useful execution hooks. The return value is a flag indicating whether interpretation of commands
by the interpreter should stop.

emptyline ()
Method called when an empty line is entered in response to the prompt. If this method is not
overridden, it repeats the last nonempty command entered.

default (line)
Method called on an input line when the command prefix is not recognized. If this method is not
overridden, it prints an error message and returns.

completedefault (text, line, begidx, endidz)
Method called to complete an input line when no command-specific complete_*() method is
available. By default, it returns an empty list.

precmd (line)
Hook method executed just before the command line line is interpreted, but after the input prompt
is generated and issued. This method is a stub in Cmd; it exists to be overridden by subclasses.
The return value is used as the command which will be executed by the onecmd () method; the
precmd () implementation may re-write the command or simply return line unchanged.

postcmd (stop, line)
Hook method executed just after a command dispatch is finished. This method is a stub in Cmd;
it exists to be overridden by subclasses. line is the command line which was executed, and stop is
a flag which indicates whether execution will be terminated after the call to postemd (); this will
be the return value of the onecmd () method. The return value of this method will be used as the
new value for the internal flag which corresponds to stop; returning false will cause interpretation
to continue.

preloop()
Hook method executed once when cmdloop() is called. This method is a stub in Cmd; it exists to
be overridden by subclasses.

postloop()
Hook method executed once when cmdloop() is about to return. This method is a stub in Cmd; it
exists to be overridden by subclasses.

Instances of Cmd subclasses have some public instance variables:

prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by giving the cmdloop() method an
argument.

doc_header
The header to issue if the help output has a section for documented commands.

misc_header
The header to issue if the help output has a section for miscellaneous help topics (that is, there are
help_*() methods without corresponding do_* () methods).

undoc_header
The header to issue if the help output has a section for undocumented commands (that is, there
are do_* () methods without corresponding help_*() methods).

142 Chapter 5. Miscellaneous Services

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line
is drawn. It defaults to ‘=’

use_rawinput
A flag, defaulting to true. If true, cmdloop() uses raw_input () to display a prompt and read the
next command; if false, sys.stdout.write() and sys.stdin.readline() are used. (This means
that by importing readline, on systems that support it, the interpreter will automatically support
Emacs-like line editing and command-history keystrokes.)

5.15 shlex — Simple lexical analysis

New in version 1.5.2.

The shlex class makes it easy to write lexical analyzers for simple syntaxes resembling that of the UNIX
shell. This will often be useful for writing minilanguages, e.g. in run control files for Python applications.

class shlex([stream[, ﬁle]])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument,
if present, specifies where to read characters from. It must be a file- or stream-like object with
read() and readline() methods. If no argument is given, input will be taken from sys.stdin.
The second optional argument is a filename string, which sets the initial value of the infile
member. If the stream argument is omitted or equal to sys.stdin, this second argument defaults
to “stdin”.

See Also:

Module ConfigParser (section 5.10):
Parser for configuration files similar to the Windows “.ini’ files.

5.15.1 shlex Objects

A shlex instance has the following methods:

get_token()
Return a token. If tokens have been stacked using push_token(), pop a token off the stack.
Otherwise, read one from the input stream. If reading encounters an immediate end-of-file, an
empty string is returned.

push_token(sir)
Push the argument onto the token stack.

read_token()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not
ordinarily a useful entry point, and is documented here only for the sake of completeness.)

sourcehook (filename)
When shlex detects a source request (see source below) this method is given the following token
as argument, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute path-
name, or there was no previous source request in effect, or the previous source was a stream (e.g.
sys.stdin), the result is left alone. Otherwise, if the result is a relative pathname, the directory
part of the name of the file immediately before it on the source inclusion stack is prepended (this
behavior is like the way the C preprocessor handles #include "file.h").

The result of the manipulations is treated as a filename, and returned as the first component of
the tuple, with open () called on it to yield the second component. (Note: this is the reverse of the
order of arguments in instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file

extensions, and other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance
will call the close () method of the sourced input stream when it returns EOF.

5.15. shlex — Simple lexical analysis 143

For more explicit control of source stacking, use the push_source() and pop_source() methods.

push_source (stream [, filename])
Push an input source stream onto the input stack. If the filename argument is specified it will later
be available for use in error messages. This is the same method used internally by the sourcehook
method. New in version 2.1.

pop_source ()
Pop the last-pushed input source from the input stack. This is the same method used internally
when the lexer reaches EOFon a stacked input stream. New in version 2.1.

error_leader([ﬁle[, line]])
This method generates an error message leader in the format of a UNIX C compiler error label; the
format is > "%s", line %d: ’, where the ‘/s’ is replaced with the name of the current source file
and the ‘%d’ with the current input line number (the optional arguments can be used to override
these).

This convenience is provided to encourage shlex users to generate error messages in the standard,
parseable format understood by Emacs and other UNIX tools.

Instances of shlex subclasses have some public instance variables which either control lexical analysis
or can be used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the com-
ment beginner to end of line are ignored. Includes just ‘#’ by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includes all
ASCII alphanumerics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default,
includes space, tab, linefeed and carriage-return.

quotes
Characters that will be considered string quotes. The token accumulates until the same quote
is encountered again (thus, different quote types protect each other as in the shell.) By default,
includes ASCII single and double quotes.

infile
The name of the current input file, as initially set at class instantiation time or stacked by later
source requests. It may be useful to examine this when constructing error messages.

instream
The input stream from which this shlex instance is reading characters.

source
This member is None by default. If you assign a string to it, that string will be recognized as
a lexical-level inclusion request similar to the ‘source’ keyword in various shells. That is, the
immediately following token will opened as a filename and input taken from that stream until EOF,
at which point the close() method of that stream will be called and the input source will again
become the original input stream. Source requests may be stacked any number of levels deep.

debug
If this member is numeric and 1 or more, a shlex instance will print verbose progress output on
its behavior. If you need to use this, you can read the module source code to learn the details.

Note that any character not declared to be a word character, whitespace, or a quote will be returned as
a single-character token.

Quote and comment characters are not recognized within words. Thus, the bare words ‘ain’t’ and
‘ain#t’ would be returned as single tokens by the default parser.

lineno
Source line number (count of newlines seen so far plus one).

144 Chapter 5. Miscellaneous Services

token
The token buffer. It may be useful to examine this when catching exceptions.

5.15. shlex — Simple lexical analysis 145

146

CHAPTER
SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available
on (almost) all operating systems, such as files and a clock. The interfaces are generally modeled after
the UNIX or C interfaces, but they are available on most other systems as well. Here’s an overview:

os Miscellaneous operating system interfaces.

os.path Common pathname manipulations.

dircache Return directory listing, with cache mechanism.

stat Utilities for interpreting the results of os.stat(), os.1stat() and os.fstat().
statcache Stat files, and remember results.

statvfs Constants for interpreting the result of os.statvfs().

filecmp Compare files efficiently.

popen2 Subprocesses with accessible standard I/O streams.

time Time access and conversions.

sched General purpose event scheduler.

mutex Lock and queue for mutual exclusion.

getpass Portable reading of passwords and retrieval of the userid.

curses An interface to the curses library, providing portable terminal handling.

curses.textpad
curses.wrapper
curses.ascii
curses.panel

Emacs-like input editing in a curses window.

Terminal configuration wrapper for curses programs.
Constants and set-membership functions for Ascii characters.
A panel stack extension that adds depth to curses windows.

getopt Portable parser for command line options; support both short and long option names.
tempfile Generate temporary file names.

errno Standard errno system symbols.

glob UNix shell style pathname pattern expansion.

fnmatch UNiX shell style filename pattern matching.

shutil High-level file operations, including copying.

locale Internationalization services.

gettext Multilingual internationalization services.

6.1

os — Miscellaneous operating system interfaces

This module provides a more portable way of using operating system dependent functionality than
importing a operating system dependent built-in module like posix or nt.

This module searches for an operating system dependent built-in module like mac or posix and exports
the same functions and data as found there. The design of all Python’s built-in operating system
dependent modules is such that as long as the same functionality is available, it uses the same interface;
for example, the function os.stat (path) returns stat information about path in the same format (which
happens to have originated with the POSIX interface).

Extensions peculiar to a particular operating system are also available through the os module, but using
them is of course a threat to portability!

Note that after the first time os is imported, there is no performance penalty in using functions from os

147

instead of directly from the operating system dependent built-in module, so there should be no reason
not to use os!

exception error

name

path

This exception is raised when a function returns a system-related error (not for illegal argument
types or other incidental errors). This is also known as the built-in exception 0OSError. The
accompanying value is a pair containing the numeric error code from errno and the corresponding
string, as would be printed by the C function perror(). See the module errno, which contains
names for the error codes defined by the underlying operating system.

When exceptions are classes, this exception carries two attributes, errno and strerror. The first
holds the value of the C errno variable, and the latter holds the corresponding error message from
strerror(). For exceptions that involve a file system path (such as chdir() or unlink()), the
exception instance will contain a third attribute, filename, which is the file name passed to the
function.

The name of the operating system dependent module imported. The following names have currently
been registered: ’posix’, ’nt’, ’dos’, ’mac’, ’0s2’, ’ce’, ’java’, ’riscos’.

The corresponding operating system dependent standard module for pathname operations, such as
posixpath or macpath. Thus, given the proper imports, os.path.split(file) is equivalent to but
more portable than posixpath.split(file). Note that this is also an importable module: it may
be imported directly as os.path.

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ

A mapping object representing the string environment. For example, environ[’HOME’] is the
pathname of your home directory (on some platforms), and is equivalent to getenv("HOME") in C.

If the platform supports the putenv() function, this mapping may be used to modify the environ-
ment as well as query the environment. putenv() will be called automatically when the mapping
is modified.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation
functions to cause child processes to use a modified environment.

chdir (path)
getcwd ()

These functions are described in “Files and Directories” (section 6.1.4).

ctermid ()

Return the filename corresponding to the controlling terminal of the process. Availability: UNIX.

getegid O

Return the current process’ effective group id. Availability: UNIX.

geteuid ()

Return the current process’ effective user id. Availability: UNIX.

getgid()

Return the current process’ group id. Availability: UNIX.

getgroups ()

Return list of supplemental group ids associated with the current process. Availability: UNIX.

getlogin()

Return the actual login name for the current process, even if there are multiple login names which
map to the same user id. Availability: UNIX.

getpgrp()

Return the current process group id. Availability: UNIX.

148

Chapter 6. Generic Operating System Services

getpid()
Return the current process id. Availability: UNIX, Windows.

getppid O
Return the parent’s process id. Availability: UNIX.

getuid ()
Return the current process’ user id. Availability: UNIX.

getenv (varname [, value])
Return the value of the environment variable varname if it exists, or value if it doesn’t. wvalue
defaults to None. Availability: most flavors of UN1x, Windows.

putenv (varname, value)
Set the environment variable named varname to the string value. Such changes to the environment
affect subprocesses started with os.system(), popen() or fork() and execv(). Availability: most
flavors of UNIX, Windows.

When putenv() is supported, assignments to items in os.environ are automatically translated
into corresponding calls to putenv(); however, calls to putenv() don’t update os.environ, so it
is actually preferable to assign to items of os.environ.

setegid(egid)
Set the current process’s effective group id. Availability: UNIX.

seteuid(euid)
Set the current process’s effective user id. Availability: UNIX.

setgid(gid)
Set the current process’ group id. Availability: UNIX.

setgroups (groups)
Set the list of supplemental group ids associated with the current process to groups. groups must
be a sequence, and each element must be an integer identifying a group. This operation is typical
available only to the superuser. Availability: UNIX. New in version 2.2.

setpgrp()
Calls the system call setpgrp() or setpgrp(0, 0) depending on which version is implemented (if
any). See the UNIX manual for the semantics. Availability: UNIX.

setpgid(pid, pgrp)
Calls the system call setpgid(). See the UNIX manual for the semantics. Availability: UNIX.

setreuid (ruid, euid)
Set the current process’s real and effective user ids. Availability: UNIX.

setregid(rgid, egid)
Set the current process’s real and effective group ids. Availability: UNIX.

setsid()
Calls the system call setsid(). See the UNIX manual for the semantics. Availability: UNIX.

setuid (uid)
Set the current process’ user id. Availability: UNIX.

strerror(code)
Return the error message corresponding to the error code in code. Availability: UNIX, Windows.

umask (mask)
Set the current numeric umask and returns the previous umask. Availability: UNiX, Windows.

uname ()
Return a 5-tuple containing information identifying the current operating system. The tuple con-
tains 5 strings: (sysmame, nodename, release, version, machine). Some systems truncate the
nodename to 8 characters or to the leading component; a better way to get the hostname is
socket.gethostname() or even socket.gethostbyaddr (socket.gethostname()). Availabil-
ity: recent flavors of UNIX.

6.1. os — Miscellaneous operating system interfaces 149

6.1.2 File Object Creation

These functions create new file objects.

fdopen(fd[, mode[, bufsize]])
Return an open file object connected to the file descriptor fd. The mode and bufsize arguments have
the same meaning as the corresponding arguments to the built-in open() function. Availability:
Macintosh, UNIX, Windows.

popen(command[, mode[, bufsize]])
Open a pipe to or from command. The return value is an open file object connected to the pipe,
which can be read or written depending on whether mode is *r’ (default) or *w’. The bufsize
argument has the same meaning as the corresponding argument to the built-in open() function.
The exit status of the command (encoded in the format specified for wait()) is available as the
return value of the close() method of the file object, except that when the exit status is zero
(termination without errors), None is returned. Availability: UNIX, Windows.

Changed in version 2.0: This function worked unreliably under Windows in earlier versions of
Python. This was due to the use of the _popen() function from the libraries provided with
Windows. Newer versions of Python do not use the broken implementation from the Windows
libraries.

tmpfile ()
Return a new file object opened in update mode (‘w+’). The file has no directory entries associated
with it and will be automatically deleted once there are no file descriptors for the file. Availability:
UnNix, Windows.

For each of these popen() variants, if bufsize is specified, it specifies the buffer size for the I/O pipes.
mode, if provided, should be the string b’ or ’t’; on Windows this is needed to determine whether the
file objects should be opened in binary or text mode. The default value for mode is ’t’.

These methods do not make it possible to retrieve the return code from the child processes. The only
way to control the input and output streams and also retrieve the return codes is to use the Popen3 and
Popen4 classes from the popen2 module; these are only available on UNIX.

popenQ(cmd[, mode[, bufsize]])
Executes ¢md as a sub-process. Returns the file objects (child_stdin, child_stdout). Availability:
UnNix, Windows. New in version 2.0.

popen3(cmd[, mode[, bufsize]])
Executes c¢md as a sub-process. Returns the file objects (child_stdin, child_stdout,
child_stderr). Availability: UNix, Windows. New in version 2.0.

popen4(cmd[, mode[, bufsize]])
Executes ¢cmd as a sub-process. Returns the file objects (child_stdin, child_stdout_and_stderr).
Availability: UNix, Windows. New in version 2.0.

This functionality is also available in the popen2 module using functions of the same names, but the
return values of those functions have a different order.

6.1.3 File Descriptor Operations

These functions operate on 1/O streams referred to using file descriptors.

close(fd)
Close file descriptor fd. Availability: Macintosh, UNIX, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe(). To close a “file object” returned by the built-in function open() or by
popen() or fdopen(), use its close() method.

dup (fd)
Return a duplicate of file descriptor fd. Availability: Macintosh, UNIX, Windows.

150 Chapter 6. Generic Operating System Services

dup2(fd, fd2)
Duplicate file descriptor fd to fd2, closing the latter first if necessary. Availability: UNIX, Windows.

fpathconf (fd, name)
Return system configuration information relevant to an open file. name specifies the configuration
value to retrieve; it may be a string which is the name of a defined system value; these names
are specified in a number of standards (POSIX.1, UNix95, UNix98, and others). Some platforms
define additional names as well. The names known to the host operating system are given in the
pathconf_names dictionary. For configuration variables not included in that mapping, passing an
integer for name is also accepted. Availability: UNIX.

If name is a string and is not known, ValueError is raised. If a specific value for name is not
supported by the host system, even if it is included in pathconf_names, an 0SError is raised with
errno.EINVAL for the error number.

fstat (fd)
Return status for file descriptor fd, like stat (). Availability: UNix, Windows.

fstatvis(fd)
Return information about the filesystem containing the file associated with file descriptor fd, like
statvis (). Availability: UNIX.

ftruncate (fd, length)
Truncate the file corresponding to file descriptor fd, so that it is at most length bytes in size.
Availability: UNIX.

isatty (fd)
Return 1 if the file descriptor fd is open and connected to a tty(-like) device, else 0. Availability:
UNIX.

1seek (fd, pos, how)
Set the current position of file descriptor fd to position pos, modified by how: 0 to set the position
relative to the beginning of the file; 1 to set it relative to the current position; 2 to set it relative
to the end of the file. Availability: Macintosh, UN1x, Windows.

open(file, flags [, mode])
Open the file file and set various flags according to flags and possibly its mode according to mode.
The default mode is 0777 (octal), and the current umask value is first masked out. Return the file
descriptor for the newly opened file. Availability: Macintosh, UN1x, Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constants
(like 0_RDONLY and O_WRONLY) are defined in this module too (see below).

Note: this function is intended for low-level I/O. For normal usage, use the built-in function open(),
which returns a “file object” with read() and write() methods (and many more).

openpty ()
Open a new pseudo-terminal pair. Return a pair of file descriptors (master, slave) for the pty and
the tty, respectively. For a (slightly) more portable approach, use the pty module. Availability:
Some flavors of UNIX.

pipe)
Create a pipe. Return a pair of file descriptors (7, w) usable for reading and writing, respectively.
Availability: UNIx, Windows.

read(fd, n)
Read at most n bytes from file descriptor fd. Return a string containing the bytes read. Availability:
Macintosh, UNIX, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe (). Toread a “file object” returned by the built-in function open () or by popen()
or fdopen(), or sys.stdin, use its read() or readline() methods.

tcgetpgrp (fd)
Return the process group associated with the terminal given by fd (an open file descriptor as
returned by open()). Availability: UNIX.

6.1. os — Miscellaneous operating system interfaces 151

tesetpgrp(fd, pg)
Set the process group associated with the terminal given by fd (an open file descriptor as returned
by open()) to pg. Availability: UNIX.

ttyname (fd)
Return a string which specifies the terminal device associated with file-descriptor fd. If fd is not
associated with a terminal device, an exception is raised. Availability: UNIX.

write(fd, str)
Write the string str to file descriptor fd. Return the number of bytes actually written. Availability:
Macintosh, UNIX, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe(). To write a “file object” returned by the built-in function open() or by
popen() or fdopen(), or sys.stdout or sys.stderr, use its write() method.

The following data items are available for use in constructing the flags parameter to the open() function.

O_RDONLY

0_WRONLY

0_RDWR

O_NDELAY

0_NONBLOCK

0_APPEND

0_DSYNC

0_RSYNC

0_SYNC

0_NOCTTY

0_CREAT

0_EXCL

0_TRUNC
Options for the flag argument to the open() function. These can be bit-wise OR’d together.
Availability: Macintosh, UNIX, Windows.

0_BINARY
Option for the flag argument to the open() function. This can be bit-wise OR’d together with
those listed above. Availability: Macintosh, Windows.

6.1.4 Files and Directories

access (path, mode)
Check read/write/execute permissions for this process or existence of file path. mode should be
F_OK to test the existence of path, or it can be the inclusive OR of one or more of R_0K, W_0OK, and
X_0OK to test permissions. Return 1 if access is allowed, 0 if not. See the UNIX man page access(2)
for more information. Availability: UNnix, Windows.

F_OK
Value to pass as the mode parameter of access() to test the existence of path.

R_OK
Value to include in the mode parameter of access() to test the readability of path.

W_0K
Value to include in the mode parameter of access() to test the writability of path.

X_0K
Value to include in the mode parameter of access() to determine if path can be executed.

chdir (path)
Change the current working directory to path. Availability: Macintosh, UNIX, Windows.

getcwd)
Return a string representing the current working directory. Availability: Macintosh, UNiX, Win-
dows.

152 Chapter 6. Generic Operating System Services

chroot (path)
Change the root directory of the current process to path. Availability: UNIX. New in version 2.2.

chmod (path, mode)
Change the mode of path to the numeric mode. Availability: UNIX, Windows.

chown (path, wid, gid)
Change the owner and group id of path to the numeric uid and gid. Availability: UNIX.

link(sre, dst)
Create a hard link pointing to src named dst. Availability: UNIX.

listdir(path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order.
It does not include the special entries >.”> and ’..’ even if they are present in the directory.
Availability: Macintosh, UN1X, Windows.

1stat (path)
Like stat (), but do not follow symbolic links. Availability: UNIX.

mkfifo (path|, mode])
Create a FIFO (a named pipe) named path with numeric mode mode. The default mode is 0666
(octal). The current umask value is first masked out from the mode. Availability: UNIX.

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for ex-
ample with os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server”
type processes: the server opens the FIFO for reading, and the client opens it for writing. Note
that mkfifo () doesn’t open the FIFO — it just creates the rendezvous point.

mkdir(path[, mode])
Create a directory named path with numeric mode mode. The default mode is 0777 (octal). On
some systems, mode is ignored. Where it is used, the current umask value is first masked out.
Availability: Macintosh, UNIX, Windows.

makedirs (path [, mode])
Recursive directory creation function. Like mkdir (), but makes all intermediate-level directories
needed to contain the leaf directory. Throws an error exception if the leaf directory already exists
or cannot be created. The default mode is 0777 (octal). This function does not properly handle
UNC paths (only relevant on Windows systems). New in version 1.5.2.

pathconf (path, name)
Return system configuration information relevant to a named file. name specifies the configuration
value to retrieve; it may be a string which is the name of a defined system value; these names
are specified in a number of standards (POSIX.1, UNix95, UNix98, and others). Some platforms
define additional names as well. The names known to the host operating system are given in the
pathconf_names dictionary. For configuration variables not included in that mapping, passing an
integer for name is also accepted. Availability: UNIX.

If name is a string and is not known, ValueError is raised. If a specific value for name is not
supported by the host system, even if it is included in pathconf_names, an OSError is raised with
errno.EINVAL for the error number.

pathconf_names
Dictionary mapping names accepted by pathconf () and fpathconf () to the integer values defined
for those names by the host operating system. This can be used to determine the set of names
known to the system. Availability: UNIX.

readlink (path)
Return a string representing the path to which the symbolic link points. The result may be either
an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname
using os.path.join(os.path.dirname(path), result). Availability: UNIX.

remove (path)
Remove the file path. If path is a directory, 0SError is raised; see rmdir() below to remove a
directory. This is identical to the unlink () function documented below. On Windows, attempting

6.1. os — Miscellaneous operating system interfaces 153

to remove a file that is in use causes an exception to be raised; on UNIX, the directory entry is
removed but the storage allocated to the file is not made available until the original file is no longer
in use. Availability: Macintosh, UN1x, Windows.

removedirs (path)
Recursive directory removal function. Works like rmdir () except that, if the leaf directory is
successfully removed, directories corresponding to rightmost path segments will be pruned way
until either the whole path is consumed or an error is raised (which is ignored, because it generally
means that a parent directory is not empty). Throws an error exception if the leaf directory could
not be successfully removed. New in version 1.5.2.

rename (src, dst)
Rename the file or directory src to dst. If dst is a directory, 0SError will be raised. On UNIX, if
dst exists and is a file, it will be removed silently if the user has permission. The operation may fail
on some UNIX flavors if src and dst are on different filesystems. If successful, the renaming will be
an atomic operation (this is a POSIX requirement). On Windows, if dst already exists, 0SError
will be raised even if it is a file; there may be no way to implement an atomic rename when dst
names an existing file. Availability: Macintosh, UN1x, Windows.

renames (old, new)
Recursive directory or file renaming function. Works like rename (), except creation of any inter-
mediate directories needed to make the new pathname good is attempted first. After the rename,
directories corresponding to rightmost path segments of the old name will be pruned away using
removedirs().

Note: this function can fail with the new directory structure made if you lack permissions needed
to remove the leaf directory or file. New in version 1.5.2.

rmdir (path)
Remove the directory path. Availability: Macintosh, UN1X, Windows.

stat (path)
Perform a stat() system call on the given path. The return value is an object whose attributes
correspond to the members of the stat structure, namely: st_mode (protection bits), st_ino
(inode number), st_dev (device), st_nlink (number of hard links, st_uid (user ID of owner),
st_gid (group ID of owner), st_size (size of file, in bytes), st_atime (time of most recent
access), st_mtime (time of most recent content modification), st_ctime (time of most recent
content modification or metadata change).

On some Unix systems (such as Linux), the following attributes may also be available: st_blocks
(number of blocks allocated for file), st_blksize (filesystem blocksize), st_rdev (type of device
if an inode device).

On Mac OS systems, the following attributes may also be available: st_rsize, st_creator,
st_type.

On RISCOS systems, the following attributes are also available: st_ftype (file type), st_attrs
(attributes), st_obtype (object type).

For backward compatibility, the return value of stat() is also accessible as a tuple of at least
10 integers giving the most important (and portable) members of the stat structure, in the
order st_mode, st_ino, st_dev, st_nlink, st_uid, st_gid, st_size, st_atime, st_mtime,
st_ctime. More items may be added at the end by some implementations. Note that on the Mac
OS, the time values are floating point values, like all time values on the Mac OS. The standard
module stat defines functions and constants that are useful for extracting information from a
stat structure. (On Windows, some items are filled with dummy values.) Availability: Macintosh,
UnNix, Windows.

Changed in version 2.2: Added access to values as attributes of the returned object.

statvfs (path)
Perform a statvfs() system call on the given path. The return value is an object whose attributes
describe the filesystem on the given path, and correspond to the members of the statvfs struc-
ture, namely: f_frsize, f_blocks, f_bfree, f_bavail, f_files, f_ffree, f_favail, f_flag,
f_namemax. Availability: UNIX.

154 Chapter 6. Generic Operating System Services

For backward compatibility, the return value is also accessible as a tuple whose values correspond
to the attributes, in the order given above. The standard module statvfs defines constants that
are useful for extracting information from a statvfs structure when accessing it as a sequence; this
remains useful when writing code that needs to work with versions of Python that don’t support
accessing the fields as attributes.

Changed in version 2.2: Added access to values as attributes of the returned object.

symlink(src, dst)
Create a symbolic link pointing to src named dst. Availability: UNIX.

tempna.m([dir[, preﬁm]])

Return a unique path name that is reasonable for creating a temporary file. This will be an
absolute path that names a potential directory entry in the directory dir or a common location
for temporary files if dir is omitted or None. If given and not None, prefiz is used to provide a
short prefix to the filename. Applications are responsible for properly creating and managing files
created using paths returned by tempnam(); no automatic cleanup is provided. Warning: Use of
tempnam () is vulnerable to symlink attacks; consider using tmpfile () instead. Availability: UNIX,
Windows.

tmpnam ()
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute
path that names a potential directory entry in a common location for temporary files. Applications
are responsible for properly creating and managing files created using paths returned by tmpnam();
no automatic cleanup is provided. Warning: Use of tmpnam() is vulnerable to symlink attacks;
consider using tmpfile() instead. Availability: UNiX, Windows.

TMP_MAX
The maximum number of unique names that tmpnam() will generate before reusing names.

unlink (path)
Remove the file path. This is the same function as remove (); the unlink () name is its traditional
UNIX name. Availability: Macintosh, UN1x, Windows.

utime (path, times)
Set the access and modified times of the file specified by path. If times is None, then the file’s access
and modified times are set to the current time. Otherwise, times must be a 2-tuple of numbers,
of the form (atime, mtime) which is used to set the access and modified times, respectively.
Changed in version 2.0: Added support for None for times. Availability: Macintosh, UNIX,
Windows.

6.1.5 Process Management

These functions may be used to create and manage processes.

The various exec* () functions take a list of arguments for the new program loaded into the process. In
each case, the first of these arguments is passed to the new program as its own name rather than as an
argument a user may have typed on a command line. For the C programmer, this is the argv [0] passed
to a program’s main(). For example, ‘os.execv(’/bin/echo’, [’foo’, ’bar’])’ will only print ‘bar’
on standard output; ‘foo’ will seem to be ignored.

abort ()
Generate a SIGABRT signal to the current process. On UNIX, the default behavior is to produce
a core dump; on Windows, the process immediately returns an exit code of 3. Be aware that
programs which use signal.signal() to register a handler for SIGABRT will behave differently.
Availability: UNIX, Windows.

execl(path, arg0, argl, ...)
execle(path, arg0, argl, ..., env)
execlp(file, arg0, argl, ...)
execlpe(file, arg0, argl, ..., env)
execv (path, args)

execve (path, args, env)

6.1. os — Miscellaneous operating system interfaces 155

execvp (file, args)

execvpe (file, args, env)
These functions all execute a new program, replacing the current process; they do not return. On
UNi1x, the new executable is loaded into the current process, and will have the same process ID as
the caller. Errors will be reported as OSError exceptions.

The ‘1’ and ‘v’ variants of the exec* () functions differ in how command-line arguments are passed.
The ‘1’ variants are perhaps the easiest to work with if the number of parameters is fixed when the
code is written; the individual parameters simply become additional parameters to the execl*()
functions. The ‘v’ variants are good when the number of parameters is variable, with the arguments
being passed in a list or tuple as the args parameter. In either case, the arguments to the child
process must start with the name of the command being run.

The variants which include a ‘p’ near the end (execlp(), execlpe(), execvp(), and execvpe())
will use the PATH environment variable to locate the program file. When the environment is
being replaced (using one of the exec*e() variants, discussed in the next paragraph), the new
environment is used as the source of the PATH variable. The other variants, exec1(), execle(),
execv(), and execve (), will not use the PATH variable to locate the executable; path must contain
an appropriate absolute or relative path.

For execle(), execlpe(), execve(), and execvpe() (note that these all end in ‘e’), the env
parameter must be a mapping which is used to define the environment variables for the new
process; the execl(), execlp(), execv(), and execvp() all cause the new process to inherit the
environment of the current process. Availability: UNix, Windows.

_exit(n)
Exit to the system with status n, without calling cleanup handlers, flushing stdio buffers, etc.
Availability: UN1X, Windows.

Note: the standard way to exit is sys.exit(n). _exit() should normally only be used in the
child process after a fork().

fork()
Fork a child process. Return 0 in the child, the child’s process id in the parent. Availability: UNIX.

forkpty ()
Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a pair
of (pid, fd), where pid is 0 in the child, the new child’s process id in the parent, and fd is the file
descriptor of the master end of the pseudo-terminal. For a more portable approach, use the pty
module. Availability: Some flavors of UNIX.

kill (pid, sig)
Kill the process pid with signal sig. Constants for the specific signals available on the host platform
are defined in the signal module. Availability: UNIX.

nice (increment)
Add increment to the process’s “niceness”. Return the new niceness. Availability: UNIX.

plock(op)
Lock program segments into memory. The value of op (defined in <sys/lock.h>) determines which
segments are locked. Availability: UNIX.

popen(...)

popen2(...)
popen3(...)
popené(...)

Run child processes, returning opened pipes for communications. These functions are described in
section 6.1.2.

spawnl (mode, path, ...)

spawnle (mode, path, ..., env)
spawnlp (mode, file, ...)
spawnlpe (mode, file, ..., env)

spawnv (mode, path, args)
spawnve (mode, path, args, env)

156 Chapter 6. Generic Operating System Services

spawnvp (mode, file, args)

spawnvpe (mode, file, args, env)
Execute the program path in a new process. If mode is P_NOWAIT, this function returns the process
ID of the new process; if mode is P_WAIT, returns the process’s exit code if it exits normally, or
-signal, where signal is the signal that killed the process. On Windows, the process ID will actually
be the process handle.

The ‘1’ and ‘v’ variants of the spawn*() functions differ in how command-line arguments are
passed. The ‘1’ variants are perhaps the easiest to work with if the number of parameters is fixed
when the code is written; the individual parameters simply become additional parameters to the
spawnl#* () functions. The ‘v’ variants are good when the number of parameters is variable, with
the arguments being passed in a list or tuple as the args parameter. In either case, the arguments
to the child process must start with the name of the command being run.

The variants which include a second ‘p’ near the end (spawnlp(), spawnlpe(), spawnvp(), and
spawnvpe ()) will use the PATH environment variable to locate the program file. When the envi-
ronment is being replaced (using one of the spawn*e () variants, discussed in the next paragraph),
the new environment is used as the source of the PATH variable. The other variants, spawnl(),
spawnle (), spawnv(), and spawnve(), will not use the PATH variable to locate the executable;
path must contain an appropriate absolute or relative path.

For spawnle(), spawnlpe(), spawnve(), and spawnvpe() (note that these all end in ‘e’), the
env parameter must be a mapping which is used to define the environment variables for the new
process; the spawnl(), spawnlp(), spawnv(), and spawnvp() all cause the new process to inherit
the environment of the current process.

As an example, the following calls to spawnlp() and spawnvpe () are equivalent:

import os
os.spawnlp(os.P_WAIT, ’cp’, ’cp’, ’index.html’, ’/dev/null’)

L = [’cp’, ’index.html’, ’/dev/null’]

os.spawnvpe (os.P_WAIT, ’cp’, L, os.environ)
Availability: UNix, Windows. spawnlp(), spawnlpe (), spawnvp() and spawnvpe() are not avail-
able on Windows. New in version 1.6.

P_NOWAIT

P_NOWAITO
Possible values for the mode parameter to the spawn*() family of functions. If either of these
values is given, the spawn* () functions will return as soon as the new process has been created,
with the process ID as the return value. Availability: UNIX, Windows. New in version 1.6.

P_WAIT
Possible value for the mode parameter to the spawn*() family of functions. If this is given as
mode, the spawn* () functions will not return until the new process has run to completion and will
return the exit code of the process the run is successful, or -signal if a signal kills the process.
Availability: Unix, Windows. New in version 1.6.

P_DETACH

P_OVERLAY
Possible values for the mode parameter to the spawn#* () family of functions. These are less portable
than those listed above. P_DETACH is similar to P_NOWAIT, but the new process is detached from
the console of the calling process. If P_OVERLAY is used, the current process will be replaced; the
spawn* () function will not return. Availability: Windows. New in version 1.6.

startfile(path)
Start a file with its associated application. This acts like double-clicking the file in Windows
Explorer, or giving the file name as an argument to the start command from the interactive
command shell: the file is opened with whatever application (if any) its extension is associated.

startfile() returns as soon as the associated application is launched. There is no option to
wait for the application to close, and no way to retrieve the application’s exit status. The path
parameter is relative to the current directory. If you want to use an absolute path, make sure the

6.1. os — Miscellaneous operating system interfaces 157

first character is not a slash (‘/’); the underlying Win32 ShellExecute() function doesn’t work
if it is. Use the os.path.normpath() function to ensure that the path is properly encoded for
Win32. Availability: Windows. New in version 2.0.

system(command)

Execute the command (a string) in a subshell. This is implemented by calling the Standard C
function system(), and has the same limitations. Changes to posix.environ, sys.stdin, etc. are
not reflected in the environment of the executed command. The return value is the exit status of
the process encoded in the format specified for wait (), except on Windows 95 and 98, where it is
always 0. Note that POSIX does not specify the meaning of the return value of the C system()
function, so the return value of the Python function is system-dependent. Availability: UNIX,
Windows.

times ()

Return a 5-tuple of floating point numbers indicating accumulated (processor or other) times, in
seconds. The items are: user time, system time, children’s user time, children’s system time, and
elapsed real time since a fixed point in the past, in that order. See the UNIX manual page times(2)
or the corresponding Windows Platform API documentation. Availability: UNix, Windows.

wait ()

Wait for completion of a child process, and return a tuple containing its pid and exit status
indication: a 16-bit number, whose low byte is the signal number that killed the process, and
whose high byte is the exit status (if the signal number is zero); the high bit of the low byte is set
if a core file was produced. Availability: UNIX.

waitpid(pid, options)

Wait for completion of a child process given by process id pid, and return a tuple containing its
process id and exit status indication (encoded as for wait ()). The semantics of the call are affected
by the value of the integer options, which should be 0 for normal operation. Availability: UNIX.

If pid is greater than 0, waitpid() requests status information for that specific process. If pid is
0, the request is for the status of any child in the process group of the current process. If pid is -1,
the request pertains to any child of the current process. If pid is less than -1, status is requested
for any process in the process group -pid (the absolute value of pid).

WNOHANG

The option for waitpid() to avoid hanging if no child process status is available immediately.
Availability: UNIX.

The following functions take a process status code as returned by system(), wait (), or waitpid() as a
parameter. They may be used to determine the disposition of a process.

WIFSTOPPED (status)

Return true if the process has been stopped. Availability: UNIX.

WIFSIGNALED (status)

Return true if the process exited due to a signal. Availability: UNIX.

WIFEXITED (status)

Return true if the process exited using the ezit(2) system call. Availability: UNIX.

WEXITSTATUS (status)

If WIFEXITED (status) is true, return the integer parameter to the ezit(2) system call. Otherwise,
the return value is meaningless. Availability: UNIX.

WSTOPSIG (status)

Return the signal which caused the process to stop. Availability: UNIX.

WTERMSIG (status)

Return the signal which caused the process to exit. Availability: UNIX.

6.1.6 Miscellaneous System Information

confstr(name)

Return string-valued system configuration values. name specifies the configuration value to retrieve;

158

Chapter 6. Generic Operating System Services

it may be a string which is the name of a defined system value; these names are specified in a
number of standards (POSIX, UN1x95, UNix98, and others). Some platforms define additional
names as well. The names known to the host operating system are given in the confstr_names
dictionary. For configuration variables not included in that mapping, passing an integer for name
is also accepted. Availability: UNIX.

If the configuration value specified by name isn’t defined, the empty string is returned.

If name is a string and is not known, ValueError is raised. If a specific value for name is not
supported by the host system, even if it is included in confstr_names, an 0SError is raised with
errno.EINVAL for the error number.

confstr_names
Dictionary mapping names accepted by confstr () to the integer values defined for those names by
the host operating system. This can be used to determine the set of names known to the system.
Availability: UNIX.

sysconf (name)
Return integer-valued system configuration values. If the configuration value specified by name isn’t
defined, -1 is returned. The comments regarding the name parameter for confstr() apply here
as well; the dictionary that provides information on the known names is given by sysconf_names.
Availability: UNIX.

sysconf_names
Dictionary mapping names accepted by sysconf () to the integer values defined for those names by
the host operating system. This can be used to determine the set of names known to the system.
Availability: UNIX.

The follow data values are used to support path manipulation operations. These are defined for all
platforms.

Higher-level operations on pathnames are defined in the os.path module.

curdir
The constant string used by the operating system to refer to the current directory. For example:
> .7 for POSIX or ?:’ for the Macintosh.

pardir
The constant string used by the operating system to refer to the parent directory. For example:
>..7 for POSIX or ’::’ for the Macintosh.

sep
The character used by the operating system to separate pathname components, for example, ‘/’
for POSIX or ‘:’ for the Macintosh. Note that knowing this is not sufficient to be able to parse
or concatenate pathnames — use os.path.split() and os.path.join() — but it is occasionally
useful.

altsep
An alternative character used by the operating system to separate pathname components, or None
if only one separator character exists. This is set to ‘/” on DOS and Windows systems where sep
is a backslash.

pathsep
The character conventionally used by the operating system to separate search patch components
(as in PATH), such as ¢:” for POSIX or ‘;’ for DOS and Windows.

defpath
The default search path used by exec*px() and spawn*p* () if the environment doesn’t have a
’PATH’ key.

linesep

The string used to separate (or, rather, terminate) lines on the current platform. This may be a
single character, such as >\n’ for POSIX or ’\r’ for Mac OS, or multiple characters, for example,
’\r\n’ for DOS and Windows.

6.1. os — Miscellaneous operating system interfaces 159

6.2 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

Warning: On Windows, many of these functions do not properly support UNC pathnames. splitunc()
and ismount () do handle them correctly.

abspath (path)
Return a normalized absolutized version of the pathname path. On most platforms, this is equiv-
alent to normpath(join(os.getcwd(), path)). New in version 1.5.2.

basename (path)
Return the base name of pathname path. This is the second half of the pair returned by
split(path). Note that the result of this function is different from the UNIX basename pro-
gram; where basename for ’/foo/bar/’ returns ’bar’, the basename() function returns an
empty string (??).

commonprefix (list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths in list.
If list is empty, return the empty string (’’). Note that this may return invalid paths because it
works a character at a time.

dirname (path)
Return the directory name of pathname path. This is the first half of the pair returned by
split (path).

exists(path)
Return true if path refers to an existing path.

expanduser (path)
Return the argument with an initial component of ‘=’ or ‘“user’ replaced by that user’s home
directory. An initial *~’ is replaced by the environment variable HOME; an initial ‘~user’ is looked
up in the password directory through the built-in module pwd. If the expansion fails, or if the path
does not begin with a tilde, the path is returned unchanged. On the Macintosh, this always returns
path unchanged.

<

expandvars (path)
Return the argument with environment variables expanded. Substrings of the form ‘$name’ or
‘${name}’ are replaced by the value of environment variable name. Malformed variable names and
references to non-existing variables are left unchanged. On the Macintosh, this always returns path
unchanged.

getatime (path)
Return the time of last access of filename. The return value is integer giving the number of seconds
since the epoch (see the time module). Raise os.error if the file does not exist or is inaccessible.
New in version 1.5.2.

getmtime (path)
Return the time of last modification of filename. The return value is integer giving the number
of seconds since the epoch (see the time module). Raise os.error if the file does not exist or is
inaccessible. New in version 1.5.2.

getsize (path)
Return the size, in bytes, of filename. Raise os.error if the file does not exist or is inaccessible.
New in version 1.5.2.

isabs(path)
Return true if path is an absolute pathname (begins with a slash).

isfile(path)
Return true if path is an existing regular file. This follows symbolic links, so both islink() and
isfile() can be true for the same path.

isdir (path)
Return true if path is an existing directory. This follows symbolic links, so both islink() and

160 Chapter 6. Generic Operating System Services

isdir() can be true for the same path.

islink (path)
Return true if path refers to a directory entry that is a symbolic link. Always false if symbolic links
are not supported.

ismount (path)
Return true if pathname path is a mount point: a point in a file system where a different file system
has been mounted. The function checks whether path’s parent, ‘path/..’, is on a different device
than path, or whether ‘path/..” and path point to the same i-node on the same device — this should
detect mount points for all UNIX and POSIX variants.

join(pathl [, path?[,]])
Joins one or more path components intelligently. If any component is an absolute path, all previous
components are thrown away, and joining continues. The return value is the concatenation of pathl,
and optionally path2, etc., with exactly one slash (’/?) inserted between components, unless path
is empty.

normcase (path)
Normalize the case of a pathname. On UNIX, this returns the path unchanged; on case-insensitive
filesystems, it converts the path to lowercase. On Windows, it also converts forward slashes to
backward slashes.

normpath (path)
Normalize a pathname. This collapses redundant separators and up-level references, e.g. A//B,
A/./B and A/foo/../B all become A/B. It does not normalize the case (use normcase() for that).
On Windows, it converts forward slashes to backward slashes.

realpath(path)
Return the canonical path of the specified filename, eliminating any symbolic links encountered in
the path. Availability: UNIX. New in version 2.2.

samefile(pathl, path2)
Return true if both pathname arguments refer to the same file or directory (as indicated by device
number and i-node number). Raise an exception if a os.stat() call on either pathname fails.
Availability: Macintosh, UNIX.

sameopenfile(fpl, fp2)
Return true if the file objects fp! and fp2 refer to the same file. The two file objects may represent
different file descriptors. Availability: Macintosh, UNIX.

samestat (statl, stat2)
Return true if the stat tuples stat! and stat2 refer to the same file. These structures may have been
returned by fstat(), lstat(), or stat(). This function implements the underlying comparison
used by samefile() and sameopenfile(). Availability: Macintosh, UNIX.

split (path)
Split the pathname path into a pair, (head, tail) where tail is the last pathname component and
head is everything leading up to that. The tail part will never contain a slash; if path ends in a
slash, tail will be empty. If there is no slash in path, head will be empty. If path is empty, both
head and tail are empty. Trailing slashes are stripped from head unless it is the root (one or more
slashes only). In nearly all cases, join(head, tail) equals path (the only exception being when
there were multiple slashes separating head from tail).

splitdrive (path)
Split the pathname path into a pair (drive, tail) where drive is either a drive specification or the
empty string. On systems which do not use drive specifications, drive will always be the empty
string. In all cases, drive + tail will be the same as path. New in version 1.3.

splitext (path)
Split the pathname path into a pair (root, ext) such that root + ext == path, and ezt is empty
or begins with a period and contains at most one period.

walk (path, visit, arg)
Calls the function wvisit with arguments (arg, dirname, names) for each directory in the di-

6.2. os.path — Common pathname manipulations 161

rectory tree rooted at path (including path itself, if it is a directory). The argument dirname
specifies the visited directory, the argument names lists the files in the directory (gotten from
os.listdir(dirname)). The wvisit function may modify names to influence the set of directories
visited below dirname, e.g., to avoid visiting certain parts of the tree. (The object referred to by
names must be modified in place, using del or slice assignment.)

6.3 dircache — Cached directory listings

The dircache module defines a function for reading directory listing using a cache, and cache invalidation
using the mtime of the directory. Additionally, it defines a function to annotate directories by appending
a slash.

The dircache module defines the following functions:

listdir(path)
Return a directory listing of path, as gotten from os.listdir(). Note that unless path changes,
further call to 1listdir () will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should
change it to return a tuple?)

opendir (path)
Same as listdir(). Defined for backwards compatibility.

annotate (head, list)
Assume list is a list of paths relative to head, and append, in place, a ‘/’ to each path which points
to a directory.

>>> import dircache
>>> a=dircache.listdir(’/’)
>>> a=al[:] # Copy the return value so we can change ’a’

>>> a

[’bin’, ’boot’, ’cdrom’, ’dev’, ’etc’, ’floppy’, ’home’, ’initrd’, ’1lib’, ’lost+
found’, ’mnt’, ’proc’, ’root’, ’sbin’, ’tmp’, ’usr’, ’var’, ’vmlinuz’]

>>> dircache.annotate(’/’, a)

>>> a

[’bin/’, ’boot/’, ’cdrom/’, ’dev/’, ’etc/’, ’floppy/’, ’home/’, ’initrd/’, ’lib/
>, ’lost+found/’, ’mnt/’, ’proc/’, ’root/’, ’sbin/’, ’tmp/’, ’usr/’, ’var/’, ’vm
linuz’]

6.4 stat — Interpreting stat () results

The stat module defines constants and functions for interpreting the results of os.stat(), os.fstat()
and os.lstat() (if they exist). For complete details about the stat(), fstat() and 1lstat() calls,
consult the documentation for your system.

The stat module defines the following functions to test for specific file types:

S_ISDIR(mode)
Return non-zero if the mode is from a directory.

S_ISCHR (mode)
Return non-zero if the mode is from a character special device file.

S_ISBLK (mode)
Return non-zero if the mode is from a block special device file.

S_ISREG (mode)
Return non-zero if the mode is from a regular file.

162 Chapter 6. Generic Operating System Services

S_ISFIFO0(mode)
Return non-zero if the mode is from a FIFO (named pipe).

S_ISLNK (mode)
Return non-zero if the mode is from a symbolic link.

S_ISSOCK (mode)
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S_IMODE (mode)
Return the portion of the file’s mode that can be set by os.chmod ()—that is, the file’s permission
bits, plus the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S_IFMT (mode)
Return the portion of the file’s mode that describes the file type (used by the S_IS*() functions
above).

Normally, you would use the os.path.is*() functions for testing the type of a file; the functions here
are useful when you are doing multiple tests of the same file and wish to avoid the overhead of the
stat () system call for each test. These are also useful when checking for information about a file that
isn’t handled by os.path, like the tests for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returned by os.stat (), os.fstat ()
or os.lstat().

ST_MODE
Inode protection mode.

ST_INO
Inode number.

ST_DEV
Device inode resides on.

ST_NLINK
Number of links to the inode.

ST_UID
User id of the owner.

ST_GID
Group id of the owner.

ST_SIZE
Size in bytes of a plain file; amount of data waiting on some special files.

ST_ATIME
Time of last access.

ST_MTIME
Time of last modification.

ST_CTIME
Time of last status change (see manual pages for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the
file in bytes. For FIFOs and sockets under most flavors of UNIiX (including Linux in particular), the
“size” is the number of bytes waiting to be read at the time of the call to os.stat(), os.fstat(), or
os.1lstat(); this can sometimes be useful, especially for polling one of these special files after a non-
blocking open. The meaning of the size field for other character and block devices varies more, depending
on the implementation of the underlying system call.

Example:

import os, sys
from stat import *

6.4. stat — Interpreting stat () results 163

def walktree(dir, callback):
’?’recursively descend the directory rooted at dir,
calling the callback function for each regular file’’’

for f in os.listdir(dir):

pathname = ’%s/%s’ % (dir, f)

mode = os.stat(pathname) [ST_MODE]

if S_ISDIR(mode):
It’s a directory, recurse into it
walktree(pathname, callback)

elif S_ISREG(mode):
It’s a file, call the callback function
callback(pathname)

else:
Unknown file type, print a message
print ’Skipping %s’ Y% pathname

def visitfile(file):
print ’visiting’, file

if __name__ == ’__main__’:

walktree(sys.argv[1], visitfile)

6.5 statcache — An optimization of os.stat()

Deprecated since release 2.2. Use os.stat () directly instead of using the cache; the cache introduces
a very high level of fragility in applications using it and complicates application code with the addition
of cache management support.

The statcache module provides a simple optimization to os.stat (): remembering the values of previous
invocations.

The statcache module defines the following functions:

stat (path)
This is the main module entry-point. Identical for os.stat (), except for remembering the result
for future invocations of the function.

The rest of the functions are used to clear the cache, or parts of it.

reset ()
Clear the cache: forget all results of previous stat () calls.

forget (path)
Forget the result of stat(path), if any.

forget_prefix(prefir)
Forget all results of stat(path) for path starting with prefiz.

forget_dir (prefix)
Forget all results of stat(path) for path a file in the directory prefiz, including stat (prefiz).

forget_except_prefix(prefir)
Similar to forget_prefix(), but for all path values not starting with prefiz.

Example:

>>> import os, statcache

>>> statcache.stat(’.’)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)
>>> os.stat(’.’)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

164 Chapter 6. Generic Operating System Services

6.6 statvfs — Constants used with os.statvfs()

The statvfs module defines constants so interpreting the result if os.statvfs(), which returns a tuple,
can be made without remembering “magic numbers.” Each of the constants defined in this module is
the index of the entry in the tuple returned by os.statvfs() that contains the specified information.

F_BSIZE
Preferred file system block size.

F_FRSIZE
Fundamental file system block size.

F_BLOCKS
Total number of blocks in the filesystem.

F_BFREE
Total number of free blocks.

F_BAVAIL
Free blocks available to non-super user.

F_FILES
Total number of file nodes.

F_FFREE
Total number of free file nodes.

F_FAVAIL
Free nodes available to non-super user.

F_FLAG
Flags. System dependent: see statvfs() man page.

F_NAMEMAX
Maximum file name length.

6.7 filecmp — File and Directory Comparisons

The filecmp module defines functions to compare files and directories, with various optional
time/correctness trade-offs.

The filecmp module defines the following functions:

cmp (f1, fQ[, shallow[, usefstatcache]])
Compare the files named fI and f2, returning 1 if they seem equal, 0 otherwise.

Unless shallow is given and is false, files with identical os.stat () signatures are taken to be equal.
If use_statcache is given and is true, statcache.stat () will be called rather then os.stat (); the
default is to use os.stat().

Files that were compared using this function will not be compared again unless their os.stat()
signature changes. Note that using use_statcache true will cause the cache invalidation mechanism
to fail — the stale stat value will be used from statcache’s cache.

Note that no external programs are called from this function, giving it portability and efficiency.

cmpfiles(dirl, dir2, common[, shallow[, usefstatcache]])
Returns three lists of file names: match, mismatch, errors. match contains the list of files match
in both directories, mismatch includes the names of those that don’t, and errros lists the names
of files which could not be compared. Files may be listed in errors because the user may lack
permission to read them or many other reasons, but always that the comparison could not be done
for some reason.

The common parameter is a list of file names found in both directories. The shallow and
use_statcache parameters have the same meanings and default values as for filecmp.cmp().

6.6. statvfs — Constants used with os.statvfs() 165

Example:

>>> import filecmp

>>> filecmp.cmp(’libundoc.tex’, ’libundoc.tex’)
1

>>> filecmp.cmp(’libundoc.tex’, ’lib.tex’)

0

6.7.1 The dircmp class

dircmp instances are built using this constructor:

class dircmp(a, b[, ignore[, hide]])
Construct a new directory comparison object, to compare the directories a and b. ignore is a list
of names to ignore, and defaults to [’RCS’, ’CVS’, ’tags’]. hide is a list of names to hide, and
defaults to [os.curdir, os.pardir].

The dircmp class provides the following methods:

report ()
Print (to sys.stdout) a comparison between a and b.

report_partial_closure()
Print a comparison between @ and b and common immediate subdirctories.

report_full_closure()
Print a comparison between a and b and common subdirctories (recursively).

The dircmp offers a number of interesting attributes that may be used to get various bits of information
about the directory trees being compared.

Note that via __getattr__() hooks, all attributes are computed lazilly, so there is no speed penalty if
only those attributes which are lightweight to compute are used.

left_list
Files and subdirectories in a, filtered by hide and ignore.

right_list
Files and subdirectories in b, filtered by hide and ignore.

common
Files and subdirectories in both a and b.

left_only
Files and subdirectories only in a.

right_only
Files and subdirectories only in b.

common_dirs
Subdirectories in both a and b.

common_files

Files in both ¢ and b

common_funny
Names in both a and b, such that the type differs between the directories, or names for which
os.stat () reports an error.

same_files
Files which are identical in both e and b.

diff_files
Files which are in both a and b, whose contents differ.

funny_files

166 Chapter 6. Generic Operating System Services

Files which are in both a and b, but could not be compared.

subdirs
A dictionary mapping names in common_dirs to dircmp objects.

6.8 popen2 — Subprocesses with accessible |/O streams

This module allows you to spawn processes and connect to their input/output/error pipes and obtain
their return codes under UNIX and Windows.

Note that starting with Python 2.0, this functionality is available using functions from the os module
which have the same names as the factory functions here, but the order of the return values is more
intuitive in the os module variants.

The primary interface offered by this module is a trio of factory functions. For each of these, if bufsize
is specified, it specifies the buffer size for the I/O pipes. mode, if provided, should be the string *b’ or
’t7; on Windows this is needed to determine whether the file objects should be opened in binary or text
mode. The default value for mode is ’t’.

The only way to retrieve the return codes for the child processes is by using the poll() or wait()
methods on the Popen3 and Popen4 classes; these are only available on UNIX. This information is not
available when using the popen2(), popen3(), and popen4 () functions, or the equivalent functions in
the os module.

popenQ(cmd[, bufsize [, mode]])
Executes cmd as a sub-process. Returns the file objects (child_stdout, child_stdin).

popenB(cmd[, bufsize [, mode]])
Executes c¢md as a sub-process. Returns the file objects (child_stdout, child_stdin,
child_stderr).

popen4(cmd[, bufsize [, mode]])
Executes ¢md as a sub-process. Returns the file objects (child_stdout_and_stderr, child_stdin).
New in version 2.0.

On UNIX, a class defining the objects returned by the factory functions is also available. These are not
used for the Windows implementation, and are not available on that platform.

class PopenS(cmd[, capturestderr[, bufsize]])
This class represents a child process. Normally, Popen3 instances are created using the popen2()
and popen3() factory functions described above.

If not using one off the helper functions to create Popen3 objects, the parameter c¢md is the shell
command to execute in a sub-process. The capturestderr flag, if true, specifies that the object
should capture standard error output of the child process. The default is false. If the bufsize
parameter is specified, it specifies the size of the I/O buffers to/from the child process.

class Popen4 (cmd [, bufsize])
Similar to Popen3, but always captures standard error into the same file object as standard output.
These are typically created using popen4 (). New in version 2.0.

6.8.1 Popen3 and Popen4 Objects

Instances of the Popen3 and Popen4 classes have the following methods:

poll()
Returns -1 if child process hasn’t completed yet, or its return code otherwise.

wait ()
Waits for and returns the status code of the child process. The status code encodes both the return
code of the process and information about whether it exited using the exit () system call or died
due to a signal. Functions to help interpret the status code are defined in the os module; see

6.8. popen2 — Subprocesses with accessible |/O streams 167

section 6.1.5 for the W* () family of functions.

The following attributes are also available:

fromchild

A file object that provides output from the child process. For Popen4 instances, this will provide
both the standard output and standard error streams.

tochild

A file object that provides input to the child process.

childerr

pid

Where the standard error from the child process goes is capturestderr was true for the constructor,
or None. This will always be None for Popen4 instances.

The process ID of the child process.

6.9 time — Time access and conversions

This module provides various time-related functions. It is always available, but not all functions are
available on all platforms.

An explanation of some terminology and conventions is in order.

The epoch is the point where the time starts. On January 1st of that year, at 0 hours, the “time
since the epoch” is zero. For UNIX, the epoch is 1970. To find out what the epoch is, look at
gmtime (0).

The functions in this module do not handle dates and times before the epoch or far in the future.
The cut-off point in the future is determined by the C library; for UNIX, it is typically in 2038.

Year 2000 (Y2K) issues: Python depends on the platform’s C library, which generally doesn’t
have year 2000 issues, since all dates and times are represented internally as seconds since the
epoch. Functions accepting a time tuple (see below) generally require a 4-digit year. For backward
compatibility, 2-digit years are supported if the module variable accept2dyear is a non-zero integer;
this variable is initialized to 1 unless the environment variable PYTHONY2K is set to a non-empty
string, in which case it is initialized to 0. Thus, you can set PYTHONY2K to a non-empty string
in the environment to require 4-digit years for all year input. When 2-digit years are accepted,
they are converted according to the POSIX or X/Open standard: values 69-99 are mapped to
1969-1999, and values 0-68 are mapped to 2000-2068. Values 100-1899 are always illegal. Note
that this is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2al, would add
1900 to year values below 1900.

UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The
acronym UTC is not a mistake but a compromise between English and French.

DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of
the year. DST rules are magic (determined by local law) and can change from year to year. The
C library has a table containing the local rules (often it is read from a system file for flexibility)
and is the only source of True Wisdom in this respect.

The precision of the various real-time functions may be less than suggested by the units in which
their value or argument is expressed. E.g. on most UNIX systems, the clock “ticks” only 50 or 100
times a second, and on the Mac, times are only accurate to whole seconds.

On the other hand, the precision of time() and sleep() is better than their UNIX equivalents:
times are expressed as floating point numbers, time () returns the most accurate time available
(using UNIX gettimeofday() where available), and sleep() will accept a time with a nonzero
fraction (UNIX select() is used to implement this, where available).

The time tuple as returned by gmtime(), localtime(), and strptime(), and accepted by
asctime(), mktime() and strftime(), is a tuple of 9 integers:

168

Chapter 6. Generic Operating System Services

Index | Field Values
0 | year (for example, 1993)
1 | month range [1,12]
2 | day range [1,31]
3 | hour range [0,23]
4 | minute range [0,59]
5 | second range [0,61]; see (1) in strftime() description
6 | weekday range [0,6], Monday is 0
7 | Julian day range [1,366]
8 | daylight savings flag | 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be
handled as described under “Year 2000 (Y2K) issues” above. A -1 argument as daylight savings
flag, passed to mktime () will usually result in the correct daylight savings state to be filled in.

When a tuple with an incorrect length is passed to a function expecting a time tuple, or having
elements of the wrong type, a TypeError is raised.

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default,
but will be set to false if the environment variable PYTHONY2K has been set to a non-empty
string. It may also be modified at run time.

altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative
if the local DST timezone is east of UTC (as in Western Europe, including the UK). Only use this
if daylight is nonzero.

asctime([tuple])
Convert a tuple representing a time as returned by gmtime() or localtime() to a 24-character
string of the following form: >Sun Jun 20 23:21:05 1993°. If tuple is not provided, the current
time as returned by localtime() is used. Note: Unlike the C function of the same name, there
is no trailing newline. Changed in version 2.1: Allowed tuple to be omitted.

clock()
On UNIX, return the current processor time as a floating point number expressed in seconds. The
precision, and in fact the very definition of the meaning of “processor time”, depends on that of
the C function of the same name, but in any case, this is the function to use for benchmarking
Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function,
as a floating point number, based on the Win32 function QueryPerformanceCounter(). The
resolution is typically better than one microsecond.

ctime([secs])
Convert a time expressed in seconds since the epoch to a string representing local time. If secs
is not provided, the current time as returned by time() is used. ctime(secs) is equivalent to
asctime(localtime(secs)). Changed in version 2.1: Allowed secs to be omitted.

daylight
Nonzero if a DST timezone is defined.

gmtime ([secs])
Convert a time expressed in seconds since the epoch to a time tuple in UTC in which the dst flag
is always zero. If secs is not provided, the current time as returned by time() is used. Fractions
of a second are ignored. See above for a description of the tuple lay-out. Changed in version 2.1:
Allowed secs to be omitted.

localtime([secs])
Like gmtime () but converts to local time. The dst flag is set to 1 when DST applies to the given
time. Changed in version 2.1: Allowed secs to be omitted.

6.9. time — Time access and conversions 169

mktime (tuple)

This is the inverse function of localtime (). Its argument is the full 9-tuple (since the dst flag is
needed; use -1 as the dst flag if it is unknown) which expresses the time in local time, not UTC.
It returns a floating point number, for compatibility with time(). If the input value cannot be
represented as a valid time, either OverflowError or ValueError will be raised (which depends
on whether the invalid value is caught by Python or the underlying C libraries). The earliest date
for which it can generate a time is platform-dependent.

sleep(secs)

Suspend execution for the given number of seconds. The argument may be a floating point number
to indicate a more precise sleep time. The actual suspension time may be less than that requested
because any caught signal will terminate the sleep() following execution of that signal’s catching
routine. Also, the suspension time may be longer than requested by an arbitrary amount because
of the scheduling of other activity in the system.

strftime (format [, tuple])

Convert a tuple representing a time as returned by gmtime () or localtime () to a string as specified
by the format argument. If tuple is not provided, the current time as returned by localtime () is
used. format must be a string. Changed in version 2.1: Allowed tuple to be omitted.

The following directives can be embedded in the format string. They are shown without the
optional field width and precision specification, and are replaced by the indicated characters in the
strftime () result:

Directive | Meaning Notes
%ha Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
AS) Locale’s abbreviated month name.
%B Locale’s full month name.
%e Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
A Hour (12-hour clock) as a decimal number [01,12].
%J Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
AU Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61]. (1)
yAY Week number of the year (Sunday as the first day of the

week) as a decimal number [00,53]. All days in a new
year preceding the first Sunday are considered to be in

week 0.
YA Weekday as a decimal number [0(Sunday),6].
YAl Week number of the year (Monday as the first day of

the week) as a decimal number [00,53]. All days in a
new year preceding the first Sunday are considered to
be in week 0.

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

hy Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

hZ Time zone name (or by no characters if no time zone
exists).

% A literal ‘%’ character.

Notes:

(1)The range really is 0 to 61; this accounts for leap seconds and the (very rare) double leap
seconds.

Here is an example, a format for dates compatible with that specified in the RFC 2822 Internet

170

Chapter 6. Generic Operating System Services

email standard. !

>>> from time import gmtime, strftime
>>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())
>Thu, 28 Jun 2001 14:17:15 +0000’

Additional directives may be supported on certain platforms, but only the ones listed here have a
meaning standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the
initial ‘%’ of a directive in the following order; this is also not portable. The field width is normally
2 except for %j where it is 3.

strptime (string [, format])
Parse a string representing a time according to a format. The return value is a tuple as returned
by gmtime() or localtime(). The format parameter uses the same directives as those used by
strftime(); it defaults to "%a %b %d %H:%M:%S %Y" which matches the formatting returned by
ctime (). The same platform caveats apply; see the local UNIX documentation for restrictions or
additional supported directives. If string cannot be parsed according to format, ValueError is
raised. Values which are not provided as part of the input string are filled in with default values; the
specific values are platform-dependent as the XPG standard does not provide sufficient information
to constrain the result.

Note: This function relies entirely on the underlying platform’s C library for the date parsing, and
some of these libraries are buggy. There’s nothing to be done about this short of a new, portable
implementation of strptime().

Availability: Most modern UNIX systems.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note
that even though the time is always returned as a floating point number, not all systems provide
time with a better precision than 1 second. While this function normally returns non-decreasing
values, it can return a lower value than a previous call if the system clock has been set back between
the two calls.

timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (negative in most of Western
Europe, positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name
of the local DST timezone. If no DST timezone is defined, the second string should not be used.

See Also:

Module locale (section 6.24):
Internationalization services. The locale settings can affect the return values for some of the
functions in the time module.

6.10 sched — Event scheduler

The sched module defines a class which implements a general purpose event scheduler:

class scheduler (timefunc, delayfunc)
The scheduler class defines a generic interface to scheduling events. It needs two functions to
actually deal with the “outside world” — timefunc should be callable without arguments, and
return a number (the “time”, in any units whatsoever). The delayfunc function should be callable

IThe use of %Z is now deprecated, but the %z escape that expands to the preferred hour/minute offset is not supported
by all ANSI C libraries. Also, a strict reading of the original 1982 RFC 822 standard calls for a two-digit year (%y rather
than %Y), but practice moved to 4-digit years long before the year 2000. The 4-digit year has been mandated by RFC
2822, which obsoletes RFC 822.

6.10. sched — Event scheduler 171

with one argument, compatible with the output of timefunc, and should delay that many time
units. delayfunc will also be called with the argument 0 after each event is run to allow other
threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time
>>> s=sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()

>>> def print_some_times():
print time.time()
s.enter(5, 1, print_time, ())
s.enter (10, 1, print_time, ())
s.run()
print time.time()

>>> print_some_times()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

6.10.1 Scheduler Objects

scheduler instances have the following methods:

enterabs (time, priority, action, argument)

Schedule a new event. The time argument should be a numeric type compatible with the return
value of the timefunc function passed to the constructor. Events scheduled for the same time will
be executed in the order of their priority.

Executing the event means executing action (xargument). argument must be a sequence holding
the parameters for action.

Return value is an event which may be used for later cancellation of the event (see cancel()).

enter (delay, priority, action, argument)

Schedule an event for delay more time units. Other then the relative time, the other arguments,
the effect and the return value are the same as those for enterabs().

cancel (event)

Remove the event from the queue. If event is not an event currently in the queue, this method will
raise a RuntimeError.

empty ()

run()

Return true if the event queue is empty.

Run all scheduled events. This function will wait (using the delayfunc function passed to the
constructor) for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a
consistent state and propagate the exception. If an exception is raised by action, the event will
not be attempted in future calls to run().

If a sequence of events takes longer to run than the time available before the next event, the
scheduler will simply fall behind. No events will be dropped; the calling code is responsible for
canceling events which are no longer pertinent.

6.11 mutex — Mutual exclusion support

172

Chapter 6. Generic Operating System Services

The mutex module defines a class that allows mutual-exclusion via acquiring and releasing locks. It does
not require (or imply) threading or multi-tasking, though it could be useful for those purposes.

The mutex module defines the following class:

class mutex()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked,
the queue is empty. Otherwise, the queue contains zero or more (function, argument) pairs
representing functions (or methods) waiting to acquire the lock. When the mutex is unlocked
while the queue is not empty, the first queue entry is removed and its function Cargument) pair
called, implying it now has the lock.

Of course, no multi-threading is implied — hence the funny interface for lock (), where a function
is called once the lock is acquired.

6.11.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and return true, otherwise, return false.

lock (function, argument)
Execute function Cargument) , unless the mutex is locked. In the case it is locked, place the function
and argument on the queue. See unlock for explanation of when function (argument) is executed
in that case.

unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

6.12 getpass — Portable password input

The getpass module provides two functions:

getpass ([prompt])
Prompt the user for a password without echoing. The user is prompted using the string prompt,
which defaults to Password: . Availability: Macintosh, UNIxX, Windows.

getuser ()
Return the “login name” of the user. Availability: UNIx, Windows.
This function checks the environment variables LOGNAME, USER, LNAME and USERNAME;,
in order, and returns the value of the first one which is set to a non-empty string. If none are set,
the login name from the password database is returned on systems which support the pwd module,
otherwise, an exception is raised.

6.13 curses — Terminal handling for character-cell displays

Changed in version 1.6: Added support for the ncurses library and converted to a package.

The curses module provides an interface to the curses library, the de-facto standard for portable ad-
vanced terminal handling.

While curses is most widely used in the UNIX environment, versions are available for DOS, OS/2, and
possibly other systems as well. This extension module is designed to match the API of ncurses, an
open-source curses library hosted on Linux and the BSD variants of UNIX.

6.12. getpass — Portable password input 173

See Also:

Module curses.ascii (section 6.16):
Utilities for working with AScII characters, regardless of your locale settings.

Module curses.panel (section 6.17):
A panel stack extension that adds depth to curses windows.

Module curses.textpad (section 6.14):
Editable text widget for curses supporting Emacs-like bindings.

Module curses.wrapper (section 6.15):
Convenience function to ensure proper terminal setup and resetting on application entry and exit.

Curses Programming with Python

(http://www.python.org/doc/howto/curses/curses.html)
Tutorial material on using curses with Python, by Andrew Kuchling and Eric Raymond, is available
on the Python Web site.

The ‘Demo/curses/’ directory in the Python source distribution contains some example programs using
the curses bindings provided by this module.

6.13.1 Functions

The module curses defines the following exception:

exception error
Exception raised when a curses library function returns an error.

Note: Whenever z or y arguments to a function or a method are optional, they default to the current
cursor location. Whenever attr is optional, it defaults to A_NORMAL.

The module curses defines the following functions:

baudrate ()
Returns the output speed of the terminal in bits per second. On software terminal emulators it
will have a fixed high value. Included for historical reasons; in former times, it was used to write
output loops for time delays and occasionally to change interfaces depending on the line speed.

beep()
Emit a short attention sound.

can_change_color()
Returns true or false, depending on whether the programmer can change the colors displayed by
the terminal.

cbreak ()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is
turned off and characters are available to be read one by one. However, unlike raw mode, special
characters (interrupt, quit, suspend, and flow control) retain their effects on the tty driver and
calling program. Calling first raw() then cbreak() leaves the terminal in cbreak mode.

color_content (color_number)
Returns the intensity of the red, green, and blue (RGB) components in the color color_number,
which must be between 0 and COLORS. A 3-tuple is returned, containing the R,G,B values for the
given color, which will be between 0 (no component) and 1000 (maximum amount of component).

color_pair (color_number)
Returns the attribute value for displaying text in the specified color. This attribute value can
be combined with A_STANDOUT, A_REVERSE, and the other A_x* attributes. pair_number() is the
counterpart to this function.

curs_set (visibility)
Sets the cursor state. wvisibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If
the terminal supports the visibility requested, the previous cursor state is returned; otherwise, an
exception is raised. On many terminals, the “visible” mode is an underline cursor and the “very

174 Chapter 6. Generic Operating System Services

visible” mode is a block cursor.

def_prog_mode ()
Saves the current terminal mode as the “program” mode, the mode when the running program
is using curses. (Its counterpart is the “shell” mode, for when the program is not in curses.)
Subsequent calls to reset_prog_mode () will restore this mode.

def_shell _mode()
Saves the current terminal mode as the “shell” mode, the mode when the running program is
not using curses. (Its counterpart is the “program” mode, when the program is using curses
capabilities.) Subsequent calls to reset_shell_mode () will restore this mode.

delay_output (ms)
Inserts an ms millisecond pause in output.

doupdate ()
Update the physical screen. The curses library keeps two data structures, one representing the
current physical screen contents and a virtual screen representing the desired next state. The
doupdate () ground updates the physical screen to match the virtual screen.

The virtual screen may be updated by a noutrefresh() call after write operations such as addstr ()
have been performed on a window. The normal refresh() call is simply noutrefresh() followed
by doupdate(); if you have to update multiple windows, you can speed performance and per-
haps reduce screen flicker by issuing noutrefresh() calls on all windows, followed by a single
doupdate ().

echo()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

endwin ()
De-initialize the library, and return terminal to normal status.

erasechar ()
Returns the user’s current erase character. Under UNIX operating systems this is a property of the
controlling tty of the curses program, and is not set by the curses library itself.

filter ()
The filter) routine, if used, must be called before initscr () is called. The effect is that, during
those calls, LINES is set to 1; the capabilities clear, cup, cud, cudl, cuul, cuu, vpa are disabled;
and the home string is set to the value of cr. The effect is that the cursor is confined to the current
line, and so are screen updates. This may be used for enabling cgaracter-at-a-time line editing
without touching the rest of the screen.

flash()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval.
Some people prefer such as ‘visible bell’ to the audible attention signal produced by beep().

flushinp()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has
not yet been processed by the program.

getmouse ()

After getch() returns KEY_MOUSE to signal a mouse event, this method should be call to retrieve
the queued mouse event, represented as a 5-tuple (id, =, y, z, bstate). id is an ID value
used to distinguish multiple devices, and z, y, z are the event’s coordinates. (z is currently
unused.). bstate is an integer value whose bits will be set to indicate the type of event, and will
be the bitwise OR of one or more of the following constants, where n is the button number from
1 to 4: BUTTONn_PRESSED, BUTTON7_RELEASED, BUTTON7 _CLICKED, BUTTON7_DOUBLE_CLICKED,
BUTTON7n_TRIPLE_CLICKED, BUTTON_SHIFT, BUTTON_CTRL, BUTTON_ALT.

getsyx ()
Returns the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true,
then -1,-1 is returned.

getwin(file)
Reads window related data stored in the file by an earlier putwin() call. The routine then creates

6.13. curses — Terminal handling for character-cell displays 175

and initializes a new window using that data, returning the new window object.

has_colors()
Returns true if the terminal can display colors; otherwise, it returns false.

has_ic()
Returns true if the terminal has insert- and delete- character capabilities. This function is included
for historical reasons only, as all modern software terminal emulators have such capabilities.

has_i1Q)
Returns true if the terminal has insert- and delete-line capabilities, or can simulate them using
scrolling regions. This function is included for historical reasons only, as all modern software
terminal emulators have such capabilities.

has_key(ch)
Takes a key value ch, and returns true if the current terminal type recognizes a key with that value.

halfdelay (tenths)
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user
are immediately available to the program. However, after blocking for tenths tenths of seconds, an
exception is raised if nothing has been typed. The value of tenths must be a number between 1
and 255. Use nocbreak() to leave half-delay mode.

init_color (color_number, r, g, b)
Changes the definition of a color, taking the number of the color to be changed followed by three
RGB values (for the amounts of red, green, and blue components). The value of color_number
must be between 0 and COLORS. Each of r, g, b, must be a value between 0 and 1000. When
init_color() is used, all occurrences of that color on the screen immediately change to the new
definition. This function is a no-op on most terminals; it is active only if can_change_color()
returns 1.

init_pair(pair_number, fg, bg)
Changes the definition of a color-pair. It takes three arguments: the number of the color-pair
to be changed, the foreground color number, and the background color number. The value of
pair—_number must be between 1 and COLOR_PAIRS - 1 (the O color pair is wired to white on black
and cannot be changed). The value of fg and bg arguments must be between 0 and COLORS. If the
color-pair was previously initialized, the screen is refreshed and all occurrences of that color-pair
are changed to the new definition.

initscr()
Initialize the library. Returns a WindowObject which represents the whole screen.

isendwin()
Returns true if endwin() has been called (that is, the curses library has been deinitialized).

keyname (k)
Return the name of the key numbered k. The name of a key generating printable ASCII character is
the key’s character. The name of a control-key combination is a two-character string consisting of a
caret followed by the corresponding printable ASCII character. The name of an alt-key combination
(128-255) is a string consisting of the prefix ‘M-’ followed by the name of the corresponding ASCII
character.

killchar ()
Returns the user’s current line kill character. Under UNIX operating systems this is a property of
the controlling tty of the curses program, and is not set by the curses library itself.

longname ()
Returns a string containing the terminfo long name field describing the current terminal. The
maximum length of a verbose description is 128 characters. It is defined only after the call to
initscr().

meta(yes)
If yes is 1, allow 8-bit characters to be input. If yes is 0, allow only 7-bit chars.

mouseinterval (interval)

176 Chapter 6. Generic Operating System Services

Sets the maximum time in milliseconds that can elapse between press and release events in order
for them to be recognized as a click, and returns the previous interval value. The default value is
200 msec, or one fifth of a second.

mousemask (mousemask)
Sets the mouse events to be reported, and returns a tuple (availmask, oldmask). availmask
indicates which of the specified mouse events can be reported; on complete failure it returns 0.
oldmask is the previous value of the given window’s mouse event mask. If this function is never
called, no mouse events are ever reported.

napms (ms)
Sleep for ms milliseconds.

newpad (nlines, ncols)
Creates and returns a pointer to a new pad data structure with the given number of lines and
columns. A pad is returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily
associated with a particular part of the screen. Pads can be used when a large window is needed,
and only a part of the window will be on the screen at one time. Automatic refreshes of pads (such
as from scrolling or echoing of input) do not occur. The refresh() and noutrefresh() methods
of a pad require 6 arguments to specify the part of the pad to be displayed and the location on
the screen to be used for the display. The arguments are pminrow, pmincol, sminrow, smincol,
smaxrow, smaxcol; the p arguments refer to the upper left corner of the the pad region to be
displayed and the s arguments define a clipping box on the screen within which the pad region is
to be displayed.

newwin([nlines, ncols,] begin_y, begin_x)
Return a new window, whose left-upper corner is at (begin_y, begin_z), and whose height/width
is nlines/ncols.

By default, the window will extend from the specified position to the lower right corner of the
screen.

nl (0
Enter newline mode. This mode translates the return key into newline on input, and translates
newline into return and line-feed on output. Newline mode is initially on.

nocbreak ()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

noecho ()
Leave echo mode. Echoing of input characters is turned off,

nonl()
Leave newline mode. Disable translation of return into newline on input, and disable low-level
translation of newline into newline/return on output (but this does not change the behavior of
addch(’\n’), which always does the equivalent of return and line feed on the virtual screen).
With translation off, curses can sometimes speed up vertical motion a little; also, it will be able to
detect the return key on input.

noqiflush()
When the noqiflush routine is used, normal flush of input and output queues associated with the
INTR, QUIT and SUSP characters will not be done. You may want to call noqiflush() in a signal
handler if you want output to continue as though the interrupt had not occurred, after the handler
exits.

noraw ()
Leave raw mode. Return to normal “cooked” mode with line buffering.

pair_content (pair_number)
Returns a tuple (fg,bg) containing the colors for the requested color pair. The value of pair_number
must be between 0 and COLOR_PAIRS-1.

pair_number (attr)
Returns the number of the color-pair set by the attribute value attr. color_pair() is the coun-

6.13. curses — Terminal handling for character-cell displays 177

terpart to this function.

putp (string)
Equivalent to tputs(str, 1, putchar); emits the value of a specified terminfo capability for the
current terminal. Note that the output of putp always goes to standard output.

qiflush([ﬂag])
If flag is false, the effect is the same as calling noqiflush(). If flag is true, or no argument is
provided, the queues will be flushed when these control characters are read.

raw()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend,
and flow control keys are turned off; characters are presented to curses input functions one by one.

reset_prog_mode ()
Restores the terminal to “program” mode, as previously saved by def_prog_mode ().

reset_shell_mode()
Restores the terminal to “shell” mode, as previously saved by def_shell mode().

setsyx(y, x)
Sets the virtual screen cursor to y, z. If y and x are both -1, then leaveok is set.

setupterm([termstr, fd])
Initializes the terminal. termstr is a string giving the terminal name; if omitted, the value of
the TERM environment variable will be used. fd is the file descriptor to which any initialization
sequences will be sent; if not supplied, the file descriptor for sys.stdout will be used.

start_color()
Must be called if the programmer wants to use colors, and before any other color manipulation
routine is called. It is good practice to call this routine right after initscr().

start_color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and
white), and two global variables in the curses module, COLORS and COLOR_PAIRS, containing the
maximum number of colors and color-pairs the terminal can support. It also restores the colors on
the terminal to the values they had when the terminal was just turned on.

termattrs ()
Returns a logical OR of all video attributes supported by the terminal. This information is useful
when a curses program needs complete control over the appearance of the screen.

termname ()
Returns the value of the environment variable TERM, truncated to 14 characters.

tigetflag(capname)
Returns the value of the Boolean capability corresponding to the terminfo capability name capname.
The value -1 is returned if capname is not a Boolean capability, or 0 if it is canceled or absent
from the terminal description.

tigetnum(capname)
Returns the value of the numeric capability corresponding to the terminfo capability name capname.
The value -2 is returned if capname is not a numeric capability, or -1 if it is canceled or absent
from the terminal description.

tigetstr (capname)
Returns the value of the string capability corresponding to the terminfo capability name capname.
None is returned if capname is not a string capability, or is canceled or absent from the terminal
description.

tparm(str[,...])
Instantiates the string str with the supplied parameters, where str should be a parameterized
string obtained from the terminfo database. E.g. tparm(tigetstr("cup"), 5, 3) could result in
’\033[6;4H’, the exact result depending on terminal type.

typeahead (fd)
Specifies that the file descriptor fd be used for typeahead checking. If fd is -1, then no typeahead

178 Chapter 6. Generic Operating System Services

checking is done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while
updating the screen. If input is found, and it is coming from a tty, the current update is postponed
until refresh or doupdate is called again, allowing faster response to commands typed in advance.
This function allows specifying a different file descriptor for typeahead checking.

unctrl(ch)
Returns a string which is a printable representation of the character ch. Control characters are
displayed as a caret followed by the character, for example as ~C. Printing characters are left as
they are.

ungetch(ch)
Push ch so the next getch() will return it. Note: Only one ch can be pushed before getch() is
called.

ungetmouse (id, z, y, 2, bstate)
Push a KEY_MOUSE event onto the input queue, associating the given state data with it.

use_env (flag)
If used, this function should be called before initscr() or newterm are called. When flag is false,
the values of lines and columns specified in the terminfo database will be used, even if environment
variables LINES and COLUMNS (used by default) are set, or if curses is running in a window (in
which case default behavior would be to use the window size if LINES and COLUMNS are not
set).

6.13.2 Window Objects

Window objects, as returned by initscr() and newwin() above, have the following methods:

addch([y, a:,] ch[, attr])
Note: A character means a C character (an ASCII code), rather then a Python character (a string
of length 1). (This note is true whenever the documentation mentions a character.) The builtin
ord () is handy for conveying strings to codes.

Paint character ch at (y, z) with attributes attr, overwriting any character previously painter
at that location. By default, the character position and attributes are the current settings for the
window object.

addnstr([y, ac,] str, n[, attr])
Paint at most n characters of the string str at (y, z) with attributes attr, overwriting anything
previously on the display.

addstr([y, x,] str[, attr])
Paint the string str at (y, x) with attributes attr, overwriting anything previously on the display.

attroff (atir)
Remove attribute attr from the “background” set applied to all writes to the current window.

attron(attr)
Add attribute attr from the “background” set applied to all writes to the current window.

attrset (attr)
Set the “background” set of attributes to attr. This set is initially 0 (no attributes).

bkgd(ch[, attr])
Sets the background property of the window to the character ch, with attributes attr. The change
is then applied to every character position in that window:

eThe attribute of every character in the window is changed to the new background attribute.

eWherever the former background character appears, it is changed to the new background
character.

bkgdset (ch [, attr])
Sets the window’s background. A window’s background consists of a character and any combination

6.13. curses — Terminal handling for character-cell displays 179

of attributes. The attribute part of the background is combined (OR’ed) with all non-blank char-
acters that are written into the window. Both the character and attribute parts of the background
are combined with the blank characters. The background becomes a property of the character and
moves with the character through any scrolling and insert/delete line/character operations.

border([ls[, 7‘5[, ts[, bs[, tl[, tr[, bl[, br]]]]]]]])
Draw a border around the edges of the window. Each parameter specifies the character to use for
a specific part of the border; see the table below for more details. The characters can be specified
as integers or as one-character strings.

Note: A 0 value for any parameter will cause the default character to be used for that parameter.
Keyword parameters can not be used. The defaults are listed in this table:

Parameter | Description Default value
ls Left side ACS_VLINE
s Right side ACS_VLINE
ts Top ACS_HLINE
bs Bottom ACS_HLINE
tl Upper-left corner ACS_ULCORNER
tr Upper-right corner ACS_URCORNER
bl Bottom-left corner ACS_BLCORNER
br Bottom-right corner | ACS_BRCORNER

box([vertch, horch])
Similar to border (), but both Is and rs are vertch and both ts and bs are horch. The default
corner characters are always used by this function.

clear()
Like erase(), but also causes the whole window to be repainted upon next call to refresh().

clearok(yes)
If yes is 1, the next call to refresh() will clear the window completely.

clrtobot ()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the
equivalent of clrtoeol() is performed.

clrtoeol()
Erase from cursor to the end of the line.

cursyncup ()
Updates the current cursor position of all the ancestors of the window to reflect the current cursor
position of the window.

delch([x, y])
Delete any character at (y, z).

deleteln()
Delete the line under the cursor. All following lines are moved up by 1 line.

derwin([nlines, ncols,] begin_y, begin_x)
An abbreviation for “derive window”, derwin() is the same as calling subwin(), except that
begin_y and begin_x are relative to the origin of the window, rather than relative to the entire
screen. Returns a window object for the derived window.

echochar (ch [, attr])
Add character ch with attribute attr, and immediately call refresh() on the window.

enclose(y, x)
Tests whether the given pair of screen-relative character-cell coordinates are enclosed by the given
window, returning true or false. It is useful for determining what subset of the screen windows
enclose the location of a mouse event.

erase()
Clear the window.

180 Chapter 6. Generic Operating System Services

getbegyx ()
Return a tuple (y, z) of co-ordinates of upper-left corner.

getch([l’, y])
Get a character. Note that the integer returned does not have to be in AscII range: function keys,
keypad keys and so on return numbers higher than 256. In no-delay mode, an exception is raised
if there is no input.

getkey([x, y])
Get a character, returning a string instead of an integer, as getch() does. Function keys, keypad
keys and so on return a multibyte string containing the key name. In no-delay mode, an exception
is raised if there is no input.

getmaxyx ()
Return a tuple (y, z) of the height and width of the window.

getparyx ()
Returns the beginning coordinates of this window relative to its parent window into two integer
variables y and x. Returns -1,-1 if this window has no parent.

getstr([w, y])
Read a string from the user, with primitive line editing capacity.

getyx ()
Return a tuple (y, z) of current cursor position relative to the window’s upper-left corner.

hline([y, a:,] ch, n)
Display a horizontal line starting at (y, z) with length n consisting of the character ch.

idcok(flag)
If flag is false, curses no longer considers using the hardware insert/delete character feature of the
terminal; if flag is true, use of character insertion and deletion is enabled. When curses is first
initialized, use of character insert/delete is enabled by default.

idlok(yes)
If called with yes equal to 1, curses will try and use hardware line editing facilities. Otherwise,
line insertion/deletion are disabled.

immedok (flag)
If flag is true, any change in the window image automatically causes the window to be refreshed;
you no longer have to call refresh() yourself. However, it may degrade performance considerably,
due to repeated calls to wrefresh. This option is disabled by default.

inch([:ﬂ, y])
Return the character at the given position in the window. The bottom 8 bits are the character
proper, and upper bits are the attributes.

insch([y, x,] ch[, attr])
Paint character ch at (y, z) with attributes attr, moving the line from position z right by one
character.

insdelln(nlines)
Inserts nlines lines into the specified window above the current line. The nlines bottom lines are
lost. For negative nlines, delete nlines lines starting with the one under the cursor, and move the
remaining lines up. The bottom nlines lines are cleared. The current cursor position remains the
same.

insertln()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

insnstr([y, x,] str, n [, attr])
Insert a character string (as many characters as will fit on the line) before the character under the
cursor, up to n characters. If n is zero or negative, the entire string is inserted. All characters to
the right of the cursor are shifted right, with the the rightmost characters on the line being lost.
The cursor position does not change (after moving to y, =, if specified).

6.13. curses — Terminal handling for character-cell displays 181

insstr([y, x,] str [, att'r])
Insert a character string (as many characters as will fit on the line) before the character under the
cursor. All characters to the right of the cursor are shifted right, with the the rightmost characters
on the line being lost. The cursor position does not change (after moving to y, z, if specified).

instr([y, a:] [, n])
Returns a string of characters, extracted from the window starting at the current cursor position,
or at y, z if specified. Attributes are stripped from the characters. If n is specified, instr()
returns return a string at most n characters long (exclusive of the trailing NUL).

is_linetouched (line)
Returns true if the specified line was modified since the last call to refresh(); otherwise returns
false. Raises a curses.error exception if line is not valid for the given window.

is_wintouched ()
Returns true if the specified window was modified since the last call to refresh(); otherwise
returns false.

keypad (yes)
If yes is 1, escape sequences generated by some keys (keypad, function keys) will be interpreted by
curses. If yes is 0, escape sequences will be left as is in the input stream.

leaveok (yes)
If yes is 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces
cursor movement where possible. If possible the cursor will be made invisible.

If yes is 0, cursor will always be at “cursor position” after an update.

move (new—_y, new—_x)
Move cursor to (new_y, new—_zx).

mvderwin(y, x)
Moves the window inside its parent window. The screen-relative parameters of the window are not
changed. This routine is used to display different parts of the parent window at the same physical
position on the screen.

mvwin(new_y, new_x)
Move the window so its upper-left corner is at (new_y, new_zx).

nodelay (yes)
If yes is 1, getch() will be non-blocking.

notimeout (yes)
If yes is 1, escape sequences will not be timed out.

If yes is 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in
the input stream as is.

noutrefresh()
Mark for refresh but wait. This function updates the data structure representing the desired state
of the window, but does not force an update of the physical screen. To accomplish that, call
doupdate().

overlay(destwin[, sminrow, smincol, dminrow, dmincol, dmazrow, dmazcol])
Overlay the window on top of destwin. The windows need not be the same size, only the overlapping
region is copied. This copy is non-destructive, which means that the current background character
does not overwrite the old contents of destwin.

To get fine-grained control over the copied region, the second form of overlay() can be used.
sminrow and smincol are the upper-left coordinates of the source window, and the other variables
mark a rectangle in the destination window.

overwrite(destwm[, sminrow, smincol, dminrow, dmincol, dmazxrow, dmaxcol])
Overwrite the window on top of destwin. The windows need not be the same size, in which case
only the overlapping region is copied. This copy is destructive, which means that the current
background character overwrites the old contents of destwin.

182 Chapter 6. Generic Operating System Services

To get fine-grained control over the copied region, the second form of overwrite() can be used.
sminrow and smincol are the upper-left coordinates of the source window, the other variables mark
a rectangle in the destination window.

putwin(file)
Writes all data associated with the window into the provided file object. This information can be
later retrieved using the getwin() function.

redrawln (beg, num)
Indicates that the num screen lines, starting at line beg, are corrupted and should be completely
redrawn on the next refresh() call.

redrawwin()
Touches the entire window, causing it to be completely redrawn on the next refresh() call.

refresh([pmim”ow, pmincol, sminrow, smincol, smaxrow, sma:ccol])
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad created with newpad().
The additional parameters are needed to indicate what part of the pad and screen are involved.
pminrow and pmincol specify the upper left-hand corner of the rectangle to be displayed in the
pad. sminrow, smincol, smazrrow, and smazxcol specify the edges of the rectangle to be displayed
on the screen. The lower right-hand corner of the rectangle to be displayed in the pad is calculated
from the screen coordinates, since the rectangles must be the same size. Both rectangles must
be entirely contained within their respective structures. Negative values of pminrow, pmincol,
sminrow, or smincol are treated as if they were zero.

scroll([lz’nes =1])
Scroll the screen or scrolling region upward by lines lines.

scrollok(flag)
Controls what happens when the cursor of a window is moved off the edge of the window or scrolling
region, either as a result of a newline action on the bottom line, or typing the last character of
the last line. If flag is false, the cursor is left on the bottom line. If flag is true, the window is
scrolled up one line. Note that in order to get the physical scrolling effect on the terminal, it is
also necessary to call idlok().

setscrreg(top, bottom)
Set the scrolling region from line top to line bottom. All scrolling actions will take place in this
region.

standend ()
Turn off the standout attribute. On some terminals this has the side effect of turning off all
attributes.

standout ()
Turn on attribute A_STANDOUT.

subpad([nlines, ncols,] begin_y, begin_x)
Return a sub-window, whose upper-left corner is at (begin_y, begin_x), and whose width/height
is ncols/nlines.

subwin([nlines, ncols,] begin_y, begin_x)
Return a sub-window, whose upper-left corner is at (begin_y, begin_z), and whose width/height
is ncols /nlines.

By default, the sub-window will extend from the specified position to the lower right corner of the
window.

syncdown ()
Touches each location in the window that has been touched in any of its ancestor windows. This
routine is called by refresh(), so it should almost never be necessary to call it manually.

syncok (flag)
If called with flag set to true, then syncup() is called automatically whenever there is a change in
the window.

6.13. curses — Terminal handling for character-cell displays 183

syncup ()
Touches all locations in ancestors of the window that have been changed in the window.

timeout (delay)
Sets blocking or non-blocking read behavior for the window. If delay is negative, blocking read is
used, which will wait indefinitely for input). If delay is zero, then non-blocking read is used, and
-1 will be returned by getch() if no input is waiting. If delay is positive, then getch() will block
for delay milliseconds, and return -1 if there is still no input at the end of that time.

touchline (start, count)
Pretend count lines have been changed, starting with line start.

touchwin ()
Pretend the whole window has been changed, for purposes of drawing optimizations.

untouchwin()
Marks all lines in the window as unchanged since the last call to refresh().

vline([y, :v,] ch, n)
Display a vertical line starting at (y, z) with length n consisting of the character ch.

6.13.3 Constants

The curses module defines the following data members:

ERR

Some curses routines that return an integer, such as getch(), return ERR upon failure.
0K

Some curses routines that return an integer, such as napms (), return 0K upon success.
version

A string representing the current version of the module. Also available as __version__.

Several constants are available to specify character cell attributes:

Attribute Meaning

A_ALTCHARSET | Alternate character set mode.
A_BLINK Blink mode.

A_BOLD Bold mode.

A_DIM Dim mode.

A_NORMAL Normal attribute.
A_STANDOUT Standout mode.
A_UNDERLINE Underline mode.

Keys are referred to by integer constants with names starting with ‘KEY_’. The exact keycaps available
are system dependent.

Key constant | Key

KEY_MIN Minimum key value
KEY_BREAK Break key (unreliable)
KEY_DOWN Down-arrow

KEY_UP Up-arrow

KEY_LEFT Left-arrow

KEY_RIGHT Right-arrow

KEY_HOME Home key (upward+left arrow)
KEY_BACKSPACE | Backspace (unreliable)

KEY_FO Function keys. Up to 64 function keys are supported.
KEY_Fn Value of function key n
KEY_DL Delete line

KEY_IL Insert line

184 Chapter 6. Generic Operating System Services

Key constant

Key

KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EQOS
KEY_EQOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL
KEY_A1
KEY_A3
KEY_B2
KEY_C1
KEY_C3
KEY_BTAB
KEY_BEG
KEY_CANCEL
KEY_CLOSE
KEY_COMMAND
KEY_COPY
KEY_CREATE
KEY_END
KEY_EXIT
KEY_FIND
KEY_HELP
KEY_MARK
KEY_MESSAGE
KEY_MOVE
KEY_NEXT
KEY_OPEN
KEY_OPTIONS
KEY_PREVIOUS
KEY_REDO
KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME
KEY_SAVE
KEY_SBEG
KEY_SCANCEL
KEY_SCOMMAND
KEY_SCOPY
KEY_SCREATE
KEY_SDC
KEY_SDL
KEY_SELECT
KEY_SEND

Delete character

Insert char or enter insert mode
Exit insert char mode

Clear screen

Clear to end of screen

Clear to end of line

Scroll 1 line forward

Scroll 1 line backward (reverse)
Next page

Previous page

Set tab

Clear tab

Clear all tabs

Enter or send (unreliable)

Soft (partial) reset (unreliable)

Reset or hard reset (unreliable)
Print

Home down or bottom (lower left)

Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad
Back tab

Beg (beginning)
Cancel

Close

Cmd (command)
Copy

Create

End

Exit

Find

Help

Mark

Message

Move

Next

Open

Options

Prev (previous)
Redo

Ref (reference)
Refresh

Replace

Restart

Resume

Save

Shifted Beg (beginning)
Shifted Cancel
Shifted Command
Shifted Copy
Shifted Create
Shifted Delete char
Shifted Delete line
Select

Shifted End

6.13. curses — Terminal handling for character-cell displays

185

Key constant

Key

KEY_SEQOL
KEY_SEXIT
KEY_SFIND
KEY_SHELP
KEY_SHOME
KEY_SIC
KEY_SLEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT
KEY_SOPTIONS
KEY_SPREVIOUS
KEY_SPRINT
KEY_SREDO
KEY_SREPLACE
KEY_SRIGHT
KEY_SRSUME
KEY_SSAVE
KEY_SSUSPEND
KEY_SUNDO
KEY_SUSPEND
KEY_UNDO
KEY_MOUSE
KEY_RESIZE
KEY_MAX

Shifted Clear line

Shifted Dxit
Shifted Find
Shifted Help
Shifted Home
Shifted Input

Shifted Left arrow

Shifted Message
Shifted Move
Shifted Next
Shifted Options
Shifted Prev
Shifted Print
Shifted Redo
Shifted Replace

Shifted Right arrow

Shifted Resume
Shifted Save
Shifted Suspend
Shifted Undo
Suspend

Undo

Mouse event has occurred
Terminal resize event
Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least
four function keys (KEY_F1, KEY_F2, KEY_F3, KEY_F4) available, and the arrow keys mapped to KEY_UP,
KEY_DOWN, KEY_LEFT and KEY_RIGHT in the obvious way. If your machine has a PC keybboard, it is safe
to expect arrow keys and twelve function keys (older PC keyboards may have only ten function keys);
also, the following keypad mappings are standard:

Keycap Constant
Insert KEY_IC
Delete KEY_DC
Home KEY_HOME
End KEY_END
Page Up KEY_NPAGE
Page Down | KEY_PPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100
terminal, and will generally be available on software emulations such as X terminals. When there is no
graphic available, curses falls back on a crude printable ASCII approximation. Note: These are available
only after initscr() has been called.

ACS code

Meaning

ACS_BBSS
ACS_BLOCK
ACS_BOARD
ACS_BSBS
ACS_BSSB
ACS_BSSS
ACS_BTEE

alternate name for upper right corner
solid square block

board of squares

alternate name for horizontal line
alternate name for upper left corner
alternate name for top tee

bottom tee

186

Chapter 6. Generic Operating System Services

ACS code Meaning
ACS_BULLET bullet

ACS_CKBOARD | checker board (stipple)
ACS_DARROW arrow pointing down
ACS_DEGREE degree symbol
ACS_DIAMOND | diamond

ACS_GEQUAL greater-than-or-equal-to
ACS_HLINE horizontal line
ACS_LANTERN | lantern symbol
ACS_LARROW left arrow
ACS_LEQUAL less-than-or-equal-to

ACS_LLCORNER
ACS_LRCORNER
ACS_LTEE
ACS_NEQUAL
ACS_PI
ACS_PLMINUS
ACS_PLUS
ACS_RARROW
ACS_RTEE
ACS_S1
ACS_S3
ACS_S7
ACS_S9
ACS_SBBS
ACS_SBSB
ACS_SBSS
ACS_SSBB
ACS_SSBS
ACS_SSSB
ACS_SSSS
ACS_STERLING
ACS_TTEE
ACS_UARROW
ACS_ULCORNER
ACS_URCORNER
ACS_VLINE

lower left-hand corner

lower right-hand corner

left tee

not-equal sign

letter pi

plus-or-minus sign

big plus sign

right arrow

right tee

scan line 1

scan line 3

scan line 7

scan line 9

alternate name for lower right corner
alternate name for vertical line
alternate name for right tee
alternate name for lower left corner
alternate name for bottom tee
alternate name for left tee
alternate name for crossover or big plus
pound sterling

top tee

up arrow

upper left corner

upper right corner

vertical line

The following table lists the predefined colors:

Constant Color

COLOR_BLACK Black

COLOR_BLUE Blue

COLOR_CYAN Cyan (light greenish blue)
COLOR_GREEN Green

COLOR_MAGENTA | Magenta (purplish red)
COLOR_RED Red

COLOR_WHITE White

COLOR_YELLOW Yellow

6.14 curses.textpad — Text input widget for curses programs

New in version 1.6.

6.14. curses.textpad — Text input widget for curses programs

187

The curses.textpad module provides a Textbox class that handles elementary text editing in a curses
window, supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator,
BBedit 6.x, FrameMaker, and many other programs). The module also provides a rectangle-drawing
function useful for framing text boxes or for other purposes.

The module curses.textpad defines the following function:

rectangle(win, uly, ulz, lry, lrz)
Draw a rectangle. The first argument must be a window object; the remaining arguments are
coordinates relative to that window. The second and third arguments are the y and x coordinates
of the upper left hand corner of the rectangle To be drawn; the fourth and fifth arguments are the
y and x coordinates of the lower right hand corner. The rectangle will be drawn using VT100/IBM
PC forms characters on terminals that make this possible (including xterm and most other software
terminal emulators). Otherwise it will be drawn with ASCII dashes, vertical bars, and plus signs.

6.14.1 Textbox objects

You can instantiate a Textbox object as follows:

class Textbox (win)
Return a textbox widget object. The win argument should be a curses WindowObject in which
the textbox is to be contained. The edit cursor of the textbox is initially located at the upper left
hand corner of the containin window, with coordinates (0, 0). The instance’s stripspaces flag
is initially on.

Textbox objects have the following methods:

edit([wlidator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the
termination keystrokes is entered. If walidator is supplied, it must be a function. It will be
called for each keystroke entered with the keystroke as a parameter; command dispatch is done on
the result. This method returns the window contents as a string; whether blanks in the window
are included is affected by the stripspaces member.

do_command (ch)
Process a single command keystroke. Here are the supported special keystrokes:

Keystroke | Action

Control-A | Go to left edge of window.

Control-B | Cursor left, wrapping to previous line if appropriate.
Control-D | Delete character under cursor.

Control-E | Go to right edge (stripspaces off) or end of line (stripspaces on).
Control-F | Cursor right, wrapping to next line when appropriate.
Control-G | Terminate, returning the window contents.

Control-H | Delete character backward.

Control-J | Terminate if the window is 1 line, otherwise insert newline.
Control-K | If line is blank, delete it, otherwise clear to end of line.
Control-L | Refresh screen.

Control-N | Cursor down; move down one line.

Control-0 | Insert a blank line at cursor location.

Control-P | Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The
following synonyms are supported where possible:

Constant Keystroke
KEY_LEFT Control-B
KEY_RIGHT Control-F
KEY_UP Control-P
KEY_DOWN Control-N
KEY_BACKSPACE | Control-h

All other keystrokes are treated as a command to insert the given character and move right (with

188 Chapter 6. Generic Operating System Services

line wrapping).

gather)
This method returns the window contents as a string; whether blanks in the window are included
is affected by the stripspaces member.

stripspaces
This data member is a flag which controls the interpretation of blanks in the window. When it
is on, trailing blanks on each line are ignored; any cursor motion that would land the cursor on
a trailing blank goes to the end of that line instead, and trailing blanks are stripped when the
window contents is gathered.

6.15 curses.wrapper — Terminal handler for curses programs

New in version 1.6.

This module supplies one function, wrapper (), which runs another function which should be the rest of
your curses-using application. If the application raises an exception, wrapper () will restore the terminal
to a sane state before passing it further up the stack and generating a traceback.

wrapper (func, ...)
Wrapper function that initializes curses and calls another function, func, restoring normal key-
board/screen behavior on error. The callable object func is then passed the main window ’stdscr’
as its first argument, followed by any other arguments passed to wrapper ().

Before calling the hook function, wrapper () turns on cbreak mode, turns off echo, enables the termi-
nal keypad, and initializes colors if the terminal has color support. On exit (whether normally or by
exception) it restores cooked mode, turns on echo, and disables the terminal keypad.

6.16 curses.ascii — Utilities for ASCII characters

New in version 1.6.

The curses.ascii module supplies name constants for ASCII characters and functions to test membership
in various ASCII character classes. The constants supplied are names for control characters as follows:

6.15. curses.wrapper — Terminal handler for curses programs 189

Name | Meaning

NUL

SOH Start of heading, console interrupt
STX Start of text

ETX End of text

EOT End of transmission

ENQ Enquiry, goes with ACK flow control
ACK Acknowledgement

BEL Bell

BS Backspace

TAB Tab

HT Alias for TAB: “Horizontal tab”

LF Line feed

NL Alias for LF: “New line”

VT Vertical tab

FF Form feed

CR Carriage return

S0 Shift-out, begin alternate character set
ST Shift-in, resume default character set
DLE Data-link escape

DC1 XON, for flow control

DC2 Device control 2, block-mode flow control
DC3 XOFF, for flow control

DC4 Device control 4

NAK Negative acknowledgement

SYN Synchronous idle

ETB End transmission block

CAN Cancel

EM End of medium

SUB Substitute

ESC Escape

FS File separator

GS Group separator

RS Record separator, block-mode terminator
Us Unit separator

SP Space

DEL Delete

Note that many of these have little practical significance in modern usage. The mnemonics derive from
teleprinter conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard C library:

isalnum(c)
Checks for an Ascir alphanumeric character; it is equivalent to ‘isalpha(c) or isdigit(c)’.

isalpha(c)
Checks for an Ascit alphabetic character; it is equivalent to ‘isupper(¢) or islower(c)’.

isascii(e)
Checks for a character value that fits in the 7-bit ASCII set.

isblank(c)
Checks for an Ascil whitespace character.

iscntrl(c)
Checks for an ASCII control character (in the range 0x00 to 0x1f).

isdigit(c)
Checks for an Ascit decimal digit, ‘0’ through ‘9’. This is equivalent to ‘c in string.digits’.

isgraph(c)

190 Chapter 6. Generic Operating System Services

Checks for ASCII any printable character except space.

islower(c)
Checks for an ASCII lower-case character.

isprint(c)
Checks for any ASCII printable character including space.

ispunct(c)
Checks for any printable ASCII character which is not a space or an alphanumeric character.

isspace(c)
Checks for AscCII white-space characters; space, line feed, carriage return, form feed, horizontal tab,
vertical tab.

isupper(c)
Checks for an ASCII uppercase letter.

isxdigit(c)
Checks for an ASCII hexadecimal digit. This is equivalent to ‘c in string.hexdigits’.

isctrl(e)
Checks for an AscII control character (ordinal values 0 to 31).

ismeta(c)
Checks for a non-AsCII character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using
the built-in function ord().

Note that all these functions check ordinal bit values derived from the first character of the string you pass
in; they do not actually know anything about the host machine’s character encoding. For functions that
know about the character encoding (and handle internationalization properly) see the string module.

The following two functions take either a single-character string or integer byte value; they return a value
of the same type.

ascii(e)
Return the ASCII value corresponding to the low 7 bits of c.

ctrl(e)
Return the control character corresponding to the given character (the character bit value is bitwise-
anded with 0x1f).

alt(e)
Return the 8-bit character corresponding to the given ASCII character (the character bit value is
bitwise-ored with 0x80).

The following function takes either a single-character string or integer value; it returns a string.

unctrl(c)
Return a string representation of the Ascii character c¢. If ¢ is printable, this string is the character
itself. If the character is a control character (0x00-0x1f) the string consists of a caret (‘*”) followed
by the corresponding uppercase letter. If the character is an Ascit delete (0x7f) the string is >~77.
If the character has its meta bit (0x80) set, the meta bit is stripped, the preceding rules applied,
and ‘!’ prepended to the result.

controlnames
A 33-element string array that contains the ASCII mnemonics for the thirty-two ASCII control
characters from 0 (NUL) to Ox1f (US), in order, plus the mnemonic ‘SP’ for the space character.

6.17 curses.panel — A panel stack extension for curses.

Panels are windows with the added feature of depth, so they can be stacked on top of each other, and
only the visible portions of each window will be displayed. Panels can be added, moved up or down in
the stack, and removed.

6.17. curses.panel — A panel stack extension for curses. 191

6.17.1 Functions

The module curses.panel defines the following functions:

bottom_panel ()
Returns the bottom panel in the panel stack.

new_panel (win)
Returns a panel object, associating it with the given window win.

top_panel()
Returns the top panel in the panel stack.

update_panels()
Updates the virtual screen after changes in the panel stack. This does not call curses.doupdate (),
so you'll have to do this yourself.

6.17.2 Panel Objects

Panel objects, as returned by new_panel () above, are windows with a stacking order. There’s always a
window associated with a panel which determines the content, while the panel methods are responsible
for the window’s depth in the panel stack.

Panel objects have the following methods:

above ()
Returns the panel above the current panel.

below()
Returns the panel below the current panel.

bottom()
Push the panel to the bottom of the stack.

hidden()
Returns true if the panel is hidden (not visible), false otherwise.

hide()
Hide the panel. This does not delete the object, it just makes the window on screen invisible.

move (y,)
Move the panel to the screen coordinates (y, z).

replace (win)
Change the window associated with the panel to the window win.

set_userptr(obj)
Set the panel’s user pointer to obj. This is used to associate an arbitrary piece of data with the
panel, and can be any Python object.

show ()
Display the panel (which might have been hidden).

top ()
Push panel to the top of the stack.

userptr ()
Returns the user pointer for the panel. This might be any Python object.

window ()
Returns the window object associated with the panel.

6.18 getopt — Parser for command line options

192 Chapter 6. Generic Operating System Services

This module helps scripts to parse the command line arguments in sys.argv. It supports the same
conventions as the UNIX getopt () function (including the special meanings of arguments of the form ‘-’
and ‘-="). Long options similar to those supported by GNU software may be used as well via an optional
third argument. This module provides a single function and an exception:

getopt (args, options [, longfoptions])

Parses command line options and parameter list. args is the argument list to be parsed, without
the leading reference to the running program. Typically, this means ‘sys.argv[1:]’. options is the
string of option letters that the script wants to recognize, with options that require an argument

Cuo.

followed by a colon (‘:’; i.e., the same format that UNIX getopt () uses).

Note: Unlike GNU getopt (), after a non-option argument, all further arguments are considered
also non-options. This is similar to the way non-GNU UNIX systems work.

long_options, if specified, must be a list of strings with the names of the long options which should
be supported. The leading ’--’ characters should not be included in the option name. Long
options which require an argument should be followed by an equal sign (‘=”). To accept only long
options, options should be an empty string. Long options on the command line can be recognized
so long as they provide a prefix of the option name that matches exactly one of the accepted
options. For example, it long_options is [’foo’, ’frob’], the option --fo will match as --foo,

but --f will not match uniquely, so GetoptError will be raised.

The return value consists of two elements: the first is a list of (option, wvalue) pairs; the second is
the list of program arguments left after the option list was stripped (this is a trailing slice of args).
Each option-and-value pair returned has the option as its first element, prefixed with a hyphen for
short options (e.g., ’-x?) or two hyphens for long options (e.g., >~-long-option’), and the option
argument as its second element, or an empty string if the option has no argument. The options
occur in the list in the same order in which they were found, thus allowing multiple occurrences.
Long and short options may be mixed.

exception GetoptError

This is raised when an unrecognized option is found in the argument list or when an option requiring
an argument is given none. The argument to the exception is a string indicating the cause of the
error. For long options, an argument given to an option which does not require one will also cause
this exception to be raised. The attributes msg and opt give the error message and related option;
if there is no specific option to which the exception relates, opt is an empty string.

Changed in version 1.6: Introduced GetoptError as a synonym for error.

exception error

Alias for GetoptError; for backward compatibility.

An example using only UNIX style options:

>>> import getopt

>>> args = ’-a -b -cfoo -d bar al a2’.split()
>>> args
[}_ai, J_b)’ I_Cfoo)’ 3_d7’)bar)’ 3a17’)a27]

>>> optlist, args = getopt.getopt(args, ’abc:d:’)

>>> optlist

[(J_a)’ 75)’ ()_b), 77), (7_C7,)foo))’ ()_d)’ 7bar7)]
>>> args

[’a1’, ’a2’]

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x al a2’
>>> args = s.split()
>>> args
[’--condition=foo’, ’--testing’, ’--output-file’, ’abc.def’, ’-x’, ’al’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’x’, [
>condition=’, ’output-file=’, ’testing’])

>>> optlist

6.18.

getopt — Parser for command line options 193

[(’--condition’, ’foo’), (’--testing’, ’’), (’--output-file’, ’abc.def’), (’-x’,
)7)]

>>> args

[’al’,)a27]

In a script, typical usage is something like this:

import getopt, sys

def main():
try:
opts, args = getopt.getopt(sys.argv[1:], "ho:", ["help", "output="])
except getopt.GetoptError:
print help information and exit:
usage ()
sys.exit(2)
output = None
for o, a in opts:

if o in ("-h", "--help"):
usage()
sys.exit()
if o in ("-o", "--output"):
output = a
...
if __name__ == "__main__":
main()

6.19 tempfile — Generate temporary file names

This module generates temporary file names. It is not UNIX specific, but it may require some help on
non-UNIX systems.

The module defines the following user-callable functions:

mktemp ([suﬁcix])
Return a unique temporary filename. This is an absolute pathname of a file that does not exist at
the time the call is made. No two calls will return the same filename. suffiz, if provided, is used as
the last part of the generated file name. This can be used to provide a filename extension or other
identifying information that may be useful on some platforms.

TemporaryFile([mode [, bufsize [, suﬁix]]])

Return a file (or file-like) object that can be used as a temporary storage area. The file is created
in the most secure manner available in the appropriate temporary directory for the host platform.
Under UNIX, the directory entry to the file is removed so that it is secure against attacks which
involve creating symbolic links to the file or replacing the file with a symbolic link to some other
file. For other platforms, which don’t allow removing the directory entry while the file is in use,
the file is automatically deleted as soon as it is closed (including an implicit close when it is
garbage-collected).

The mode parameter defaults to >w+b’ so that the file created can be read and written without
being closed. Binary mode is used so that it behaves consistently on all platforms without regard
for the data that is stored. bufsize defaults to -1, meaning that the operating system default is
used. suffix is passed to mktemp().

The module uses two global variables that tell it how to construct a temporary name. The caller may
assign values to them; by default they are initialized at the first call to mktemp().

tempdir
When set to a value other than None, this variable defines the directory in which filenames returned
by mktemp () reside. The default is taken from the environment variable TMPDIR; if this is not

194 Chapter 6. Generic Operating System Services

set, either ‘/usr/tmp’ is used (on UNIX), or the current working directory (all other systems). No
check is made to see whether its value is valid.

gettempprefix ()
Return the filename prefix used to create temporary files. This does not contain the directory
component. Using this function is preferred over using the template variable directly. New in
version 1.5.2.

template
Deprecated since release 2.0. Use gettempprefix () instead.

When set to a value other than None, this variable defines the prefix of the final component of the
filenames returned by mktemp (). A string of decimal digits is added to generate unique filenames.
The default is either ‘@pid.” where pid is the current process ID (on UNIX), ‘“pid-> on Windows
NT, ‘Python-Tmp-" on MacOS, or ‘tmp’ (all other systems).

Older versions of this module used to require that template be set to None after a call to os.fork();
this has not been necessary since version 1.5.2.

6.20 errno — Standard errno system symbols

This module makes available standard errno system symbols. The value of each symbol is the cor-
responding integer value. The names and descriptions are borrowed from ‘linux/include/errno.h’; which
should be pretty all-inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system.
For instance, errno.errorcode [errno.EPERM] maps to >EPERM’.

To