Python Tutorial
Release 2.3.2

Guido van Rossum
Fred L. Drake, Jr., editor

October 3, 2003

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together
with its interpreted nature, make it an ideal language for scripting and rapid application development in many

areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python Web sitéftp://www.python.org/, and can be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new functions and data types implemented in-€ (@r Gther
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system.
It helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the
tutorial can be read off-line as well.

For a description of standard objects and modules, se@ytieon Library Referencdocument. ThePython
Reference Manuaives a more formal definition of the language. To write extensions in G-of f@adExtending
and Embedding the Python InterpresaidPython/C API Referencd&here are also several books covering Python
in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs,
and you will be ready to learn more about the various Python library modules describedAwttioe Library
Reference

CONTENTS

Whetting Your Appetite 1
Using the Python Interpreter 3
2.1 Invokingthe Interpreter. e 3
2.2 TheInterpreter and Its Environment L 4
An Informal Introduction to Python 7
3.1 UsingPythonasaCalculator 7
3.2 First Steps Towards Programming o o it i e e 16
More Control Flow Tools 19
4.1 if Statements. e e e 19
4.2 for StatementS. e 19
4.3 Therange() Function. e e 20
4.4 break andcontinue Statements, anelse Clausesonloops 20
4.5 pass Statements e 21
4.6 Defining FUNCioNS L e 21
4.7 MoreonDefining Functions L 23
Data Structures 27
5.1 MoreonListS e 27
5.2 Thedel statement e 31
5.3 Tuplesand Sequences. e e 31
5.4 DIctionaries o o e e 32
5.5 Looping Techniques 33
56 MoreonConditions. e 34
5.7 Comparing Sequences and Other Types. i ittt 34
Modules 37
6.1 MoreonModules 38
6.2 Standard Modules. L e 39
6.3 Thedir() Function e e 40
6.4 Packages. e 41
Input and Output 45
7.1 Fancier Output Formatting. e 45
7.2 ReadingandWriting Files e 47
Errors and Exceptions 51
8.1 Syntax EIrors e e e e e e e e 51
8.2 EXCeptions. e 51
8.3 Handling EXCeptions e 52
8.4 Raising Exceptions. 54
8.5 User-defined EXCepLions. o 54

10

8.6 Defining Clean-up Actions
Classes

9.1 A Word About Terminology.,
9.2 PythonScopesandNameSpaces
9.3 AFirstLookatClasses.
94 RandomRemarks. e
9.5 Inheritance.
9.6 Private Variables. oo
9.7 OddsandEnds
9.8 ExceptionsAreClassesToo. v i i ...
9.9 lterators e e
9.10 Generators. e e e e e
What Now?

Interactive Input Editing and History Substitution

Al LineEditing
A.2 History Substitution
A3 KeyBindings
A4 Commentary. e e e

Floating Point Arithmetic: Issues and Limitations

B.1

Representation Error oo

History and License

C1

History of the software
C.2 Terms and conditions for accessing or otherwise using Python

CHAPTER
ONE

Whetting Your Appetite

If you ever wrote a large shell script, you probably know this feeling: you'd love to add yet another feature, but
it's already so slow, and so big, and so complicated; or the feature involves a system call or other function that
is only accessible from C ... Usually the problem at hand isn't serious enough to warrant rewriting the script in
C; perhaps the problem requires variable-length strings or other data types (like sorted lists of file names) that are
easy in the shell but lots of work to implement in C, or perhaps you're not sufficiently familiar with C.

Another situation: perhaps you have to work with several C libraries, and the usual C write/compile/test/re-compile
cycle is too slow. You need to develop software more quickly. Possibly perhaps you've written a program that
could use an extension language, and you don’t want to design a language, write and debug an interpreter for it,
then tie it into your application.

In such cases, Python may be just the language for you. Python is simple to use, but it is a real programming
language, offering much more structure and support for large programs than the shell has. On the other hand, it
also offers much more error checking than C, and, beiagrg-high-level languagét has high-level data types

built in, such as flexible arrays and dictionaries that would cost you days to implement efficiently in C. Because
of its more general data types Python is applicable to a much larger problem doma#wtkanevenPerl, yet

many things are at least as easy in Python as in those languages.

Python allows you to split up your program in modules that can be reused in other Python programs. It comes
with a large collection of standard modules that you can use as the basis of your programs — or as examples to
start learning to program in Python. There are also built-in modules that provide things like file /0, system calls,
sockets, and even interfaces to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment
with features of the language, to write throw-away programs, or to test functions during bottom-up program
development. It is also a handy desk calculator.

Python allows writing very compact and readable programs. Programs written in Python are typically much
shorter than equivalent C ort@ programs, for several reasons:

¢ the high-level data types allow you to express complex operations in a single statement;
e statement grouping is done by indentation instead of beginning and ending brackets;

e no variable or argument declarations are necessary.

Python isextensible if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that
may only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you
can link the Python interpreter into an application written in C and use it as an extension or command language
for that application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do with
nasty reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the best way to
learn a language is using it, you are invited here to do so.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples, beginning
with simple expressions, statements and data types, through functions and modules, and finally touching upon

advanced concepts like exceptions and user-defined classes.

Chapter 1. Whetting Your Appetite

CHAPTER
TWO

Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed ast/local/bin/python’ on those machines where it is available; putting
‘lusr/local/bin’ in your UNIX shell’'s search path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other places
are possible; check with your local Python guru or system administrator. (Eigy/Jocal/python’ is a popular
alternative location.)

Typing an end-of-file characte€pntrol-D on UNix, Control-Z on Windows) at the primary prompt causes
the interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the
following commands:import sys; sys.exit() !

The interpreter’s line-editing features usually aren’t very sophisticated. X@xr Whoever installed the interpreter

may have enabled support for the GNU readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is supported is typing Control-P to the
first Python prompt you get. If it beeps, you have command line editing; see Appendix A for an introduction to
the keys. If nothing appears to happen, otHf is echoed, command line editing isn’t available; you'll only be

able to use backspace to remove characters from the current line.

The interpreter operates somewhat like theXJshell: when called with standard input connected to a tty device,
it reads and executes commands interactively; when called with a file name argument or with a file as standard
input, it reads and executeseriptfrom that file.

A second way of starting the interpreterjgython -c command[arg] ... ', which executes the statement(s)
in commanganalogous to the shell option. Since Python statements often contain spaces or other characters
that are special to the shell, it is best to quodenmandn its entirety with double quotes.

Note that there is a difference betweegthon file 'and ‘python <file . Inthe latter case, input requests

from the program, such as callsitput() andraw_input() , are satisfied frorfile. Since this file has already

been read until the end by the parser before the program starts executing, the program will encounter end-of-file
immediately. In the former case (which is usually what you want) they are satisfied from whatever file or device
is connected to standard input of the Python interpreter.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passirgbefore the script. (This does not work if the script is read from standard input, for
the same reason as explained in the previous paragraph.)

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are passed to the script in
the variablesys.argv , which is a list of strings. Its length is at least one; when no script and no arguments

are givensys.argv|[0] is an empty string. When the script name is giverras (meaning standard input),
sys.argv[0] issetto-’ . When-c commands usedsys.argv|[0] is setto-c’ . Options found afterc
commandare not consumed by the Python interpreter’s option processing but sfsiargv ~ for the command
to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to inéeiractive modeln this mode it prompts for
the next command with thprimary prompt usually three greater-than signs¥> °); for continuation lines it
prompts with thesecondary promptby default three dots (.). The interpreter prints a welcome message
stating its version number and a copyright notice before printing the first prompt:

python
Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sunos5

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a looi atstiaite-
ment:

>>> the_world_is_flat = 1
>>> if the_world_is_flat:
print "Be careful not to fall off!"

Be careful not to fall off!

2.2 The Interpreter and Its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns
to the primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack
trace. (Exceptions handled by ercept clause in @ry statement are not errors in this context.) Some errors

are unconditionally fatal and cause an exit with a nonzero exit; this applies to internal inconsistencies and some
cases of running out of memory. All error messages are written to the standard error stream; normal output from
the executed commands is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels the
input and returns to the primary promipt. Typing an interrupt while a command is executing raises the
Keyboardinterrupt exception, which may be handled byrg statement.

2.2.2 Executable Python Scripts

On BSD’ish WNIx systems, Python scripts can be made directly executable, like shell scripts, by putting the line

#! Jusr/bin/env python

(assuming that the interpreter is on the user’'s PATH) at the beginning of the script and giving the file an executable
mode. The#!’ must be the first two characters of the file. On some platforms, this first line must end with a

1A problem with the GNU Readline package may prevent this.

4 Chapter 2. Using the Python Interpreter

UNix-style line ending (n ’), not a Mac OS (ir ') or Windows (\n\n) line ending. Note that the hash, or
pound, character#’, is used to start a comment in Python.

The script can be given a executable mode, or permission, usimgthed command:

$ chmod +x myscript.py

2.2.3 Source Code Encoding

It is possible to use encodings different thescii in Python source files. The best way to do it is to put one more
special comment line right after tié line to define the source file encoding:

-*- coding: is0-8859-1 -*-

With that declaration, all characters in the source file will be treategdca8859-1 , and it will be possible to
directly write Unicode string literals in the selected encoding. The list of possible encodings can be found in the
Python Library Referengén the section orcodecs .

If your editor supports saving files &sTF-8 with an UTF-8 signature (aka BOM — Byte Order Mark), you can
use that instead of an encoding declaration. IDLE supports this capabiltgtibns/General/Default

Source Encoding/UTF-8 is set. Notice that this signature is not understood in older Python releases (2.2
and earlier), and also not understood by the operating systetth féiltes.

By using UTF-8 (either through the signature or an encoding declaration), characters of most languages in the
world can be used simultaneously in string literals and comments. Using non-ASCIl characters in identifiers is

not supported. To display all these characters properly, your editor must recognize that the file is UTF-8, and it

must use a font that supports all the characters in the file.

2.2.4 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed every time
the interpreter is started. You can do this by setting an environment variable named PYTHONSTARTUP to the
name of a file containing your start-up commands. This is similar to.phefile’ feature of the Wix shells.

This file is only read in interactive sessions, not when Python reads commands from a script, and not when
‘Idevitty’ is given as the explicit source of commands (which otherwise behaves like an interactive session). It

is executed in the same namespace where interactive commands are executed, so that objects that it defines or
imports can be used without qualification in the interactive session. You can also change the pysnpsts

andsys.ps2 in this file.

If you want to read an additional start-up file from the current directory, you can program this in the global start-up
file using code like if os.path.isfile(’.pythonrc.py’): execfile(’.pythonrc.py’)
If you want to use the startup file in a script, you must do this explicitly in the script:

import 0s

filename = os.environ.get(PYTHONSTARTUP’)

if filename and os.path.isfile(filename):
execfile(filename)

2.2. The Interpreter and Its Environment 5

CHAPTER
THREE

An Informal Introduction to Python

In the following examples, input and output are distinguished by the presence or absence of premptsghd

‘... "): to repeat the example, you must type everything after the prompt, when the prompt appears; lines that
do not begin with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an
example means you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments
in Python start with the hash charactéft’, ‘and extend to the end of the physical line. A comment may appear at

the start of a line or following whitespace or code, but not within a string literal. A hash character within a string
literal is just a hash character.

Some examples:

this is the first comment

SPAM = 1 # and this is the second comment
... and now a third!

STRING = "# This is not a comment."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt,’. (It
shouldn’t take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operaters- ,* and/ work just like in most other languages (for example, Pascal
or C); parentheses can be used for grouping. For example:

>>> 242

4

>>> # This is a comment

. 242

4

>>> 2+2 # and a comment on the same line as code
4

>>> (50-5*6)/4

5

>>> # Integer division returns the floor:
.. 713

2

>>> 7/-3

-3

Like in C, the equal sign €’) is used to assign a value to a variable. The value of an assignment is not written:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>>
>>>

X=y=2z=0 # Zero x, y and z
X

>>>y

>>> 7

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 3 * 375/ 15
7.5

>>> 7.0/ 2

3.5

Complex numbers are also supported; imaginary numbers are written with a suffixoof 3’. Complex numbers
with a nonzero real component are written &seal+imag) ', or can be created with theeomplex(real,
imag ' function.

>>> 1j * 1

(-1+0j)

>>> 1j * complex(0,1)
(-1+0j)

>>> 3+1j*3

(3+3))

>>> (3+1))*3

(9+3))

>>> (1+2))/(1+1))
(1.5+0.5))

8 Chapter 3. An Informal Introduction to Python

Complex numbers are always represented as two floating point numbers, the real and imaginary part. To extract
these parts from a complex numlzeusezreal andzimag .

>>> a=1.5+0.5j
>>> a.real

15

>>> a.imag
0.5

The conversion functions to floating point and intedgiyat() ,int() andlong()) don’t work for complex
numbers — there is no one correct way to convert a complex number to a real numbetbd(sg to get its
magnitude (as a float) @rreal to getits real part.

>>> g=3.0+4.0j
>>> float(a)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: can’t convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0
>>>

In interactive mode, the last printed expression is assigned to the varialblds means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price + _
113.0625

>>> round(_, 2)
113.06

>>>

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create
an independent local variable with the same name masking the built-in variable with its magic behavior.

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be
enclosed in single quotes or double quotes:

3.1. Using Python as a Calculator 9

>>> 'spam eggs’
'spam eggs’

>>> 'doesn\'t’
"doesn'’t"

>>> "doesn't"
"doesn’t"

>>> "Yes," he said.’
"Yes," he said.’

>>> "\"Yes,\" he said."
"Yes," he said.

>>> "|sn\'t," she said.’
™Isn\'t," she said.’

String literals can span multiple lines in several ways. Continuation lines can be used, with a backslash as the last
character on the line indicating that the next line is a logical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant.”

print hello

Note that newlines would still need to be embedded in the string ueinghe newline following the trailing
backslash is discarded. This example would print the following:

This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is significant.

If we make the string literal a “raw” string, however, the sequences are not converted to newlines, but the
backslash at the end of the line, and the newline character in the source, are both included in the string as data.
Thus, the example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print hello

would print:

This is a rather long string containing\n\
several lines of text much as you would do in C.

Or, strings can be surrounded in a pair of matching triple-qudtés: or . End of lines do not need to be

escaped when using triple-quotes, but they will be included in the string.

print ™"

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

produces the following output:

10 Chapter 3. An Informal Introduction to Python

Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

The interpreter prints the result of string operations in the same way as they are typed for input: inside quotes, and
with quotes and other funny characters escaped by backslashes, to show the precise value. The string is enclosed
in double quotes if the string contains a single quote and no double quotes, else it's enclosed in single quotes. (The
print statement, described later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with-tbperator, and repeated with

>>> word = 'Help’ + 'A’

>>> word

'HelpA’

>>> <+ word*5 + >’
'<HelpAHelpAHelpAHelpAHelpA>’

Two string literals next to each other are automatically concatenated; the first line above could also have been
written ‘word = 'Help’ 'A’ " this only works with two literals, not with arbitrary string expressions:

>>> import string

>>> 'str’ 'ing’ # <- This is ok
'string’

>>> string.strip(str’) + 'ing’ # <- This is ok
'string’

>>> string.strip(’str’) 'ing’ # <- This is invalid

File "<stdin>", line 1, in ?
string.strip('str’) 'ing’

SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has subscript (index) 0. There is no

separate character type; a character is simply a string of size one. Like in Icon, substrings can be specified with
theslice notation two indices separated by a colon.

>>> word[4]
A

>>> word[0:2]
He'

>>> word[2:4]
llpy

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the
size of the string being sliced.

>>> word[:2] # The first two characters

He'

>>> word[2:] # All but the first two characters
llpA!

Unlike a C string, Python strings cannot be changed. Assigning to an indexed position in the string results in an
error:

3.1. Using Python as a Calculator 11

>>> word[0] = X
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn’t support item assignment
>>> word[:1] = ’'Splat’
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn’t support slice assignment

However, creating a new string with the combined content is easy and efficient:

>>> X’ + word[1:]

xelpA’

>>> 'Splat’ + word[4]

'SplatA’

Here’s a useful invariant of slice operatiorszi] + si:] equalss.

>>> word[:2] + word[2:]

'HelpA’

>>> word[:3] + word[3:]

'HelpA’

Degenerate slice indices are handled gracefully: an index that is too large is replaced by the string size, an upper
bound smaller than the lower bound returns an empty string.

>>> word[1:100]
‘elpA’
>>> word[10:]

”

>>> word[2:1]

Indices may be negative numbers, to start counting from the right. For example:

>>> word[-1] # The last character

A

>>> word[-2] # The last-but-one character

o

>>> word[-2:] # The last two characters

‘DA’

>>> word[:-2] # All but the last two characters
Hel

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[-0] # (since -0 equals 0)
H

Out-of-range negative slice indices are truncated, but don't try this for single-element (non-slice) indices:

12 Chapter 3. An Informal Introduction to Python

>>> word[-100:]

'HelpA’

>>> word[-10] # error

Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: string index out of range

The best way to remember how slices work is to think of the indices as poiogitvgeercharacters, with the left
edge of the first character numbered 0. Then the right edge of the last character of a strictgpcdicters has
indexn, for example:

U S S S S
[Hlelllp|A]
TS S S S—

0O 1 2 3 4 5

5 4 3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the second row gives the corresponding
negative indices. The slice froimo j consists of all characters between the edges lalheladj, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For
example, the length ofiord[1:3] is 2.

The built-in functionlen() returns the length of a string:

>>> s = ’supercalifragilisticexpialidocious’
>>> len(s)
34

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the programmer: the Unicode object.
It can be used to store and manipulate Unicode datal(seé&www.unicode.org/) and integrates well with the
existing string objects providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every script used in modern and ancient
texts. Previously, there were only 256 possible ordinals for script characters and texts were typically bound to

a code page which mapped the ordinals to script characters. This lead to very much confusion especially with
respect to internationalization (usually written &8h ' — ‘i’ + 18 characters +n’) of software. Unicode

solves these problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u'Hello World !
u'Hello World "

The small U’ in front of the quote indicates that an Unicode string is supposed to be created. If you want
to include special characters in the string, you can do so by using the Pythioade-Escapencoding. The
following example shows how:

>>> u’'Hello\u0020World "
u'Hello World "

The escape sequene®020 indicates to insert the Unicode character with the ordinal value 0x0020 (the space

3.1. Using Python as a Calculator 13

character) at the given position.

Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If you have
literal strings in the standard Latin-1 encoding that is used in many Western countries, you will find it convenient
that the lower 256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You have to prefix the opening quote
with 'ur’ to have Python use thRaw-Unicode-Escapencoding. It will only apply the abovweiXXXX conversion
if there is an uneven number of backslashes in front of the small 'u’.

>>> ur'Hello\u0020World
u'Hello World "

>>> ur'Hello\u0020World !’
u’Hello\\Wu0020World "

The raw mode is most useful when you have to enter lots of backslashes, as can be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways of creating Unicode strings on
the basis of a known encoding.

The built-in functionunicode() provides access to all registered Unicode codecs (COders and DECoders).
Some of the more well known encodings which these codecs can convedtard, ASCIL UTF-8, andUTF-16.

The latter two are variable-length encodings that store each Unicode character in one or more bytes. The default
encoding is normally set to ASCII, which passes through characters in the range 0 to 127 and rejects any other
characters with an error. When a Unicode string is printed, written to a file, or convertestigjth , conversion

takes place using this default encoding.

>>> u"abc"
u'abc’
>>> str(u"abc")
"abc’
>>> u"aol”
u\xed\xf6\xfc’
>>> str(u"adu")
Traceback (most recent call last):
File "<stdin>", line 1, in ?
UnicodeEncodeError: 'ascii’ codec can't encode characters in position 0-2: ordinal not in range(128)

To convert a Unicode string into an 8-bit string using a specific encoding, Unicode objects proeideoale()
method that takes one argument, the name of the encoding. Lowercase names for encodings are preferred.

>>> y"aou".encode('utf-8’)
"\xc3\xa4\xc3\xb6\xc3\xbc’

If you have data in a specific encoding and want to produce a corresponding Unicode string from it, you can use
theunicode() function with the encoding name as the second argument.

>>> unicode("\xc3\xa4\xc3\xh6\xc3\xbc’, 'utf-8’)
u'\xe4\xf6\xfc’

3.1.4 Lists

Python knows a number @ompoundiata types, used to group together other values. The most versatile is the
list, which can be written as a list of comma-separated values (items) between square brackets. List items need
not all have the same type.

14 Chapter 3. An Informal Introduction to Python

>>> a = ['spam’, 'eggs’, 100, 1234]
>>> a
['spam’, 'eggs’, 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

>>> g[0]

'spam’

>>> a[3]

1234

>>> g[-2]

100

>>> a[l:-1]

[eggs’, 100]

>>> g[:2] + [bacon’, 2*2]
['spam’, 'eggs’, 'bacon’, 4]
>>> 3*g[:3] + ['Boe!’]
['spam’, 'eggs’, 100, 'spam’, 'eggs’, 100, 'spam’, 'eggs’, 100, 'Boe!]

Unlike strings, which arénmutable it is possible to change individual elements of a list:

>>> a

[spam’, 'eggs’, 100, 1234]
>>> g[2] = a[2] + 23
>>> a

[spam’, 'eggs’, 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list:

>>> # Replace some items:
. af0:2] = [1, 12

>>> a

[1, 12, 123, 1234]

>>> # Remove some:
.al0:2] =]

>>> a

[123, 1234]

>>> # Insert some:

. a[l:1] = [bletch’, 'xyzzy’]

>>> a

[123, ’bletch’, 'xyzzy', 1234]

>>> g[:0] = a # Insert (a copy of) itself at the beginning
>>> a

[123, ’bletch’, 'xyzzy', 1234, 123, ’'bletch’, 'xyzzy’, 1234]

The built-in functionlen() also applies to lists:

>>> len(a)
8

It is possible to nest lists (create lists containing other lists), for example:

3.1. Using Python as a Calculator

15

>>> q = [2, 3]
>>>p = [1, q, 4]

>>> len(p)

3

>>> p1]

[2, 3]

>>> p[1][0]

2

>>> p[l].append(’xtra’) # See section 5.1
>>> P

[1, [2, 3, 'xtra’], 4]

>>> q

[2, 3, 'xtra’]

Note that in the last example[1] andq really refer to the same object! We'll come backdiject semantics

later.

3.2

First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of tiéonacciseries as follows:

>>> # Fibonacci series:
... # the sum of two elements defines the next

.a, b=01
>>> while b < 10:
print b
a, b = b, atb

00U WN P P

This example introduces several new features.

The first line contains anultiple assignmentthe variablesa andb simultaneously get the new values 0

and 1. On the last line this is used again, demonstrating that the expressions on the right-hand side are all
evaluated first before any of the assignments take place. The right-hand side expressions are evaluated from
the left to the right.

Thewhile loop executes as long as the condition (hére< 10) remains true. In Python, like in C, any
non-zero integer value is true; zero is false. The condition may also be a string or list value, in fact any
sequence; anything with a non-zero length is true, empty sequences are false. The test used in the example
is a simple comparison. The standard comparison operators are written the same ales€than)>

(greater than)== (equal to),<= (less than or equal to¥= (greater than or equal to) afrd (not equal to).

Thebodyof the loop isndented indentation is Python’s way of grouping statements. Python does not (yet!)
provide an intelligent input line editing facility, so you have to type a tab or space(s) for each indented line.
In practice you will prepare more complicated input for Python with a text editor; most text editors have an
auto-indent facility. When a compound statement is entered interactively, it must be followed by a blank
line to indicate completion (since the parser cannot guess when you have typed the last line). Note that each
line within a basic block must be indented by the same amount.

16

Chapter 3. An Informal Introduction to Python

e The print statement writes the value of the expression(s) it is given. It differs from just writing the
expression you want to write (as we did earlier in the calculator examples) in the way it handles multiple

expressions and strings. Strings are printed without quotes, and a space is inserted between items, so you
can format things nicely, like this:

>>> | = 256*256
>>> print 'The value of i is’, i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>a, b=01

>>> while b < 1000:
print b,
a, b = b, atb

11235813 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not completed.

3.2. First Steps Towards Programming 17

18

CHAPTER
FOUR

More Control Flow Tools

Besides thavhile statement just introduced, Python knows the usual control flow statements known from other
languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type igfthestatement. For example:

>>> x = int(raw_input("Please enter an integer: "))
>>> if x < 0:

x =0
print 'Negative changed to zero’
. elif x == 0:
print 'Zero’
.elif x == 1:
print 'Single
. else:

print 'More’

There can be zero or mosdif parts, and thelse part is optional. The keyworcelif ' is short for ‘else
if’, and is useful to avoid excessive indentation. #&n ... elif ... elif ... sequence is a substitute for the
switch orcase statements found in other languages.

4.2 for Statements

Thefor statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always
iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both
the iteration step and halting condition (as C), Pythdors statement iterates over the items of any sequence (a
list or a string), in the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
. a = [cat’, 'window’, 'defenestrate’]
>>> for x in a:
print X, len(x)
cat 3
window 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence

19

types, such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items)
you must iterate over a copy. The slice notation makes this particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list
if len(x) > 6: a.insert(0, Xx)

>>> a
[defenestrate’,

) ’

cat’, 'window’, 'defenestrate’]

4.3 Therange() Function

If you do need to iterate over a sequence of numbers, the built-in funetigye() comes in handy. It generates
lists containing arithmetic progressions:

>>> range(10)
0, 1,2 3 45,67 8 9

The given end point is never part of the generatedr@sige(10) generates a list of 10 values, exactly the legal
indices for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a
different increment (even negative; sometimes this is called the ‘step’):

>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, combimge() andlen() as follows:

>>> a = ['Mary’, 'had’, 'a’, ’little’, 'lamb’]
>>> for i in range(len(a)):
print i, ali]

0 Mary
1 had

2 a

3 little

4 lamb

4.4 Dbreak and continue Statements, and else Clauses on Loops

Thebreak statement, like in C, breaks out of the smallest enclo&ing or while loop.
Thecontinue statement, also borrowed from C, continues with the next iteration of the loop.

Loop statements may have alse clause; it is executed when the loop terminates through exhaustion of the list
(with for) or when the condition becomes false (withile), but not when the loop is terminated bypeeak
statement. This is exemplified by the following loop, which searches for prime numbers:

20 Chapter 4. More Control Flow Tools

>>> for n in range(2, 10):
for x in range(2, n):
if n % x ==
print n, 'equals’, X, ™, n/x
break
else:
loop fell through without finding a factor
print n, ’is a prime number’

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program
requires no action. For example:

>>> while True:
pass # Busy-wait for keyboard interrupt

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
""Print a Fibonacci series up to n."™
a b=01
while b < n:
print b,
a, b = b, atb

>>> # Now call the function we just defined:
... fib(2000)
11235813 21 34 55 89 144 233 377 610 987 1597

The keyworddef introduces a functiodefinition It must be followed by the function name and the parenthesized

list of formal parameters. The statements that form the body of the function start at the next line, and must be
indented. The first statement of the function body can optionally be a string literal; this string literal is the
function’s documentation string, diocstring

There are tools which use docstrings to automatically produce online or printed documentation, or to let the user
interactively browse through code; it's good practice to include docstrings in code that you write, so try to make a
habit of it.

The executiorof a function introduces a new symbol table used for the local variables of the function. More pre-
cisely, all variable assignments in a function store the value in the local symbol table; whereas variable references

4.5. pass Statements 21

first look in the local symbol table, then in the global symbol table, and then in the table of built-in names. Thus,
global variables cannot be directly assigned a value within a function (unless namegoinah statement),
although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed usitigoy value(where thevalueis always an objeateference

not the value of the object) When a function calls another function, a new local symbol table is created for that
call.

A function definition introduces the function name in the current symbol table. The value of the function name
has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another
name which can then also be used as a function. This serves as a general renaming mechanism:

>>> fib

<function object at 10042ed0>
>>> f = fib

>>> f(100)
11235813 21 34 55 89

You might object thafib is not a function but a procedure. In Python, like in C, procedures are just functions
that don’t return a value. In fact, technically speaking, procedures do return a value, albeit a rather boring one.
This value is calledNone (it's a built-in name). Writing the valublone is normally suppressed by the interpreter

if it would be the only value written. You can see it if you really want to:

>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
""" Return a list containing the Fibonacci series up to n.
result =]
a, b=01
while b < n:
result.append(b) # see below
a, b = b, atb
return result

>>> f100 = fib2(100) # call it
>>> 100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

e Thereturn statement returns with a value from a functiomturn without an expression argument
returnsNone. Falling off the end of a procedure also retui@ne.

e The statementesult.append(b) calls amethodof the list objectresult . A method is a function
that ‘belongs’ to an object and is nameldj.methodname , whereobj is some object (this may be an
expression), anthethodname is the name of a method that is defined by the object’s type. Different types
define different methods. Methods of different types may have the same name without causing ambiguity.
(Itis possible to define your own object types and methods, wdasgesas discussed later in this tutorial.)
The methodappend() shown in the example, is defined for list objects; it adds a new element at the end
of the list. In this example it is equivalent tee'sult = result + [b] ', but more efficient.

1Actually, call by object referencevould be a better description, since if a mutable object is passed, the caller will see any changes the
callee makes to it (items inserted into a list).

22 Chapter 4. More Control Flow Tools

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be
called with fewer arguments than it is defined

def ask_ok(prompt, retries=4, complaint="Yes or no, please!):
while True:
ok = raw_input(prompt)
if ok in (y, 'ye', 'yes’): return 1
if ok in ('n’, 'no’, 'nop’, 'nope’): return O
retries = retries - 1
if retries < 0: raise |OError, 'refusenik user’
print complaint

This function can be called either like thiask_ok('Do you really want to quit?’) or like this:
ask_ok('OK to overwrite the file?’, 2)

The default values are evaluated at the point of function definition idéfieaingscope, so that
i =5

def f(arg=i):
print arg

i =6
f0

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is
a mutable object such as a list, dictionary, or instances of most classes. For example, the following function
accumulates the arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print f(1)
print f(2)
print f(3)

This will print
(1]

(1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

4.7. More on Defining Functions 23

def f(a, L=None):
if L is None:
L=1
L.append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the faym/ord = valu€. For instance, the following
function:

def parrot(voltage, state="a stiff, action="voom’, type='Norwegian Blue’):
print "-- This parrot wouldn't", action,
print "if you put", voltage, "Volts through it."
print "-- Lovely plumage, the", type
print "-- It's", state, "I"

could be called in any of the following ways:

parrot(1000)

parrot(action = 'VOOOOOM’, voltage = 1000000)
parrot(a thousand’, state = ’pushing up the daisies’)
parrot('a million’, 'bereft of life’, 'jump’)

but the following calls would all be invalid:

parrot() # required argument missing
parrot(voltage=5.0, 'dead’) # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument

parrot(actor="John Cleese’) # unknown keyword

In general, an argument list must have any positional arguments followed by any keyword arguments, where the
keywords must be chosen from the formal parameter names. It's not important whether a formal parameter has a
default value or not. No argument may receive a value more than once — formal parameter names corresponding
to positional arguments cannot be used as keywords in the same calls. Here’s an example that fails due to this
restriction:

>>> def function(a):
pass

>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument ’'a’

When a final formal parameter of the foffh nameis present, it receives a dictionary containing all keyword argu-
ments whose keyword doesn’t correspond to a formal parameter. This may be combined with a formal parameter
of the form* name(described in the next subsection) which receives a tuple containing the positional arguments
beyond the formal parameter list. famemust occur befor&* name) For example, if we define a function like

this:

24 Chapter 4. More Control Flow Tools

def cheeseshop(kind, *arguments, **keywords):
print "-- Do you have any", kind, '?’

print "-- I'm sorry, we're all out of", kind
for arg in arguments: print arg
print ’-*40

keys = keywords.keys()
keys.sort()
for kw in keys: print kw, "’, keywords[kw]

It could be called like this:

cheeseshop(’Limburger’, "It's very runny, sir.",
"It's really very, VERY runny, sir.",
client="John Cleese’,
shopkeeper='"Michael Palin’,
sketch="Cheese Shop Sketch’)

and of course it would print:

-- Do you have any Limburger ?

- I'm sorry, we're all out of Limburger
I's very runny, sir.

It's really very, VERY runny, sir.

client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that thesort() method of the list of keyword argument names is called before printing the contents of the
keywords dictionary; if this is not done, the order in which the arguments are printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of
arguments. These arguments will be wrapped up in a tuple. Before the variable number of arguments, zero or
more normal arguments may occur.

def fprintf(file, format, *args):
file.write(format % args)

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the budtige() function expects separaséart
andstoparguments. If they are not available separately, write the function call with-thygerator to unpack the
arguments out of a list or tuple:

>>> range(3, 6) # normal call with separate arguments

[3, 4, 5]

>>> args = [3, 6]

>>> range(*args) # call with arguments unpacked from a list
[3, 4, 5]

4.7. More on Defining Functions 25

475 Lambda Forms

By popular demand, a few features commonly found in functional programming languages and Lisp have been
added to Python. With thembda keyword, small anonymous functions can be created. Here’s a function that
returns the sum of its two argumenttarhbda a, b: a+b '. Lambda forms can be used wherever function
objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic
sugar for a normal function definition. Like nested function definitions, lambda forms can reference variables
from the containing scope:

>>> def make_incrementor(n):
return lambda x: x + n

>>> f = make_incrementor(42)
>>> f(0)

42

>>> f(1)

43

4.7.6 Documentation Strings

There are emerging conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not
explicitly state the object’s name or type, since these are available by other means (except if the name happens to
be a verb describing a function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the sum-
mary from the rest of the description. The following lines should be one or more paragraphs describing the object’s
calling conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process docu-
mentation have to strip indentation if desired. This is done using the following convention. The first non-blank
line after the first line of the string determines the amount of indentation for the entire documentation string. (We
can’t use the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent
in the string literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of
the string. Lines that are indented less should not occur, but if they occur all their leading whitespace should be
stripped. Equivalence of whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
"""Do nothing, but document it.

No, really, it doesn't do anything.

pass

>>> print my_function.__doc__
Do nothing, but document it.

No, really, it doesn’'t do anything.

26 Chapter 4. More Control Flow Tools

CHAPTER
FIVE

Data Structures

This chapter describes some things you've learned about already in more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

append (X)
Add an item to the end of the list; equivalentapen(a):;] = [X .

extend (L)
Extend the list by appending all the items in the given list; equivaleaflem(a):;] = L.

insert (i, X)
Insert an item at a given position. The first argument is the index of the element before which to in-
sert, saa.insert(0, X) inserts at the front of the list, aradinsert(len(a), X) is equivalent to
a.append(Xx).

remove (X)
Remove the first item from the list whose valueidt is an error if there is no such item.

pop([i])

Remove the item at the given position in the list, and return it. If no index is spedfjeolp() returns the

last item in the list. The item is also removed from the list. (The square brackets arourid the method
signature denote that the parameter is optional, not that you should type square brackets at that position.
You will see this notation frequently in tHeython Library Referenck

index (X)
Return the index in the list of the first item whose valug.i# is an error if there is no such item.

count (x)
Return the number of timesappears in the list.

sort ()
Sort the items of the list, in place.

reverse ()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

27

>>> a = [66.6, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.6), a.count(’x’)
210

>>> a.insert(2, -1)

>>> a.append(333)

>>> a

[66.6, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)

1

>>> a.remove(333)

>>> a

[66.6, -1, 333, 1, 1234.5, 333]

>>> a.reverse()

>>> a

[333, 1234.5, 1, 333, -1, 66.6]

>>> a.sort()

>>> a

[-1, 1, 66.6, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, append() . To retrieve an item from the top of
the stack, uspop() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack

[3, 4, 5, 6, 7]

>>> stack.pop()

7

>>> stack

[3, 4, 5, 6]

>>> stack.pop()

6

>>> stack.pop()

5
>>> stack
(3, 4]

5.1.2 Using Lists as Queues

You can also use a list conveniently as a queue, where the first element added is the first element retrieved (“first-
in, first-out”). To add an item to the back of the queue, agpend() . To retrieve an item from the front of the
queue, uspop() with O as the index. For example:

28 Chapter 5. Data Structures

>>> queue = ['Eric", "John", "Michael"]

>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.pop(0)

'Eric’

>>> queue.pop(0)

'John’

>>> queue

[Michael’, 'Terry’, 'Graham’]

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used withfiilsés() , map() , andreduce()

“filter(function sequencg’ returns a sequence (of the same type, if possible) consisting of those items from
the sequence for whidlunction(item) is true. For example, to compute some primes:

>>> def f(x): return x % 2 '= 0 and x % 3 =0

>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

‘map(function sequenck’ calls functior(item) for each of the sequence’s items and returns a list of the return
values. For example, to compute some cubes:

>>> def cube(x): return Xx*x*x

>>> map(cube, range(l, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are sequences
and is called with the corresponding item from each sequendégoe if some sequence is shorter than another).
If None is passed for the function, a function returning its argument(s) is substituted.

Combining these two special cases, we see timap{None, listl, list2)’is a convenient way of turning a
pair of lists into a list of pairs. For example:

>>> seq = range(8)
>>> def square(x): return x*x

>>> map(None, seq, map(square, seq))

[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49)]

‘reduce(funcg sequencg’ returns a single value constructed by calling the binary functiorc on the first
two items of the sequence, then on the result and the next item, and so on. For example, to compute the sum of
the numbers 1 through 10:

>>> def add(x,y): return x+y

>>> reduce(add, range(1, 11))
55

If there’s only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

5.1. More on Lists 29

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an
empty sequence, and the function is first applied to the starting value and the first sequence item, then to the result
and the next item, and so on. For example,

>>> def sum(seq):
def add(x,y): return x+y
return reduce(add, seq, 0)

>>> sum(range(1, 11))
55

>>> sum([])

0

Don't use this example’s definition siim() : since summing numbers is such a common need, a built-in function
sum(sequencg is already provided, and works exactly like this. New in version 2.3.

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists without resorting to osgf , filter() and/or
lambda . The resulting list definition tends often to be clearer than lists built using those constructs. Each list
comprehension consists of an expression followed fiyr a clause, then zero or mofer orif clauses. The
result will be a list resulting from evaluating the expression in the context dbtheandif clauses which follow

it. If the expression would evaluate to a tuple, it must be parenthesized.

>>> freshfruit = [banana’, loganberry ’, 'passion fruit]
>>> [weapon.strip() for weapon in freshfruit]
[banana’, 'loganberry’, 'passion fruit’]
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
I
>>> [[x,x**2] for x in vec]
[[2. 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - parens required for tuples
File "<stdin>", line 1, in ?
[x, x**2 for x in vec]
AN

SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
(2, 4), (4, 16), (6, 36)]
>>> vecl = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vecl for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vecl for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vecl[i]*vec2[i] for i in range(len(vecl))]
[8, 12, -54]

List comprehensions are much more flexible tma@p() and can be applied to functions with more than one
argument and to nested functions:

30 Chapter 5. Data Structures

>>> [str(round(355/113.0, i)) for i in range(1,6)]
[3.1', '3.14’, '3.142’, '3.1416’, '3.14159’]

To make list comprehensions match the behavidioof loops, assignments to the loop variable remain visible
outside of the comprehension:

>>> x = 100 # this gets overwritten

>>> [x**3 for x in range(5)]

[0, 1, 8, 27, 64]

>>> X # the final value for range(5)
4

5.2 The del statement

There is a way to remove an item from a list given its index instead of its valuedehestatement. This can
also be used to remove slices from a list (which we did earlier by assignment of an empty list to the slice). For
example:

>>> a = [-1, 1, 66.6, 333, 333, 1234.5]
>>> del a[0]

>>> a

[1, 66.6, 333, 333, 1234.5]

>>> del a[2:4]

>>> g

[1, 66.6, 1234.5]

del can also be used to delete entire variables:

>>> del a

Referencing the name hereafter is an error (at least until another value is assigned to it). We'll find other uses
for del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are
two examples ofequencelata types. Since Python is an evolving language, other sequence data types may be
added. There is also another standard sequence data typeplte

A tuple consists of a number of values separated by commas, for instance:

5.2. The del statement 31

>>> t = 12345, 54321, ’helloV

>>> {[0]

12345

>>>

(12345, 54321, ’'hello!)

>>> # Tuples may be nested:
.u=1t (1, 2 3, 4,5)

>>> U

((12345, 54321, ’hello?), (1, 2, 3, 4, 5))

As you see, on output tuples are alway enclosed in parentheses, so that nested tuples are interpreted correctly; they
may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if the
tuple is part of a larger expression).

Tuples have many uses. For example: (x, y) coordinate pairs, employee records from a database, etc. Tuples, like
strings, are immutable: it is not possible to assign to the individual items of a tuple (you can simulate much of
the same effect with slicing and concatenation, though). It is also possible to create tuples which contain mutable
objects, such as lists.

A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks to
accommodate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is
constructed by following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly,
but effective. For example:

>>> empty = ()

>>> singleton = ’hello’, # <-- note trailing comma
>>> |en(empty)

0

>>> |en(singleton)

1

>>> singleton

('hello’,)

The statemertt = 12345, 54321, ’hello” is an example ofuple packingthe valuesl2345 , 54321
and’hello!’ are packed together in a tuple. The reverse operation is also possible:

>>> X, y, Z =t

This is called, appropriately enougdgquence unpackingequence unpacking requires that the list of variables
on the left have the same number of elements as the length of the sequence. Note that multiple assignment is really
just a combination of tuple packing and sequence unpacking!

There is a small bit of asymmetry here: packing multiple values always creates a tuple, and unpacking works for
any sequence.

5.4 Dictionaries

Another useful data type built into Python is ttlietionary. Dictionaries are sometimes found in other languages

as “associative memories” or “associative arrays”. Unlike sequences, which are indexed by a range of numbers,
dictionaries are indexed bieys which can be any immutable type; strings and numbers can always be keys.
Tuples can be used as keys if they contain only strings, numbers, or tuples; if a tuple contains any mutable object
either directly or indirectly, it cannot be used as a key. You can't use lists as keys, since lists can be modified in
place using theiappend() andextend() methods, as well as slice and indexed assignments.

It is best to think of a dictionary as an unordered sekef: valuepairs, with the requirement that the keys are
unique (within one dictionary). A pair of braces creates an empty dictiofaryPlacing a comma-separated list

32 Chapter 5. Data Structures

of key:value pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries
are written on output.

The main operations on a dictionary are storing a value with some key and extracting the value given the key. It
is also possible to delete a key:value pair witd . If you store using a key that is already in use, the old value
associated with that key is forgotten. It is an error to extract a value using a non-existent key.

Thekeys() method of a dictionary object returns a list of all the keys used in the dictionary, in random order
(if you want it sorted, just apply theort() method to the list of keys). To check whether a single key is in the
dictionary, use thdas_key() method of the dictionary.

Here is a small example using a dictionary:

>>> tel = {jack’: 4098, ’'sape’ 4139}
>>> tel[’'quido’] = 4127

>>> tel

{'sape’: 4139, ’'guido’: 4127, ’jack’: 4098}
>>> tel['jack’]

4098

>>> del tel['sape’]

>>> tel['irv] = 4127

>>> tel

{'guido”: 4127, ’irv': 4127, ’jack’: 4098}
>>> tel.keys()

['guido’, 'irv’, 'jack’]

>>> tel.has_key('guido’)

True

Thedict() contructor builds dictionaries directly from lists of key-value pairs stored as tuples. When the pairs
form a pattern, list comprehensions can compactly specify the key-value list.

>>> dict([('sape’, 4139), ('guido’, 4127), (jack’, 4098)])

{'sape’: 4139, ’jack’: 4098, 'guido’: 4127}

>>> dict([(x, x**2) for x in vec]) # use a list comprehension
{2: 4, 4. 16, 6: 36}

5.5 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
items() method.

>>> knights = {'gallahad’: 'the pure’, 'robin’: 'the brave’}
>>> for k, v in knights.items():
print k, v

gallahad the pure

robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at the same time
using theenumerate() function.

5.5. Looping Techniques 33

1

>>> for i, v in enumerate(['tic’, 'tac’, 'toe’]):
print i, v

0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired wiii)thefunction.

>>> questions = ['name’, 'quest’, 'favorite color’]
>>> answers = [lancelot’, 'the holy grail’, 'blue’]
>>> for g, a in zip(questions, answers):
print 'What is your %s? It is %s.” % (g, a)

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

5.6 More on Conditions

The conditions used iwhile andif statements above can contain other operators besides comparisons.

The comparison operatons andnot in check whether a value occurs (does not occur) in a sequence. The
operatorgs andis not compare whether two objects are really the same object; this only matters for mutable
objects like lists. All comparison operators have the same priority, which is lower than that of all numerical
operators.

Comparisons can be chained. For examples b == c tests whethea is less tharb and moreoveb equals
C.

Comparisons may be combined by the Boolean operatatsandor , and the outcome of a comparison (or of any
other Boolean expression) may be negated wih. These all have lower priorities than comparison operators
again; between thempt has the highest priority, arat the lowest, sothad and not B or C isequivalent
to(A and (not B)) or C . Of course, parentheses can be used to express the desired composition.

The Boolean operatoend andor are so-callesghort-circuitoperators: their arguments are evaluated from left
to right, and evaluation stops as soon as the outcome is determined. For exafplal@ are true buB is false,

A and B and C does not evaluate the expressi@nin general, the return value of a short-circuit operator,
when used as a general value and not as a Boolean, is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> stringl, string2, string3 = ", 'Trondheim’, 'Hammer Dance’
>>> non_null = stringl or string2 or string3

>>> non_null

"Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble about
this, but it avoids a common class of problems encountered in C programs: tyjpingn expression when=
was intended.

5.7 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type. The compalés@rouses
graphical ordering: first the first two items are compared, and if they differ this determines the outcome of the

34 Chapter 5. Data Structures

comparison; if they are equal, the next two items are compared, and so on, until either sequence is exhausted. If
two items to be compared are themselves sequences of the same type, the lexicographical comparison is carried
out recursively. If all items of two sequences compare equal, the sequences are considered equal. If one sequence
is an initial sub-sequence of the other, the shorter sequence is the smaller (lesser) one. Lexicographical ordering
for strings uses thascii ordering for individual characters. Some examples of comparisons between sequences
with the same types:

1, 2, 3) < (1, 2, 4)

[1, 2, 3] < [1, 2, 4]
'ABC’ < 'C’ < 'Pascal' < 'Python’

@1, 2, 3, 4 < (1, 2, 4)

1, 2) < (1, 2 -1
@1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, (aa, 'ab)) < (1, 2, (abc, '@), 4)

Note that comparing objects of different types is legal. The outcome is deterministic but arbitrary: the types are
ordered by their name. Thus, a list is always smaller than a string, a string is always smaller than a tuple, etc.
Mixed numeric types are compared according to their numeric value, so 0 equals 6.0, etc.

1The rules for comparing objects of different types should not be relied upon; they may change in a future version of the language.

5.7. Comparing Sequences and Other Types 35

36

CHAPTER
SIX

Modules

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables)
are lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to
prepare the input for the interpreter and running it with that file as input instead. This is known as creating a
script. As your program gets longer, you may want to split it into several files for easier maintenance. You may
also want to use a handy function that you've written in several programs without copying its definition into each
program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance
of the interpreter. Such a file is calledreodule definitions from a module can bmportedinto other modules or

into themain module (the collection of variables that you have access to in a script executed at the top level and
in calculator mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix
“.py’ appended. Within a module, the module’s name (as a string) is available as the value of the global variable
__name__. For instance, use your favorite text editor to create a file cafileagy’ in the current directory with

the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b=01
while b < n:
print b,
a, b = b, atb

def fib2(n): # return Fibonacci series up to n
result =]
a, b=0 1
while b < n:
result.append(b)
a, b = b, atb
return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

This does not enter the names of the functions defindithén directly in the current symbol table; it only enters
the module namébo there. Using the module name you can access the functions:

37

>>> fibo.fib(1000)

1123581321 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo._ _name

fibo’

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)
112358 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to
initialize the module. They are executed only fiist time the module is imported somewhére.

Each module has its own private symbol table, which is used as the global symbol table by all functions defined
in the module. Thus, the author of a module can use global variables in the module without worrying about
accidental clashes with a user’s global variables. On the other hand, if you know what you are doing you can
touch a module’s global variables with the same notation used to refer to its functiodeame.itemname .

Modules can import other modules. It is customary but not required to pladmpdirt statements at the
beginning of a module (or script, for that matter). The imported module names are placed in the importing
module’s global symbol table.

There is a variant of thiemport statement that imports names from a module directly into the importing module’s
symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
112358 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the
examplefibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
112358 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscire (

6.1.1 The Module Search Path

When a module namespam is imported, the interpreter searches for a file nanspadrh.py’ in the current
directory, and then in the list of directories specified by the environment variable PYTHONPATH. This has the
same syntax as the shell variable PATH, that is, a list of directory names. When PYTHONPATH is not set, or

1In fact function definitions are also ‘statements’ that are ‘executed’; the execution enters the function name in the module’s global symbol
table.

38 Chapter 6. Modules

when the file is not found there, the search continues in an installation-dependent default pathxothld is
usually “:/usr/local/lib/python’.

Actually, modules are searched in the list of directories given by the vasgblpath which is initialized from

the directory containing the input script (or the current directory), PYTHONPATH and the installation-dependent
default. This allows Python programs that know what they’re doing to modify or replace the module search path.
Note that because the directory containing the script being run is on the search path, it is important that the script
not have the same name as a standard module, or Python will attempt to load the script as a module when that
module is imported. This will generally be an error. See section 6.2, “Standard Modules.” for more information.

6.1.2 *“Compiled” Python files

As an important speed-up of the start-up time for short programs that use a lot of standard modules, if a file called
‘spam.pyc’ exists in the directory wherespam.py’ is found, this is assumed to contain an already-“byte-compiled”
version of the modulspam. The modification time of the version ofgam.py’ used to createspam.pyc’ is
recorded inspam.pyc’, and the ‘pyc’ file is ignored if these don’t match.

Normally, you don't need to do anything to create thgaim.pyc’ file. Whenever $pam.py’ is successfully com-
piled, an attempt is made to write the compiled versiorspam.pyc’. It is not an error if this attempt fails; if for
any reason the file is not written completely, the resultiggam.pyc’ file will be recognized as invalid and thus
ignored later. The contents of thepam.pyc’ file are platform independent, so a Python module directory can be
shared by machines of different architectures.

Some tips for experts:

e When the Python interpreter is invoked with t#@ flag, optimized code is generated and storedpyo’
files. The optimizer currently doesn't help much; it only remosssert statements. WhetO is used,
all bytecode is optimizedpyc files are ignored angyy files are compiled to optimized bytecode.

e Passing twoeO flags to the Python interpretexdO) will cause the bytecode compiler to perform optimiza-
tions that could in some rare cases result in malfunctioning programs. Currently cthde strings
are removed from the bytecode, resulting in more comppgt’files. Since some programs may rely on
having these available, you should only use this option if you know what you're doing.

e A program doesn’t run any faster when it is read fronpgc’ or * .pyo’ file than when it is read from apy’
file; the only thing that'’s faster aboupyc’ or ‘.pyo’ files is the speed with which they are loaded.

e When a script is run by giving its name on the command line, the bytecode for the script is never written
to a “.pyc’ or ‘.pyo’ file. Thus, the startup time of a script may be reduced by moving most of its code to a
module and having a small bootstrap script that imports that module. It is also possible to npayaea *

‘.pyo’ file directly on the command line.

e It is possible to have a file calledgam.pyc’ (or ‘ spam.pyo’ when -O is used) without a filespam.py’ for
the same module. This can be used to distribute a library of Python code in a form that is moderately hard
to reverse engineer.

e The modulecompileall can create.pyc’ files (or ‘.pyo’ files when-O is used) for all modules in a
directory.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate docum@nththeLibrary Reference
(“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations
that are not part of the core of the language but are nevertheless built in, either for efficiency or to provide access
to operating system primitives such as system calls. The set of such modules is a configuration option which also
dependson the underlying platform For example ahmeba module is only provided on systems that somehow
support Amoeba primitives. One particular module deserves some attesysnwhich is built into every Python
interpreter. The variables/s.ps1 andsys.ps2 define the strings used as primary and secondary prompts:

6.2. Standard Modules 39

>>> import sys

>>> sys.psl

>>>

>>> Sys.ps2

>>> sys.psl = 'C>
C> print "Yuck!
Yuck!

Cc>

These two variables are only defined if the interpreter is in interactive mode.

The variablesys.path s a list of strings that determine the interpreter’s search path for modules. Itis initialized
to a default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH
is not set. You can modify it using standard list operations:

>>> import sys
>>> sys.path.append(’/ufs/guido/lib/python’)

6.3 Thedir() Function

The built-in functiondir() is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo, sys

>>> dir(fibo)

[__name__’, 'fib’, 'fib2]

>>> dir(sys)

[__displayhook__', ' doc__', ’'__excepthook_ ', ' name__', ' stderr_’
" stdin__’, '__stdout__’, '_getframe’, 'api_version’, ’'argv’,
‘builtin_module_names’, 'byteorder’, 'callstats’, 'copyright’,
‘displayhook’, ’exc_clear’, 'exc_info’, 'exc_type’, 'excepthook’,
‘exec_prefix’, 'executable’, ’exit’, 'getdefaultencoding’, 'getdlopenflags’,
‘getrecursionlimit’, 'getrefcount’, ’hexversion’, 'maxint’, 'maxunicode’,
'meta_path’, 'modules’, ’'path’, 'path_hooks’, 'path_importer_cache’,
‘platform’, ’prefix’, 'psl’, 'ps2’, 'setcheckinterval’, 'setdlopenflags’,
'setprofile’, 'setrecursionlimit’, ’'settrace’, 'stderr’, ’'stdin’, 'stdout’,
'version’, 'version_info’, 'warnoptions’]

Without argumentgir() lists the names you have defined currently:

>>>a = [1, 2, 3, 4, 5]

>>> import fibo, sys

>>> fib = fibo.fib

>>> dir()

[__name__’, 'a’, 'fib’, ’fibo’, 'sys’]

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you want a list of those, they are defined in
the standard module builtin__

40 Chapter 6. Modules

>>> import __ builtin__

>>> dir(__builtin_)

['ArithmeticError’, 'AssertionError’, 'AttributeError’,

'DeprecationWarning’, 'EOFError’, 'Ellipsis’, 'EnvironmentError’,
'Exception’, 'False’, 'FloatingPointError’, 'IOError’, 'ImportError’,
‘IndentationError’, 'IndexError’, 'KeyError’, 'Keyboardinterrupt’,
‘LookupError’, 'MemoryError’, 'NameError’, 'None’, 'Notimplemented’,
‘NotimplementedError’, 'OSError’, 'OverflowError’, 'OverflowWarning’,
'PendingDeprecationWarning’, 'ReferenceError’,

'RuntimeError’, 'RuntimeWarning’, 'StandardError’, 'Stoplteration’,
'SyntaxError’, 'SyntaxWarning’, 'SystemError’, 'SystemExit’, 'TabError’,
"True’, 'TypeError’, 'UnboundLocalError’, 'UnicodeError’, 'UserWarning’,
"ValueError', 'Warning’, 'ZeroDivisionError’, '__debug__’, '__doc_’
"_import__’, ' _name__’, ’'abs’, 'apply’, 'bool’, 'buffer’,

‘callable’, 'chr’, 'classmethod’, 'cmp’, 'coerce’, 'compile’, 'complex’,
‘copyright’, 'credits’, ’delattr’, 'dict’, 'dir’, 'divmod’,

‘'enumerate’, 'eval’, 'execfile’, 'exit’, ‘file’, ‘filter’, 'float’,

‘getattr’, 'globals’, 'hasattr’, 'hash’, ’'help’, 'hex’, 'id’,

‘input’, ’int’, ’intern’, 'isinstance’, 'issubclass’, 'iter’,

‘len’, ’license’, ’list’, ’locals’, ’long’, 'map’, 'max’, 'min’,

'object’, 'oct’, 'open’, 'ord’, 'pow’, 'property’, 'quit’,

range’, 'raw_input’, 'reduce’, 'reload’, 'repr’, 'round’,

‘setattr’, 'slice’, ’'staticmethod’, ’str’, ’'string’, 'sum’, 'super’,

‘tuple’, 'type’, 'unichr’, 'unicode’, 'vars’, 'xrange’, zip’]

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example,
the module nam@.B designates a submodule nam&dih a package named\'. Just like the use of modules

saves the authors of different modules from having to worry about each other’s global variable names, the use
of dotted module names saves the authors of multi-module packages like NumPy or the Python Imaging Library

from having to worry about each other's module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and
sound data. There are many different sound file formats (usually recognized by their extension, for example:
“wav', ‘.aiff’, ‘.au’), S0 you may need to create and maintain a growing collection of modules for the conversion
between the various file formats. There are also many different operations you might want to perform on sound
data (such as mixing, adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition
you will be writing a never-ending stream of modules to perform these operations. Here's a possible structure for
your package (expressed in terms of a hierarchical filesystem):

6.4. Packages 41

Sound/ Top-level package

__init__.py Initialize the sound package

Formats/ Subpackage for file format conversions
__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

Effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py

Filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py

When importing the package, Python searchs through the directoriegsgqmath looking for the package
subdirectory.

The *__init__.py’ files are required to make Python treat the directories as containing packages; this is done to
prevent directories with a common name, suchsisrlg ', from unintentionally hiding valid modules that
occur later on the module search path. In the simplest caseit’ .py’ can just be an empty file, but it can also
execute initialization code for the package or setthall variable, described later.

Users of the package can import individual modules from the package, for example:

import Sound.Effects.echo

This loads the submodugound.Effects.echo . It must be referenced with its full name.

Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from Sound.Effects import echo

This also loads the submoduéeho , and makes it available without its package prefix, so it can be used as
follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from Sound.Effects.echo import echofilter

Again, this loads the submoduteho , but this makes its functioachofilter() directly available:

42 Chapter 6. Modules

echofilter(input, output, delay=0.7, atten=4)

Note that when usinfom packageimport item the item can be either a submodule (or subpackage) of the
package, or some other name defined in the package, like a function, class or variablepdtie statement

first tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it
fails to find it, animportError exception is raised.

Contrarily, when using syntax likenport item.subitem.subsubitereach item except for the last must be a
package; the last item can be a module or a package but can’t be a class or function or variable defined in the
previous item.

6.4.1 Importing * From a Package

Now what happens when the user wrifesm Sound.Effects import * ? ldeally, one would hope that

this somehow goes out to the filesystem, finds which submodules are present in the package, and imports them alll.
Unfortunately, this operation does not work very well on Mac and Windows platforms, where the filesystem does
not always have accurate information about the case of a flename! On these platforms, there is no guaranteed
way to know whether a fileECHO.PY’ should be imported as a moduéeho , Echo or ECHO (For example,
Windows 95 has the annoying practice of showing all file names with a capitalized first letter.) The DOS 8+3
filename restriction adds another interesting problem for long module names.

The only solution is for the package author to provide an explicit index of the package. The import statement
uses the following convention: if a package’sihit__.py’ code defines a list named all__ , it is taken to be

the list of module names that should be imported witem packageimport * is encountered. Itis up to

the package author to keep this list up-to-date when a new version of the package is released. Package authors
may also decide not to support it, if they don't see a use for importing * from their package. For example, the file
‘Sounds/Effects/__init__.py’ could contain the following code:

_all__ = ["echo", "surround", "reverse"]

This would mean tharom Sound.Effects import * would import the three named submodules of the
Sound package.

If _all__ is not defined, the statemefrom Sound.Effects import * doesnot import all sub-

modules from the packag®ound.Effects into the current namespace; it only ensures that the package
Sound.Effects has been im