
Distributing Python Modules

Greg Ward

July 29, 2003

Email: distutils-sig@python.org

Abstract

This document describes the Python Distribution Utilities (“Distutils”) from the module developer’s point of
view, describing how to use the Distutils to make Python modules and extensions easily available to a wider
audience with very little overhead for build/release/install mechanics.

Contents

1 Introduction 2

2 Concepts & Terminology 2
2.1 A Simple Example . 2
2.2 General Python terminology. 4
2.3 Distutils-specific terminology. 4

3 Writing the Setup Script 4
3.1 Listing whole packages. 5
3.2 Listing individual modules. 6
3.3 Describing extension modules. 6

Extension names and packages. 7
Extension source files. 7
Preprocessor options. 7
Library options . 9
Other options . 9

3.4 Installing Scripts . 9
3.5 Installing Additional Files . 10
3.6 Additional meta-data. 10
3.7 Debugging the setup script. 11

4 Writing the Setup Configuration File 12

5 Creating a Source Distribution 13
5.1 Specifying the files to distribute. 14
5.2 Manifest-related options. 15

6 Creating Built Distributions 16
6.1 Creating dumb built distributions. 17
6.2 Creating RPM packages. 17
6.3 Creating Windows Installers. 19

The Postinstallation script. 19

7 Registering with the Package Index 20

8 Examples 21
8.1 Pure Python distribution (by module). 21
8.2 Pure Python distribution (by package). 22
8.3 Single extension module. 24

9 Reference 24
9.1 Installing modules: theinstall command family. 24

install data . 24
install scripts . 24

9.2 Creating a source distribution: thesdist command . 24

10 distutils.sysconfig — System configuration information 25

1 Introduction

This document covers using the Distutils to distribute your Python modules, concentrating on the role of devel-
oper/distributor: if you’re looking for information on installing Python modules, you should refer to theInstalling
Python Modulesmanual.

2 Concepts & Terminology

Using the Distutils is quite simple, both for module developers and for users/administrators installing third-party
modules. As a developer, your responsibilities (apart from writing solid, well-documented and well-tested code,
of course!) are:

• write a setup script (‘setup.py’ by convention)

• (optional) write a setup configuration file

• create a source distribution

• (optional) create one or more built (binary) distributions

Each of these tasks is covered in this document.

Not all module developers have access to a multitude of platforms, so it’s not always feasible to expect them to
create a multitude of built distributions. It is hoped that a class of intermediaries, calledpackagers, will arise to
address this need. Packagers will take source distributions released by module developers, build them on one or
more platforms, and release the resulting built distributions. Thus, users on the most popular platforms will be
able to install most popular Python module distributions in the most natural way for their platform, without having
to run a single setup script or compile a line of code.

2.1 A Simple Example

The setup script is usually quite simple, although since it’s written in Python, there are no arbitrary limits to what
you can do with it, though you should be careful about putting arbitrarily expensive operations in your setup script.
Unlike, say, Autoconf-style configure scripts, the setup script may be run multiple times in the course of building
and installing your module distribution.

If all you want to do is distribute a module calledfoo , contained in a file ‘foo.py’, then your setup script can be
as simple as this:

2 2 Concepts & Terminology

from distutils.core import setup
setup(name="foo",

version="1.0",
py_modules=["foo"])

Some observations:

• most information that you supply to the Distutils is supplied as keyword arguments to thesetup() func-
tion

• those keyword arguments fall into two categories: package metadata (name, version number) and informa-
tion about what’s in the package (a list of pure Python modules, in this case)

• modules are specified by module name, not filename (the same will hold true for packages and extensions)

• it’s recommended that you supply a little more metadata, in particular your name, email address and a URL
for the project (see section 3 for an example)

To create a source distribution for this module, you would create a setup script, ‘setup.py’, containing the above
code, and run:

python setup.py sdist

which will create an archive file (e.g., tarball on UNIX , ZIP file on Windows) containing your setup script
‘setup.py’, and your module ‘foo.py’. The archive file will be named ‘foo-1.0.tar.gz’ (or ‘ .zip’), and will unpack
into a directory ‘foo-1.0’.

If an end-user wishes to install yourfoo module, all she has to do is download ‘foo-1.0.tar.gz’ (or ‘ .zip’), unpack
it, and—from the ‘foo-1.0’ directory—run

python setup.py install

which will ultimately copy ‘foo.py’ to the appropriate directory for third-party modules in their Python installation.

This simple example demonstrates some fundamental concepts of the Distutils. First, both developers and in-
stallers have the same basic user interface, i.e. the setup script. The difference is which Distutilscommands
they use: thesdist command is almost exclusively for module developers, whileinstall is more often for
installers (although most developers will want to install their own code occasionally).

If you want to make things really easy for your users, you can create one or more built distributions for them.
For instance, if you are running on a Windows machine, and want to make things easy for other Windows users,
you can create an executable installer (the most appropriate type of built distribution for this platform) with the
bdist wininst command. For example:

python setup.py bdist_wininst

will create an executable installer, ‘foo-1.0.win32.exe’, in the current directory.

Other useful built distribution formats are RPM, implemented by thebdist rpm command, Solarispkgtool
(bdist pkgtool), and HP-UXswinstall (bdist sdux). For example, the following command will create
an RPM file called ‘foo-1.0.noarch.rpm’:

python setup.py bdist_rpm

(Thebdist rpm command uses therpm executable, therefore this has to be run on an RPM-based system such
as Red Hat Linux, SuSE Linux, or Mandrake Linux.)

2.1 A Simple Example 3

You can find out what distribution formats are available at any time by running

python setup.py bdist --help-formats

2.2 General Python terminology

If you’re reading this document, you probably have a good idea of what modules, extensions, and so forth are.
Nevertheless, just to be sure that everyone is operating from a common starting point, we offer the following
glossary of common Python terms:

module the basic unit of code reusability in Python: a block of code imported by some other code. Three types
of modules concern us here: pure Python modules, extension modules, and packages.

pure Python module a module written in Python and contained in a single ‘.py’ file (and possibly associated
‘ .pyc’ and/or ‘.pyo’ files). Sometimes referred to as a “pure module.”

extension modulea module written in the low-level language of the Python implementation: C/C++ for Python,
Java for Jython. Typically contained in a single dynamically loadable pre-compiled file, e.g. a shared object
(‘ .so’) file for Python extensions on UNIX , a DLL (given the ‘.pyd’ extension) for Python extensions on
Windows, or a Java class file for Jython extensions. (Note that currently, the Distutils only handles C/C++
extensions for Python.)

package a module that contains other modules; typically contained in a directory in the filesystem and distin-
guished from other directories by the presence of a file ‘init .py’.

root package the root of the hierarchy of packages. (This isn’t really a package, since it doesn’t have an
‘ init .py’ file. But we have to call it something.) The vast majority of the standard library is in the
root package, as are many small, standalone third-party modules that don’t belong to a larger module col-
lection. Unlike regular packages, modules in the root package can be found in many directories: in fact,
every directory listed insys.path contributes modules to the root package.

2.3 Distutils-specific terminology

The following terms apply more specifically to the domain of distributing Python modules using the Distutils:

module distribution a collection of Python modules distributed together as a single downloadable resource and
meant to be installeden masse. Examples of some well-known module distributions are Numeric Python,
PyXML, PIL (the Python Imaging Library), or mxBase. (This would be called apackage, except that term
is already taken in the Python context: a single module distribution may contain zero, one, or many Python
packages.)

pure module distribution a module distribution that contains only pure Python modules and packages. Some-
times referred to as a “pure distribution.”

non-pure module distribution a module distribution that contains at least one extension module. Sometimes
referred to as a “non-pure distribution.”

distribution root the top-level directory of your source tree (or source distribution); the directory where
‘setup.py’ exists. Generally ‘setup.py’ will be run from this directory.

3 Writing the Setup Script

The setup script is the centre of all activity in building, distributing, and installing modules using the Distutils.
The main purpose of the setup script is to describe your module distribution to the Distutils, so that the various
commands that operate on your modules do the right thing. As we saw in section 2.1 above, the setup script

4 3 Writing the Setup Script

consists mainly of a call tosetup() , and most information supplied to the Distutils by the module developer is
supplied as keyword arguments tosetup() .

Here’s a slightly more involved example, which we’ll follow for the next couple of sections: the Distutils’ own
setup script. (Keep in mind that although the Distutils are included with Python 1.6 and later, they also have an
independent existence so that Python 1.5.2 users can use them to install other module distributions. The Distutils’
own setup script, shown here, is used to install the package into Python 1.5.2.)

#!/usr/bin/env python

from distutils.core import setup

setup(name="Distutils",
version="1.0",
description="Python Distribution Utilities",
author="Greg Ward",
author_email="gward@python.net",
url="http://www.python.org/sigs/distutils-sig/",
packages=[’distutils’, ’distutils.command’],

)

There are only two differences between this and the trivial one-file distribution presented in section 2.1: more
metadata, and the specification of pure Python modules by package, rather than by module. This is important
since the Distutils consist of a couple of dozen modules split into (so far) two packages; an explicit list of every
module would be tedious to generate and difficult to maintain. For more information on the additional meta-data,
see section 3.7.

Note that any pathnames (files or directories) supplied in the setup script should be written using the UNIX con-
vention, i.e. slash-separated. The Distutils will take care of converting this platform-neutral representation into
whatever is appropriate on your current platform before actually using the pathname. This makes your setup script
portable across operating systems, which of course is one of the major goals of the Distutils. In this spirit, all
pathnames in this document are slash-separated. (MacOS programmers should keep in mind that theabsenceof a
leading slash indicates a relative path, the opposite of the MacOS convention with colons.)

This, of course, only applies to pathnames given to Distutils functions. If you, for example, use standard Python
functions such asglob.glob() or os.listdir() to specify files, you should be careful to write portable
code instead of hardcoding path separators:

glob.glob(os.path.join(’mydir’, ’subdir’, ’*.html’))
os.listdir(os.path.join(’mydir’, ’subdir’))

3.1 Listing whole packages

Thepackages option tells the Distutils to process (build, distribute, install, etc.) all pure Python modules found
in each package mentioned in thepackages list. In order to do this, of course, there has to be a correspondence
between package names and directories in the filesystem. The default correspondence is the most obvious one,
i.e. packagedistutils is found in the directory ‘distutils’ relative to the distribution root. Thus, when you say
packages = [’foo’] in your setup script, you are promising that the Distutils will find a file ‘foo/ init .py’
(which might be spelled differently on your system, but you get the idea) relative to the directory where your setup
script lives. If you break this promise, the Distutils will issue a warning but still process the broken package
anyways.

If you use a different convention to lay out your source directory, that’s no problem: you just have to supply the
package dir option to tell the Distutils about your convention. For example, say you keep all Python source under
‘ lib’, so that modules in the “root package” (i.e., not in any package at all) are in ‘lib’, modules in thefoo package
are in ‘lib/foo’, and so forth. Then you would put

3.1 Listing whole packages 5

package_dir = {’’: ’lib’}

in your setup script. The keys to this dictionary are package names, and an empty package name stands for the root
package. The values are directory names relative to your distribution root. In this case, when you saypackages
= [’foo’] , you are promising that the file ‘lib/foo/ init .py’ exists.

Another possible convention is to put thefoo package right in ‘lib’, the foo.bar package in ‘lib/bar’, etc. This
would be written in the setup script as

package_dir = {’foo’: ’lib’}

A package: dir entry in thepackage dir dictionary implicitly applies to all packages belowpackage, so the
foo.bar case is automatically handled here. In this example, havingpackages = [’foo’, ’foo.bar’]
tells the Distutils to look for ‘lib/ init .py’ and ‘lib/bar/ init .py’. (Keep in mind that althoughpackage dir
applies recursively, you must explicitly list all packages inpackages: the Distutils will not recursively scan your
source tree looking for any directory with an ‘init .py’ file.)

3.2 Listing individual modules

For a small module distribution, you might prefer to list all modules rather than listing packages—especially the
case of a single module that goes in the “root package” (i.e., no package at all). This simplest case was shown in
section 2.1; here is a slightly more involved example:

py_modules = [’mod1’, ’pkg.mod2’]

This describes two modules, one of them in the “root” package, the other in thepkg package. Again, the default
package/directory layout implies that these two modules can be found in ‘mod1.py’ and ‘pkg/mod2.py’, and that
‘pkg/ init .py’ exists as well. And again, you can override the package/directory correspondence using the
package dir option.

3.3 Describing extension modules

Just as writing Python extension modules is a bit more complicated than writing pure Python modules, describing
them to the Distutils is a bit more complicated. Unlike pure modules, it’s not enough just to list modules or
packages and expect the Distutils to go out and find the right files; you have to specify the extension name, source
file(s), and any compile/link requirements (include directories, libraries to link with, etc.).

All of this is done through another keyword argument tosetup() , theextensions option.extensions is just a list
of Extension instances, each of which describes a single extension module. Suppose your distribution includes
a single extension, calledfoo and implemented by ‘foo.c’. If no additional instructions to the compiler/linker are
needed, describing this extension is quite simple:

uExtension("foo", ["foo.c"])

TheExtension class can be imported fromdistutils.core along withsetup() . Thus, the setup script
for a module distribution that contains only this one extension and nothing else might be:

from distutils.core import setup, Extension
setup(name="foo", version="1.0",

ext_modules=[Extension("foo", ["foo.c"])])

TheExtension class (actually, the underlying extension-building machinery implemented by thebuild ext

6 3 Writing the Setup Script

command) supports a great deal of flexibility in describing Python extensions, which is explained in the following
sections.

Extension names and packages

The first argument to theExtension constructor is always the name of the extension, including any package
names. For example,

Extension("foo", ["src/foo1.c", "src/foo2.c"])

describes an extension that lives in the root package, while

Extension("pkg.foo", ["src/foo1.c", "src/foo2.c"])

describes the same extension in thepkg package. The source files and resulting object code are identical in both
cases; the only difference is where in the filesystem (and therefore where in Python’s namespace hierarchy) the
resulting extension lives.

If you have a number of extensions all in the same package (or all under the same base package), use the
ext package keyword argument tosetup() . For example,

setup(...
ext_package="pkg",
ext_modules=[Extension("foo", ["foo.c"]),

Extension("subpkg.bar", ["bar.c"])]
)

will compile ‘foo.c’ to the extensionpkg.foo , and ‘bar.c’ to pkg.subpkg.bar .

Extension source files

The second argument to theExtension constructor is a list of source files. Since the Distutils currently only
support C, C++, and Objective-C extensions, these are normally C/C++/Objective-C source files. (Be sure to use
appropriate extensions to distinguish C++ source files: ‘.cc’ and ‘.cpp’ seem to be recognized by both UNIX and
Windows compilers.)

However, you can also include SWIG interface (‘.i’) files in the list; thebuild ext command knows how to
deal with SWIG extensions: it will run SWIG on the interface file and compile the resulting C/C++ file into your
extension.

**SWIG support is rough around the edges and largely untested; especially SWIG support for C++ exten-
sions! Explain in more detail here when the interface firms up.**

On some platforms, you can include non-source files that are processed by the compiler and included in your
extension. Currently, this just means Windows message text (‘.mc’) files and resource definition (‘.rc’) files for
Visual C++. These will be compiled to binary resource (‘.res’) files and linked into the executable.

Preprocessor options

Three optional arguments toExtension will help if you need to specify include directories to search or prepro-
cessor macros to define/undefine:include dirs , define macros , andundef macros .

For example, if your extension requires header files in the ‘include’ directory under your distribution root, use the
include dirs option:

3.3 Describing extension modules 7

Extension("foo", ["foo.c"], include_dirs=["include"])

You can specify absolute directories there; if you know that your extension will only be built on UNIX systems
with X11R6 installed to ‘/usr’, you can get away with

Extension("foo", ["foo.c"], include_dirs=["/usr/include/X11"])

You should avoid this sort of non-portable usage if you plan to distribute your code: it’s probably better to write
C code like

#include <X11/Xlib.h>

If you need to include header files from some other Python extension, you can take advantage of the fact that header
files are installed in a consistent way by the Distutilsinstall header command. For example, the Numerical
Python header files are installed (on a standard Unix installation) to ‘/usr/local/include/python1.5/Numerical’. (The
exact location will differ according to your platform and Python installation.) Since the Python include directory—
‘ /usr/local/include/python1.5’ in this case—is always included in the search path when building Python extensions,
the best approach is to write C code like

#include <Numerical/arrayobject.h>

If you must put the ‘Numerical’ include directory right into your header search path, though, you can find that
directory using the Distutilssysconfig module:

from distutils.sysconfig import get_python_inc
incdir = os.path.join(get_python_inc(plat_specific=1), "Numerical")
setup(...,

Extension(..., include_dirs=[incdir]))

Even though this is quite portable—it will work on any Python installation, regardless of platform—it’s probably
easier to just write your C code in the sensible way.

You can define and undefine pre-processor macros with thedefine macros andundef macros options.
define macros takes a list of(name, value) tuples, wherename is the name of the macro to define (a
string) andvalue is its value: either a string orNone. (Defining a macroFOOto None is the equivalent of a
bare#define FOO in your C source: with most compilers, this setsFOOto the string1.) undef macros is
just a list of macros to undefine.

For example:

Extension(...,
define_macros=[(’NDEBUG’, ’1’)],

(’HAVE_STRFTIME’, None),
undef_macros=[’HAVE_FOO’, ’HAVE_BAR’])

is the equivalent of having this at the top of every C source file:

8 3 Writing the Setup Script

#define NDEBUG 1
#define HAVE_STRFTIME
#undef HAVE_FOO
#undef HAVE_BAR

Library options

You can also specify the libraries to link against when building your extension, and the directories to search for
those libraries. Thelibraries option is a list of libraries to link against,library dirs is a list of directories
to search for libraries at link-time, andruntime library dirs is a list of directories to search for shared
(dynamically loaded) libraries at run-time.

For example, if you need to link against libraries known to be in the standard library search path on target systems

Extension(...,
libraries=["gdbm", "readline"])

If you need to link with libraries in a non-standard location, you’ll have to include the location in
library dirs :

Extension(...,
library_dirs=["/usr/X11R6/lib"],
libraries=["X11", "Xt"])

(Again, this sort of non-portable construct should be avoided if you intend to distribute your code.)

Should mention clib libraries here or somewhere else!

Other options

There are still some other options which can be used to handle special cases.

Theextra objects option is a list of object files to be passed to the linker. These files must not have extensions, as
the default extension for the compiler is used.

extra compile args andextra link args can be used to specify additional command line options for the respective
compiler and linker command lines.

export symbols is only useful on Windows. It can contain a list of symbols (functions or variables) to be exported.
This option is not needed when building compiled extensions: Distutils will automatically addinitmodule to
the list of exported symbols.

3.4 Installing Scripts

So far we have been dealing with pure and non-pure Python modules, which are usually not run by themselves but
imported by scripts.

Scripts are files containing Python source code, intended to be started from the command line. Scripts don’t
require Distutils to do anything very complicated. The only clever feature is that if the first line of the script starts
with #! and contains the word “python”, the Distutils will adjust the first line to refer to the current interpreter
location.

Thescripts option simply is a list of files to be handled in this way. From the PyXML setup script:

3.4 Installing Scripts 9

setup (...
scripts = [’scripts/xmlproc_parse’, ’scripts/xmlproc_val’]

)

3.5 Installing Additional Files

Thedata files option can be used to specify additional files needed by the module distribution: configuration files,
message catalogs, data files, anything which doesn’t fit in the previous categories.

data files specifies a sequence of (directory, files) pairs in the following way:

setup(...
data_files=[(’bitmaps’, [’bm/b1.gif’, ’bm/b2.gif’]),

(’config’, [’cfg/data.cfg’]),
(’/etc/init.d’, [’init-script’])]

)

Note that you can specify the directory names where the data files will be installed, but you cannot rename the
data files themselves.

Each (directory, files) pair in the sequence specifies the installation directory and the files to install there. If
directory is a relative path, it is interpreted relative to the installation prefix (Python’ssys.prefix for pure-
Python packages,sys.exec prefix for packages that contain extension modules). Each file name infiles is
interpreted relative to the ‘setup.py’ script at the top of the package source distribution. No directory information
from files is used to determine the final location of the installed file; only the name of the file is used.

You can specify thedata files options as a simple sequence of files without specifying a target directory, but this
is not recommended, and theinstall command will print a warning in this case. To install data files directly in
the target directory, an empty string should be given as the directory.

3.6 Additional meta-data

The setup script may include additional meta-data beyond the name and version. This information includes:

Meta-Data Description Value Notes
name name of the package short string (1)
version version of this release short string (1)(2)
author package author’s name short string (3)
author email email address of the package author email address (3)
maintainer package maintainer’s name short string (3)
maintainer email email address of the package maintainer email address (3)
url home page for the package URL (1)
description short, summary description of the package short string
long description longer description of the package long string
download url location where the package may be downloadedURL (4)
classifiers a list of Trove classifiers list of strings (4)

Notes:

(1) These fields are required.

(2) It is recommended that versions take the formmajor.minor[.patch[.sub]] .

(3) Either the author or the maintainer must be identified.

10 3 Writing the Setup Script

(4) These fields should not be used if your package is to be compatible with Python versions prior to 2.2.3 or 2.3.
The list is available from thePyPI website.

”short string” A single line of text, not more than 200 characters.

”long string” Multiple lines of plain text in ReStructuredText format (seehttp://docutils.sf.net/).

”list of strings” See below.

None of the string values may be Unicode.

Encoding the version information is an art in itself. Python packages generally adhere to the version formatma-
jor.minor[.patch][sub]. The major number is 0 for initial, experimental releases of software. It is incremented
for releases that represent major milestones in a package. The minor number is incremented when important
new features are added to the package. The patch number increments when bug-fix releases are made. Addi-
tional trailing version information is sometimes used to indicate sub-releases. These are ”a1,a2,...,aN” (for alpha
releases, where functionality and API may change), ”b1,b2,...,bN” (for beta releases, which only fix bugs) and
”pr1,pr2,...,prN” (for final pre-release release testing). Some examples:

0.1.0 the first, experimental release of a package

1.0.1a2 the second alpha release of the first patch version of 1.0

classifiers are specified in a python list:

setup(...
classifiers = [

’Development Status :: 4 - Beta’,
’Environment :: Console’,
’Environment :: Web Environment’,
’Intended Audience :: End Users/Desktop’,
’Intended Audience :: Developers’,
’Intended Audience :: System Administrators’,
’License :: OSI Approved :: Python Software Foundation License’,
’Operating System :: MacOS :: MacOS X’,
’Operating System :: Microsoft :: Windows’,
’Operating System :: POSIX’,
’Programming Language :: Python’,
’Topic :: Communications :: Email’,
’Topic :: Office/Business’,
’Topic :: Software Development :: Bug Tracking’,
],

)

If you wish to include classifiers in your ‘setup.py’ file and also wish to remain backwards-compatible with Python
releases prior to 2.2.3, then you can include the following code fragment in your ‘setup.py’ before thesetup()
call.

patch distutils if it can’t cope with the "classifiers" or
"download_url" keywords
if sys.version < ’2.2.3’:

from distutils.dist import DistributionMetadata
DistributionMetadata.classifiers = None
DistributionMetadata.download_url = None

3.7 Debugging the setup script

Sometimes things go wrong, and the setup script doesn’t do what the developer wants.

3.7 Debugging the setup script 11

Distutils catches any exceptions when running the setup script, and print a simple error message before the script
is terminated. The motivation for this behaviour is to not confuse administrators who don’t know much about
Python and are trying to install a package. If they get a big long traceback from deep inside the guts of Distutils,
they may think the package or the Python installation is broken because they don’t read all the way down to the
bottom and see that it’s a permission problem.

On the other hand, this doesn’t help the developer to find the cause of the failure. For this purpose, the DISTU-
TILS DEBUG environment variable can be set to anything except an empty string, and distutils will now print
detailed information what it is doing, and prints the full traceback in case an exception occurrs.

4 Writing the Setup Configuration File

Often, it’s not possible to write down everything needed to build a distributiona priori: you may need to get some
information from the user, or from the user’s system, in order to proceed. As long as that information is fairly
simple—a list of directories to search for C header files or libraries, for example—then providing a configuration
file, ‘setup.cfg’, for users to edit is a cheap and easy way to solicit it. Configuration files also let you provide
default values for any command option, which the installer can then override either on the command-line or by
editing the config file.

The setup configuration file is a useful middle-ground between the setup script—which, ideally, would be opaque
to installers1—and the command-line to the setup script, which is outside of your control and entirely up to the
installer. In fact, ‘setup.cfg’ (and any other Distutils configuration files present on the target system) are processed
after the contents of the setup script, but before the command-line. This has several useful consequences:

• installers can override some of what you put in ‘setup.py’ by editing ‘setup.cfg’

• you can provide non-standard defaults for options that are not easily set in ‘setup.py’

• installers can override anything in ‘setup.cfg’ using the command-line options to ‘setup.py’

The basic syntax of the configuration file is simple:

[command]
option=value
...

wherecommandis one of the Distutils commands (e.g.build py , install), andoption is one of the options
that command supports. Any number of options can be supplied for each command, and any number of command
sections can be included in the file. Blank lines are ignored, as are comments, which run from a ‘#’ character until
the end of the line. Long option values can be split across multiple lines simply by indenting the continuation
lines.

You can find out the list of options supported by a particular command with the universal--help option, e.g.

> python setup.py --help build_ext
[...]
Options for ’build_ext’ command:

--build-lib (-b) directory for compiled extension modules
--build-temp (-t) directory for temporary files (build by-products)
--inplace (-i) ignore build-lib and put compiled extensions into the

source directory alongside your pure Python modules
--include-dirs (-I) list of directories to search for header files
--define (-D) C preprocessor macros to define
--undef (-U) C preprocessor macros to undefine

[...]

1This ideal probably won’t be achieved until auto-configuration is fully supported by the Distutils.

12 4 Writing the Setup Configuration File

Note that an option spelled--foo-bar on the command-line is spelledfoo bar in configuration files.

For example, say you want your extensions to be built “in-place”—that is, you have an extensionpkg.ext , and
you want the compiled extension file (‘ext.so’ on UNIX , say) to be put in the same source directory as your pure
Python modulespkg.mod1 andpkg.mod2 . You can always use the--inplace option on the command-line to
ensure this:

python setup.py build_ext --inplace

But this requires that you always specify thebuild ext command explicitly, and remember to provide--
inplace. An easier way is to “set and forget” this option, by encoding it in ‘setup.cfg’, the configuration file for
this distribution:

[build_ext]
inplace=1

This will affect all builds of this module distribution, whether or not you explcitly specifybuild ext . If you
include ‘setup.cfg’ in your source distribution, it will also affect end-user builds—which is probably a bad idea
for this option, since always building extensions in-place would break installation of the module distribution. In
certain peculiar cases, though, modules are built right in their installation directory, so this is conceivably a useful
ability. (Distributing extensions that expect to be built in their installation directory is almost always a bad idea,
though.)

Another example: certain commands take a lot of options that don’t change from run to run; for example,
bdist rpm needs to know everything required to generate a “spec” file for creating an RPM distribution. Some
of this information comes from the setup script, and some is automatically generated by the Distutils (such as the
list of files installed). But some of it has to be supplied as options tobdist rpm, which would be very tedious
to do on the command-line for every run. Hence, here is a snippet from the Distutils’ own ‘setup.cfg’:

[bdist_rpm]
release = 1
packager = Greg Ward <gward@python.net>
doc_files = CHANGES.txt

README.txt
USAGE.txt
doc/
examples/

Note that thedoc files option is simply a whitespace-separated string split across multiple lines for readability.

See Also:

Installing Python Modules
(../inst/config-syntax.html)

More information on the configuration files is available in the manual for system administrators.

5 Creating a Source Distribution

As shown in section 2.1, you use thesdist command to create a source distribution. In the simplest case,

python setup.py sdist

(assuming you haven’t specified anysdist options in the setup script or config file),sdist creates the archive
of the default format for the current platform. The default format is a gzip’ed tar file (‘.tar.gz’) on UNIX , and ZIP
file on Windows.**no MacOS support here**

You can specify as many formats as you like using the--formats option, for example:

13

python setup.py sdist --formats=gztar,zip

to create a gzipped tarball and a zip file. The available formats are:

Format Description Notes
zip zip file (‘.zip’) (1),(3)
gztar gzip’ed tar file (‘.tar.gz’) (2),(4)
bztar bzip2’ed tar file (‘.tar.bz2’) (4)
ztar compressed tar file (‘.tar.Z’) (4)
tar tar file (‘.tar’) (4)

Notes:

(1) default on Windows

(2) default on UNIX

(3) requires either externalzip utility or zipfile module (part of the standard Python library since Python 1.6)

(4) requires external utilities:tar and possibly one ofgzip, bzip2, or compress

5.1 Specifying the files to distribute

If you don’t supply an explicit list of files (or instructions on how to generate one), thesdist command puts a
minimal default set into the source distribution:

• all Python source files implied by thepy modules andpackages options

• all C source files mentioned in theext modules or libraries options (**getting C library sources currently
broken – no get source files() method in build clib.py!**)

• anything that looks like a test script: ‘test/test*.py’ (currently, the Distutils don’t do anything with test
scripts except include them in source distributions, but in the future there will be a standard for testing
Python module distributions)

• ‘README.txt’ (or ‘ README’), ‘ setup.py’ (or whatever you called your setup script), and ‘setup.cfg’

Sometimes this is enough, but usually you will want to specify additional files to distribute. The typical way
to do this is to write amanifest template, called ‘MANIFEST.in’ by default. The manifest template is just a list
of instructions for how to generate your manifest file, ‘MANIFEST’, which is the exact list of files to include in
your source distribution. Thesdist command processes this template and generates a manifest based on its
instructions and what it finds in the filesystem.

If you prefer to roll your own manifest file, the format is simple: one filename per line, regular files (or symlinks
to them) only. If you do supply your own ‘MANIFEST’, you must specify everything: the default set of files
described above does not apply in this case.

The manifest template has one command per line, where each command specifies a set of files to include or
exclude from the source distribution. For an example, again we turn to the Distutils’ own manifest template:

include *.txt
recursive-include examples *.txt *.py
prune examples/sample?/build

The meanings should be fairly clear: include all files in the distribution root matching*.txt , all files
anywhere under the ‘examples’ directory matching*.txt or *.py , and exclude all directories matching
examples/sample?/build . All of this is doneafter the standard include set, so you can exclude files

14 5 Creating a Source Distribution

from the standard set with explicit instructions in the manifest template. (Or, you can use the--no-defaultsop-
tion to disable the standard set entirely.) There are several other commands available in the manifest template
mini-language; see section 9.2.

The order of commands in the manifest template matters: initially, we have the list of default files as described
above, and each command in the template adds to or removes from that list of files. Once we have fully processed
the manifest template, we remove files that should not be included in the source distribution:

• all files in the Distutils “build” tree (default ‘build/’)

• all files in directories named ‘RCS’ or ‘ CVS’

Now we have our complete list of files, which is written to the manifest for future reference, and then used to build
the source distribution archive(s).

You can disable the default set of included files with the--no-defaultsoption, and you can disable the standard
exclude set with--no-prune.

Following the Distutils’ own manifest template, let’s trace how thesdist command builds the list of files to
include in the Distutils source distribution:

1. include all Python source files in the ‘distutils’ and ‘distutils/command’ subdirectories (because packages
corresponding to those two directories were mentioned in thepackages option in the setup script—see
section 3)

2. include ‘README.txt’, ‘ setup.py’, and ‘setup.cfg’ (standard files)

3. include ‘test/test*.py’ (standard files)

4. include ‘*.txt’ in the distribution root (this will find ‘README.txt’ a second time, but such redundancies are
weeded out later)

5. include anything matching ‘*.txt’ or ‘ *.py’ in the sub-tree under ‘examples’,

6. exclude all files in the sub-trees starting at directories matching ‘examples/sample?/build’—this may ex-
clude files included by the previous two steps, so it’s important that theprune command in the manifest
template comes after therecursive-include command

7. exclude the entire ‘build’ tree, and any ‘RCS’ or ‘ CVS’ directories

Just like in the setup script, file and directory names in the manifest template should always be slash-separated; the
Distutils will take care of converting them to the standard representation on your platform. That way, the manifest
template is portable across operating systems.

5.2 Manifest-related options

The normal course of operations for thesdist command is as follows:

• if the manifest file, ‘MANIFEST’ doesn’t exist, read ‘MANIFEST.in’ and create the manifest

• if neither ‘MANIFEST’ nor ‘MANIFEST.in’ exist, create a manifest with just the default file set

• if either ‘MANIFEST.in’ or the setup script (‘setup.py’) are more recent than ‘MANIFEST’, recreate
‘MANIFEST’ by reading ‘MANIFEST.in’

• use the list of files now in ‘MANIFEST’ (either just generated or read in) to create the source distribution
archive(s)

There are a couple of options that modify this behaviour. First, use the--no-defaultsand--no-prune to disable
the standard “include” and “exclude” sets.

Second, you might want to force the manifest to be regenerated—for example, if you have added or removed files
or directories that match an existing pattern in the manifest template, you should regenerate the manifest:

5.2 Manifest-related options 15

python setup.py sdist --force-manifest

Or, you might just want to (re)generate the manifest, but not create a source distribution:

python setup.py sdist --manifest-only

--manifest-only implies--force-manifest. -o is a shortcut for--manifest-only, and-f for --force-manifest.

6 Creating Built Distributions

A “built distribution” is what you’re probably used to thinking of either as a “binary package” or an “installer”
(depending on your background). It’s not necessarily binary, though, because it might contain only Python source
code and/or byte-code; and we don’t call it a package, because that word is already spoken for in Python. (And
“installer” is a term specific to the Windows world.**do Mac people use it?**)

A built distribution is how you make life as easy as possible for installers of your module distribution: for users of
RPM-based Linux systems, it’s a binary RPM; for Windows users, it’s an executable installer; for Debian-based
Linux users, it’s a Debian package; and so forth. Obviously, no one person will be able to create built distributions
for every platform under the sun, so the Distutils are designed to enable module developers to concentrate on
their specialty—writing code and creating source distributions—while an intermediary species calledpackagers
springs up to turn source distributions into built distributions for as many platforms as there are packagers.

Of course, the module developer could be his own packager; or the packager could be a volunteer “out there”
somewhere who has access to a platform which the original developer does not; or it could be software periodically
grabbing new source distributions and turning them into built distributions for as many platforms as the software
has access to. Regardless of who they are, a packager uses the setup script and thebdist command family to
generate built distributions.

As a simple example, if I run the following command in the Distutils source tree:

python setup.py bdist

then the Distutils builds my module distribution (the Distutils itself in this case), does a “fake” installation (also
in the ‘build’ directory), and creates the default type of built distribution for my platform. The default format for
built distributions is a “dumb” tar file on UNIX , and a simple executable installer on Windows. (That tar file is
considered “dumb” because it has to be unpacked in a specific location to work.)

Thus, the above command on a UNIX system creates ‘Distutils-1.0.plat .tar.gz’; unpacking this tarball from the
right place installs the Distutils just as though you had downloaded the source distribution and runpython
setup.py install . (The “right place” is either the root of the filesystem or Python’sprefix directory, de-
pending on the options given to thebdist dumb command; the default is to make dumb distributions relative
to prefix .)

Obviously, for pure Python distributions, this isn’t any simpler than just runningpython setup.py
install —but for non-pure distributions, which include extensions that would need to be compiled, it can mean
the difference between someone being able to use your extensions or not. And creating “smart” built distributions,
such as an RPM package or an executable installer for Windows, is far more convenient for users even if your
distribution doesn’t include any extensions.

Thebdist command has a--formats option, similar to thesdist command, which you can use to select the
types of built distribution to generate: for example,

python setup.py bdist --format=zip

16 6 Creating Built Distributions

would, when run on a UNIX system, create ‘Distutils-1.0.plat .zip’—again, this archive would be unpacked from
the root directory to install the Distutils.

The available formats for built distributions are:

Format Description Notes
gztar gzipped tar file (‘.tar.gz’) (1),(3)
ztar compressed tar file (‘.tar.Z’) (3)
tar tar file (‘.tar’) (3)
zip zip file (‘.zip’) (4)
rpm RPM (5)
pkgtool Solarispkgtool
sdux HP-UX swinstall
rpm RPM (5)
wininst self-extracting ZIP file for Windows (2),(4)

Notes:

(1) default on UNIX

(2) default on Windows**to-do!**

(3) requires external utilities:tar and possibly one ofgzip, bzip2, or compress

(4) requires either externalzip utility or zipfile module (part of the standard Python library since Python 1.6)

(5) requires externalrpm utility, version 3.0.4 or better (userpm --version to find out which version you
have)

You don’t have to use thebdist command with the--formats option; you can also use the command that directly
implements the format you’re interested in. Some of thesebdist “sub-commands” actually generate several
similar formats; for instance, thebdist dumbcommand generates all the “dumb” archive formats (tar , ztar ,
gztar , andzip), andbdist rpm generates both binary and source RPMs. Thebdist sub-commands, and
the formats generated by each, are:

Command Formats
bdist dumb tar, ztar, gztar, zip
bdist rpm rpm, srpm
bdist wininst wininst

The following sections give details on the individualbdist * commands.

6.1 Creating dumb built distributions

Need to document absolute vs. prefix-relative packages here, but first I have to implement it!

6.2 Creating RPM packages

The RPM format is used by many popular Linux distributions, including Red Hat, SuSE, and Mandrake. If one
of these (or any of the other RPM-based Linux distributions) is your usual environment, creating RPM packages
for other users of that same distribution is trivial. Depending on the complexity of your module distribution and
differences between Linux distributions, you may also be able to create RPMs that work on different RPM-based
distributions.

The usual way to create an RPM of your module distribution is to run thebdist rpm command:

python setup.py bdist_rpm

6.1 Creating dumb built distributions 17

or thebdist command with the--format option:

python setup.py bdist --formats=rpm

The former allows you to specify RPM-specific options; the latter allows you to easily specify multiple formats in
one run. If you need to do both, you can explicitly specify multiplebdist * commands and their options:

python setup.py bdist_rpm --packager="John Doe <jdoe@python.net>" \
bdist_wininst --target_version="2.0"

Creating RPM packages is driven by a ‘.spec’ file, much as using the Distutils is driven by the setup script. To
make your life easier, thebdist rpm command normally creates a ‘.spec’ file based on the information you
supply in the setup script, on the command line, and in any Distutils configuration files. Various options and
sections in the ‘.spec’ file are derived from options in the setup script as follows:

RPM ‘ .spec ’ file option or section Distutils setup script option
Name name
Summary (in preamble) description
Version version
Vendor author andauthor email, or

maintainer andmaintainer email
Copyright licence
Url url
%description (section) long description

Additionally, there many options in ‘.spec’ files that don’t have corresponding options in the setup script. Most of
these are handled through options to thebdist rpm command as follows:

RPM ‘ .spec ’ file option or section bdist rpm option default value
Release release “1”
Group group “Development/Libraries”
Vendor vendor (see above)
Packager packager (none)
Provides provides (none)
Requires requires (none)
Conflicts conflicts (none)
Obsoletes obsoletes (none)
Distribution distribution name (none)
BuildRequires build requires (none)
Icon icon (none)

Obviously, supplying even a few of these options on the command-line would be tedious and error-prone, so it’s
usually best to put them in the setup configuration file, ‘setup.cfg’—see section 4. If you distribute or package
many Python module distributions, you might want to put options that apply to all of them in your personal
Distutils configuration file (‘̃/.pydistutils.cfg’).

There are three steps to building a binary RPM package, all of which are handled automatically by the Distutils:

1. create a ‘.spec’ file, which describes the package (analogous to the Distutils setup script; in fact, much of
the information in the setup script winds up in the ‘.spec’ file)

2. create the source RPM

3. create the “binary” RPM (which may or may not contain binary code, depending on whether your module
distribution contains Python extensions)

Normally, RPM bundles the last two steps together; when you use the Distutils, all three steps are typically bundled
together.

18 6 Creating Built Distributions

If you wish, you can separate these three steps. You can use the--spec-onlyoption to makebdist rpm just
create the ‘.spec’ file and exit; in this case, the ‘.spec’ file will be written to the “distribution directory”—normally
‘dist/’, but customizable with the--dist-dir option. (Normally, the ‘.spec’ file winds up deep in the “build tree,”
in a temporary directory created bybdist rpm.)

this isn’t implemented yet—is it needed?! You can also specify a custom ‘.spec’ file with the --spec-file
option; used in conjunction with--spec-only, this gives you an opportunity to customize the ‘.spec’ file manually:

> python setup.py bdist_rpm --spec-only
...edit dist/FooBar-1.0.spec
> python setup.py bdist_rpm --spec-file=dist/FooBar-1.0.spec

(Although a better way to do this is probably to override the standardbdist rpm command with one that writes
whatever else you want to the ‘.spec’ file.)

6.3 Creating Windows Installers

Executable installers are the natural format for binary distributions on Windows. They display a nice graphical
user interface, display some information about the module distribution to be installed taken from the metadata in
the setup script, let the user select a few options, and start or cancel the installation.

Since the metadata is taken from the setup script, creating Windows installers is usually as easy as running:

python setup.py bdist_wininst

or thebdist command with the--formats option:

python setup.py bdist --formats=wininst

If you have a pure module distribution (only containing pure Python modules and packages), the resulting installer
will be version independent and have a name like ‘foo-1.0.win32.exe’. These installers can even be created on
UNIX or MacOS platforms.

If you have a non-pure distribution, the extensions can only be created on a Windows platform, and will be Python
version dependent. The installer filename will reflect this and now has the form ‘foo-1.0.win32-py2.0.exe’. You
have to create a separate installer for every Python version you want to support.

The installer will try to compile pure modules into bytecode after installation on the target system in normal and
optimizing mode. If you don’t want this to happen for some reason, you can run thebdist wininst command
with the--no-target-compileand/or the--no-target-optimizeoption.

By default the installer will display the cool “Python Powered” logo when it is run, but you can also supply your
own bitmap which must be a Windows ‘.bmp’ file with the --bitmap option.

The installer will also display a large title on the desktop background window when it is run, which is constructed
from the name of your distribution and the version number. This can be changed to another text by using the--title
option.

The installer file will be written to the “distribution directory” — normally ‘dist/’, but customizable with the
--dist-dir option.

The Postinstallation script

Starting with Python 2.3, a postinstallation script can be specified which the--install-script option. The basename
of the script must be specified, and the script filename must also be listed in the scripts argument to the setup
function.

6.3 Creating Windows Installers 19

This script will be run at installation time on the target system after all the files have been copied, with argv[1] set
to ’-install’, and again at uninstallation time before the files are removed with argv[1] set to ’-remove’.

The installation script runs embedded in the windows installer, every output (sys.stdout, sys.stderr) is redirected
into a buffer and will be displayed in the GUI after the script has finished.

Some functions especially useful in this context are available in the installation script.

dir_created(pathname)
file_created(pathname)

These functions should be called when a directory or file is created by the postinstall script at installation time. It
will register the pathname with the uninstaller, so that it will be removed when the distribution is uninstalled. To
be safe, directories are only removed if they are empty.

get_special_folder_path(csidl_string)

This function can be used to retrieve special folder locations on Windows like the Start Menu or the Desktop. It
returns the full path to the folder. ’csidlstring’ must be on of the following strings:

"CSIDL_APPDATA"

"CSIDL_COMMON_STARTMENU"
"CSIDL_STARTMENU"

"CSIDL_COMMON_DESKTOPDIRECTORY"
"CSIDL_DESKTOPDIRECTORY"

"CSIDL_COMMON_STARTUP"
"CSIDL_STARTUP"

"CSIDL_COMMON_PROGRAMS"
"CSIDL_PROGRAMS"

"CSIDL_FONTS"

If the folder cannot be retrieved, OSError is raised.

Which folders are available depends on the exact Windows version, and probably also the configuration. For
details refer to Microsoft’s documentation of theSHGetSpecialFolderPath function.

create_shortcut(target, description, filename[, arguments[,
workdir[, iconpath[, iconindex]]]])

This function creates a shortcut.target is the path to the program to be started by the shortcut.descriptionis
the description of the sortcut.filenameis the title of the shortcut that the user will see.argumentsspecifies the
command line arguments, if any.workdir is the working directory for the program.iconpathis the file containing
the icon for the shortcut, andiconindexis the index of the icon in the fileiconpath. Again, for details consult the
Microsoft documentation for theIShellLink interface.

7 Registering with the Package Index

The Python Package Index (PyPI) holds meta-data describing distributions packaged with distutils. The distutils
commandregister is used to submit your distribution’s meta-data to the index. It is invoked as follows:

20 7 Registering with the Package Index

python setup.py register

Distutils will respond with the following prompt:

running register
We need to know who you are, so please choose either:

1. use your existing login,
2. register as a new user,
3. have the server generate a new password for you (and email it to you), or
4. quit

Your selection [default 1]:

Note: if your username and password are saved locally, you will not see this menu.

If you have not registered with PyPI, then you will need to do so now. You should choose option 2, and enter your
details as required. Soon after submitting your details, you will receive an email which will be used to confirm
your registration.

Once you are registered, you may choose option 1 from the menu. You will be prompted for your PyPI username
and password, andregister will then submit your meta-data to the index.

You may submit any number of versions of your distribution to the index. If you alter the meta-data for a particular
version, you may submit it again and the index will be updated.

PyPI holds a record for each (name, version) combination submitted. The first user to submit information for a
given name is designated the Owner of that name. They may submit changes through theregister command
or through the web interface. They may also designate other users as Owners or Maintainers. Maintainers may
edit the package information, but not designate other Owners or Maintainers.

By default PyPI will list all versions of a given package. To hide certain versions, the Hidden property should be
set to yes. This must be edited through the web interface.

8 Examples

8.1 Pure Python distribution (by module)

If you’re just distributing a couple of modules, especially if they don’t live in a particular package, you can specify
them individually using thepy modules option in the setup script.

In the simplest case, you’ll have two files to worry about: a setup script and the single module you’re distributing,
‘ foo.py’ in this example:

<root>/
setup.py
foo.py

(In all diagrams in this section,<root> will refer to the distribution root directory.) A minimal setup script to
describe this situation would be:

from distutils.core import setup
setup(name = "foo", version = "1.0",

py_modules = ["foo"])

Note that the name of the distribution is specified independently with thename option, and there’s no rule that
says it has to be the same as the name of the sole module in the distribution (although that’s probably a good
convention to follow). However, the distribution name is used to generate filenames, so you should stick to letters,

21

digits, underscores, and hyphens.

Sincepy modules is a list, you can of course specify multiple modules, eg. if you’re distributing modulesfoo
andbar , your setup might look like this:

<root>/
setup.py
foo.py
bar.py

and the setup script might be

from distutils.core import setup
setup(name = "foobar", version = "1.0",

py_modules = ["foo", "bar"])

You can put module source files into another directory, but if you have enough modules to do that, it’s probably
easier to specify modules by package rather than listing them individually.

8.2 Pure Python distribution (by package)

If you have more than a couple of modules to distribute, especially if they are in multiple packages, it’s probably
easier to specify whole packages rather than individual modules. This works even if your modules are not in a
package; you can just tell the Distutils to process modules from the root package, and that works the same as any
other package (except that you don’t have to have an ‘init .py’ file).

The setup script from the last example could also be written as

from distutils.core import setup
setup(name = "foobar", version = "1.0",

packages = [""])

(The empty string stands for the root package.)

If those two files are moved into a subdirectory, but remain in the root package, e.g.:

<root>/
setup.py
src/ foo.py

bar.py

then you would still specify the root package, but you have to tell the Distutils where source files in the root
package live:

from distutils.core import setup
setup(name = "foobar", version = "1.0",

package_dir = {"": "src"},
packages = [""])

More typically, though, you will want to distribute multiple modules in the same package (or in sub-packages).
For example, if thefoo andbar modules belong in packagefoobar , one way to layout your source tree is

<root>/
setup.py
foobar/

__init__.py
foo.py
bar.py

This is in fact the default layout expected by the Distutils, and the one that requires the least work to describe in

22 8 Examples

your setup script:

from distutils.core import setup
setup(name = "foobar", version = "1.0",

packages = ["foobar"])

If you want to put modules in directories not named for their package, then you need to use thepackage dir option
again. For example, if the ‘src’ directory holds modules in thefoobar package:

<root>/
setup.py
src/

__init__.py
foo.py
bar.py

an appropriate setup script would be

from distutils.core import setup
setup(name = "foobar", version = "1.0",

package_dir = {"foobar" : "src"},
packages = ["foobar"])

Or, you might put modules from your main package right in the distribution root:

<root>/
setup.py
__init__.py
foo.py
bar.py

in which case your setup script would be

from distutils.core import setup
setup(name = "foobar", version = "1.0",

package_dir = {"foobar" : ""},
packages = ["foobar"])

(The empty string also stands for the current directory.)

If you have sub-packages, they must be explicitly listed inpackages, but any entries inpackage dir automatically
extend to sub-packages. (In other words, the Distutils doesnot scan your source tree, trying to figure out which
directories correspond to Python packages by looking for ‘init .py’ files.) Thus, if the default layout grows a
sub-package:

<root>/
setup.py
foobar/

__init__.py
foo.py
bar.py
subfoo/

__init__.py
blah.py

then the corresponding setup script would be

8.2 Pure Python distribution (by package) 23

from distutils.core import setup
setup(name = "foobar", version = "1.0",

packages = ["foobar", "foobar.subfoo"])

(Again, the empty string inpackage dir stands for the current directory.)

8.3 Single extension module

Extension modules are specified using theext modules option. package dir has no effect on where extension
source files are found; it only affects the source for pure Python modules. The simplest case, a single extension
module in a single C source file, is:

<root>/
setup.py
foo.c

If the foo extension belongs in the root package, the setup script for this could be

from distutils.core import setup
setup(name = "foobar", version = "1.0",

ext_modules = [Extension("foo", ["foo.c"])])

If the extension actually belongs in a package, sayfoopkg , then

With exactly the same source tree layout, this extension can be put in thefoopkg package simply by changing
the name of the extension:

from distutils.core import setup
setup(name = "foobar", version = "1.0",

ext_modules = [Extension("foopkg.foo", ["foo.c"])])

9 Reference

9.1 Installing modules: the install command family

The install command ensures that the build commands have been run and then runs the subcommands
install lib , install data andinstall scripts .

install data

This command installs all data files provided with the distribution.

install scripts

This command installs all (Python) scripts in the distribution.

9.2 Creating a source distribution: the sdist command

fragment moved down from above: needs context!

24 9 Reference

The manifest template commands are:

Command Description
include pat1 pat2 ... include all files matching any of the listed patterns
exclude pat1 pat2 ... exclude all files matching any of the listed patterns
recursive-include dir pat1 pat2 ... include all files underdir matching any of the listed patterns
recursive-exclude dir pat1 pat2 ... exclude all files underdir matching any of the listed patterns
global-include pat1 pat2 ... include all files anywhere in the source tree matching

any of the listed patterns
global-exclude pat1 pat2 ... exclude all files anywhere in the source tree matching

any of the listed patterns
prune dir exclude all files underdir
graft dir include all files underdir

The patterns here are UNIX -style “glob” patterns:* matches any sequence of regular filename characters,?
matches any single regular filename character, and[range] matches any of the characters inrange(e.g.,a-z ,
a-zA-Z , a-f0-9 .). The definition of “regular filename character” is platform-specific: on UNIX it is anything
except slash; on Windows anything except backslash or colon; on MacOS anything except colon.

Windows and MacOS support not there yet

10 distutils.sysconfig — System configuration information

The distutils.sysconfig module provides access to Python’s low-level configuration information. The
specific configuration variables available depend heavily on the platform and configuration. The specific variables
depend on the build process for the specific version of Python being run; the variables are those found in the
‘Makefile’ and configuration header that are installed with Python on UNIX systems. The configuration header is
called ‘pyconfig.h’ for Python versions starting with 2.2, and ‘config.h’ for earlier versions of Python.

Some additional functions are provided which perform some useful manipulations for other parts of the
distutils package.

PREFIX
The result ofos.path.normpath(sys.prefex) .

EXEC PREFIX
The result ofos.path.normpath(sys.exec prefex) .

get config var (name)
Return the value of a single variable. This is equivalent toget config vars().get(name) .

get config vars (...)
Return a set of variable definitions. If there are no arguments, this returns a dictionary mapping names of
configuration variables to values. If arguments are provided, they should be strings, and the return value
will be a sequence giving the associated values. If a given name does not have a corresponding value,None
will be included for that variable.

get config h filename ()
Return the full path name of the configuration header. For UNIX , this will be the header generated by
theconfigure script; for other platforms the header will have been supplied directly by the Python source
distribution. The file is a platform-specific text file.

get makefile filename ()
Return the full path name of the ‘Makefile’ used to build Python. For UNIX , this will be a file generated by
theconfigure script; the meaning for other platforms will vary. The file is a platform-specific text file, if it
exists. This function is only useful on POSIX platforms.

get python inc ([plat specific[, prefix]])
Return the directory for either the general or platform-dependent C include files. Ifplat specificis true, the
platform-dependent include directory is returned; if false or omitted, the platform-independent directory is

25

returned. Ifprefix is given, it is used as either the prefix instead ofPREFIX, or as the exec-prefix instead of
EXEC PREFIX if plat specificis true.

get python lib ([plat specific[, standard lib[, prefix]]])
Return the directory for either the general or platform-dependent library installation. Ifplat specificis true,
the platform-dependent include directory is returned; if false or omitted, the platform-independent directory
is returned. Ifprefix is given, it is used as either the prefix instead ofPREFIX, or as the exec-prefix instead
of EXEC PREFIX if plat specificis true. If standard lib is true, the directory for the standard library is
returned rather than the directory for the installation of third-party extensions.

The following function is only intended for use within thedistutils package.

customize compiler (compiler)
Do any platform-specific customization of adistutils.ccompiler.CCompiler instance.

This function is only needed on UNIX at this time, but should be called consistently to support forward-
compatibility. It inserts the information that varies across UNIX flavors and is stored in Python’s ‘Makefile’.
This information includes the selected compiler, compiler and linker options, and the extension used by the
linker for shared objects.

This function is even more special-purpose, and should only be used from Python’s own build procedures.

set python build ()
Inform thedistutils.sysconfig module that it is being used as part of the build process for Python.
This changes a lot of relative locations for files, allowing them to be located in the build area rather than in
an installed Python.

26 10 distutils.sysconfig — System configuration information

	1 Introduction
	2 Concepts & Terminology
	2.1 A Simple Example
	2.2 General Python terminology
	2.3 Distutils-specific terminology

	3 Writing the Setup Script
	3.1 Listing whole packages
	3.2 Listing individual modules
	3.3 Describing extension modules
	Extension names and packages
	Extension source files
	Preprocessor options
	Library options
	Other options

	3.4 Installing Scripts
	3.5 Installing Additional Files
	3.6 Additional meta-data
	3.7 Debugging the setup script

	4 Writing the Setup Configuration File
	5 Creating a Source Distribution
	5.1 Specifying the files to distribute
	5.2 Manifest-related options

	6 Creating Built Distributions
	6.1 Creating dumb built distributions
	6.2 Creating RPM packages
	6.3 Creating Windows Installers
	The Postinstallation script

	7 Registering with the Package Index
	8 Examples
	8.1 Pure Python distribution (by module)
	8.2 Pure Python distribution (by package)
	8.3 Single extension module

	9 Reference
	9.1 Installing modules: the install command family
	installprotect unhbox voidb@x kern .06emvbox {hrule width.55em}data
	installprotect unhbox voidb@x kern .06emvbox {hrule width.55em}scripts

	9.2 Creating a source distribution: the sdist command

	10 distutils.sysconfig --- System configuration information

